1
|
Peng Q, Yang Q, Yan Z, Wang X, Zhang Y, Ye M, Zhou S, Jiao G, Chen W. Nanofiber-reinforced chitosan/gelatine hydrogel with photothermal, antioxidant and conductive capabilities promotes healing of infected wounds. Int J Biol Macromol 2024; 279:134625. [PMID: 39163962 DOI: 10.1016/j.ijbiomac.2024.134625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
The wound healing process was often accompanied by bacterial infection and inflammation. The combination of electrically conductive nanomaterials and wound dressings could accelerate cell proliferation through endogenous electrical signaling, effectively promoting wound healing. In this study, polypyrrole was modified with dopamine hydrochloride by an in situ polymerization to form dopamine-polypyrrole (DA-Ppy) conductive nanofibers which successfully enhanced the water dispersibility and biocompatibility of polypyrrole. The DA-Ppy nanofibers were dispersed in an aqueous solution for >48 h and still maintained good stability. In addition, the DA-Ppy nanofibers showed good photothermal properties, and the temperature could reach 59.7 °C by 1.5 W/cm2 near-infrared light irradiation (NIR) for 10 min. DA-Ppy conductive nanofibres could be well dispersed in 3,4-dihydroxyphenylpropionic acid modified chitosan-carboxymethylated β-cyclodextrin modified gelatin (CG) hydrogel due to the presence of DA, which endowed CG/DA-Ppy hydrogel with good adhesion properties, and the hydrogel adhered to the pigskin would not be dislodged by washing with running water. Under NIR, the CG/DA-Ppy hydrogel showed significant antimicrobial properties. Moreover, the CG/DA-Ppy hydrogel had excellent biocompatibility. In addition, CG/DA-Ppy hydrogel was effective in scavenging ROS, inducing macrophage polarization towards the M2 phenotype, and modulating the level of wound inflammation in vitro. Finally, it was confirmed in rat-infected wounds that the tissue regeneration effect and collagen deposition in the CG/DA-Ppy + NIR group were significantly better than the other groups in the repair of infected wounds, indicating better repair of infected wounds. The results suggested that the photothermal, antioxidant DA-Ppy conductive nanofiber had great potential for application in infected wound healing.
Collapse
Affiliation(s)
- Qing Peng
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, PR China
| | - Qi Yang
- Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan 523573, PR China
| | - Zheng Yan
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaofei Wang
- Department of Orthopedics, 302 Hospital of China Guizhou Aviation Industry Group, Anshun, Guizhou 561000, PR China
| | - Ying Zhang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, PR China
| | - Mao Ye
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, PR China
| | - Shuqin Zhou
- Department of Anesthesiology of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, PR China
| | - Genlong Jiao
- Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Dongguan 523573, PR China.
| | - Weijian Chen
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, PR China; Department of Orthopedics, 302 Hospital of China Guizhou Aviation Industry Group, Anshun, Guizhou 561000, PR China.
| |
Collapse
|
2
|
Liu Z, Bao D, Jia S, Qiao J, Xiang D, Li H, Tian L, Zhang B, Zhang X, Zhang H, Guo J, Zhang S. The regulation of CuSNPs' interface for further enhancing mechanical and photothermal conversion properties of chitosan/@CuSNPs hybrid fibers. Int J Biol Macromol 2024; 265:130931. [PMID: 38508563 DOI: 10.1016/j.ijbiomac.2024.130931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Our previous study has demonstrated that the microstructure of copper sulfide nanoparticles (CuSNPs) can be controlled to enhance mechanical and photothermal conversion properties of chitosan (CS)/CuSNPs hybrid fibers. However, achieving optimal dispersion and compatibility of CuSNPs within a CS matrix remains a challenge, this study aims to improve dispersion and compatibility by modifying the CuSNPs' interface, thereby enhancing mechanical and photothermal conversion properties of hybrid fibers. The interfaces of @CuSNPs (CuS@Xylan NPs, CuS@SA NPs, and CuS@PEG NPs) contain hydroxyl groups, facilitating the hydrogen bonds formation with the CS matrix. The dispersibility is further enhanced by the synergistic effect of xylan and SA's anionic charges with cationic chitosan. Notably, the viscosity of the CS/@CuSNPs hybrid spinning solution is significantly enhanced, resulting in improved breaking strength for initial hybrid fibers. Specifically, the breaking strength of CS/CuS@Xylan NPs hybrid fibers reaches 1.4 cN/dtex, exhibiting a 42.86 % and 20.6 % increase over CS and CS/CuSNPs hybrid fibers. Simultaneously, the CS/CuS@Xylan NPs hybrid fibers exhibit exceptional photothermal conversion performance, surpassing that of CS fibers by 5.2 times and CS/CuSNPs hybrid fibers by 1.4 times. The regulation of interface modification is an efficient approach to enhance the tensile strength and photothermal conversion properties of CS/CuSNPs hybrid fibers.
Collapse
Affiliation(s)
- Zhihao Liu
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Da Bao
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Shangyin Jia
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Jin Qiao
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Dongliang Xiang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Huirong Li
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Linna Tian
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Bing Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Xin Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China
| | - Hong Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China
| | - Jing Guo
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China
| | - Sen Zhang
- School of Textile and Materials Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Ganjingzi, Dalian 116034, Liaoning, PR China; State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
3
|
Ahmad A, Hassan A, Roy PG, Zhou S, Irfan A, Chaudhry AR, Kanwal F, Begum R, Farooqi ZH. Recent developments in chitosan based microgels and their hybrids. Int J Biol Macromol 2024; 260:129409. [PMID: 38224801 DOI: 10.1016/j.ijbiomac.2024.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
4
|
Wang X, Wang J, Li H. Enhanced anticancer activity of piperine: Structural optimization and chitosan-based microgels with boosted drug delivery. Int J Biol Macromol 2023; 253:127019. [PMID: 37739282 DOI: 10.1016/j.ijbiomac.2023.127019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
As a plant-derived drug, piperine possesses therapeutic efficacy for many diseases, but its inherent low solubility and bioavailability have greatly limited its clinical use. Herein, we extracted piperine from black pepper, optimized the structure of piperine to prepare various derivatives, and then explored the anticancer activity of these derivatives. Piperine and its derivatives have high anticancer selectivity against 4T1 cells, exhibiting obvious anticancer properties even at a low concentration of 100 μg/mL. Furthermore, the physicochemical properties of piperine and its derivatives were investigated using density functional theory, demonstrating their considerable biological activity. Moreover, the chitosan-based microgels were prepared to encapsulate the hydrophobic piperine derivative with a high loading efficiency of 81.7 % to overcome the low water solubility of the piperine derivative. It is worth noting that excessive glutathione in tumor cells triggers the degradation of microgels and realizes controllable drug release of up to 72.3 %. Due to its excellent properties, chitosan-based microgels loaded with the piperine derivative can obtain good anticancer behavior of approximately 13.14 % cell viability against 4T1 cells. Therefore, the chitosan-based microgels overcome the low water solubility of the piperine derivative through encapsulation and thus further augment their delivery efficiency and cell internalization capability to realize excellent anticancer activity. This work demonstrates the enhanced anticancer efficacy of the hydrophobic plant-derived drug by means of structural optimization of piperine and chitosan-based microgels with boosted drug delivery.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun 130033, China; Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany
| | - Jiangbin Wang
- Department of Digestive, China-Japan Union Hospital of Jilin University, Changchun 130033, China; Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany.
| | - Helin Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|