1
|
Gao Y, Gao T, Li L, Chi H, Teng F. Modification of soybean lipophilic protein based on pH-shifting and high-pressure homogenization: Focus on structure, physicochemical properties and delivery vehicle. Food Chem 2025; 463:141001. [PMID: 39243622 DOI: 10.1016/j.foodchem.2024.141001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
High-pressure homogenization and pH-shifting can be used to modify soybean lipophilic protein (SLP), and to enhance its ability to deliver vitamin B12. The structural changes of SLP were analyzed by multispectral techniques and the results showed that secondary and tertiary structures of SLP were altered by modification. The modification unfolded the SLP structure, released more free hydrogen ions, and increased positive charge density on the protein surface. Also, the solubility of modified SLP increased by maximum of 34.75 %. Furthermore, molecular docking showed that complexes were formed between SLP and vitamin B12 mainly through hydrogen bonding and hydrophobic interactions, and the encapsulation rate of modified SLP was maximally increased by 2.3 %. In vitro digestion showed that modified SLP enhanced stability and bioaccessibility of vitamin B12. This study provides theoretical basis for modification of SLP and effective delivery of bioactive substances.
Collapse
Affiliation(s)
- Yiting Gao
- College of Food science, Northeast Agricultural university, Harbin, Heilongjiang 150030, China
| | - Tian Gao
- College of Food science, Northeast Agricultural university, Harbin, Heilongjiang 150030, China
| | - Lijia Li
- College of Food science, Northeast Agricultural university, Harbin, Heilongjiang 150030, China
| | - Huiyue Chi
- College of Food science, Northeast Agricultural university, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food science, Northeast Agricultural university, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Zhuang X, Yan S, Luo C, Liu J, Chen Y, Liu Q, Zhou G, Ding C. Constructing soybean protein isolate /bacterial cellulose co-assemblies by pH shifting treatment: Molecular conformation and physicochemical properties. Food Chem 2024; 460:140628. [PMID: 39089021 DOI: 10.1016/j.foodchem.2024.140628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The study elucidates that the pH shifting treatment unfolds the conformation of soybean protein isolate (SPI), enabling it to intertwine with bacterial cellulose (BC) and form SPI/BC co-assemblies. Results from intrinsic fluorescence spectroscopy and surface hydrophobicity indicate that the SPI with pH shifting treatment shows a notable blue shift in maximum emission wavelength and increased surface hydrophobicity. It demonstrates that pH shifting treatment facilitates the unfolding of SPI's molecular conformation, promoting its entanglement with high aspect ratio BC. Particle size distribution and microstructural analysis further demonstrate that the pH shifting treatment facilitates the formation of SPI/BC co-assemblies. Evaluation of processing properties reveals that the SPI/BC co-assemblies exhibited exceptional gel and emulsification properties, with gel strength and emulsifying activity respectively six and two times higher than natural SPI. This enhancement is attributed to the thickening properties of BC with a high aspect ratio and the superior hydrophobicity of SPI in its molten globule state.
Collapse
Affiliation(s)
- Xinbo Zhuang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China.
| | - Sunhui Yan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Cheng Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Jiaoqiong Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Yinji Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Qiang Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Guanghong Zhou
- Key Lab of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
3
|
Wu J, Tang Y, Zhang M, Chen W, Chen H, Zhong Q, Pei J, He R, Chen W. Mechanism for improving the in vitro digestive properties of coconut milk by modifying the structure and properties of coconut proteins with monosodium glutamate. Food Res Int 2024; 185:114288. [PMID: 38658074 DOI: 10.1016/j.foodres.2024.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
In this paper, the effect of monosodium glutamate (MSG) on coconut protein (CP) solubility, surface hydrophobicity, emulsification activity, ultraviolet spectroscopy and fluorescence spectroscopy was investigated. Meanwhile, the changes in the in vitro digestive properties of coconut milk were also further analyzed. MSG treatment altered the solubility and surface hydrophobicity of CP, thereby improving protein digestibility. Molecular docking showed that CP bound to pepsin and trypsin mainly through hydrogen bonds and salt bridges. And MSG increased the cleavable sites of pepsin and trypsin on CP, thus further improving the protein digestibility. In addition, MSG increased the Na+ concentration in coconut milk, promoted flocculation and aggregation between coconut milk droplets, which prevented the binding of lipase and oil droplets and inhibited lipid digestion. These findings may provide new ideas and insights to improve the digestive properties of plant-based milk.
Collapse
Affiliation(s)
- Jiawu Wu
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Yingjiao Tang
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Ming Zhang
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Wenxue Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Haiming Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Qiuping Zhong
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Jianfei Pei
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Rongrong He
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| | - Weijun Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| |
Collapse
|
4
|
Chen W, Yang F, Xu H, Pan J, Liu J, Dabbour M, Mintah BK, Huang L, Dai C, Ma H, He R. Hexagonal plate ultrasound pretreatment on the correlation between soy protein isolate structure and cholesterol-lowering activity of peptides, and protein's enzymolysis kinetics, thermodynamics. Int J Biol Macromol 2024; 258:128897. [PMID: 38141711 DOI: 10.1016/j.ijbiomac.2023.128897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, a hexagonal plate ultrasound (HPU) pretreatment technology was employed to modify soy protein isolate (SPI) and enhance the hypocholesterolemic activity of enzymatic digests from SPI. Results demonstrated that under the condition of ultrasound power density of 40 W/L, the hypocholesterolemic activity of enzymatic digests from HPU-pretreated SPI (HPU-SPI) increased by 88.40 % compared to control group after gastrointestinal digestion. The sulfhydryl content of HPU-SPI increased by a maximum of 45.32 % compared to control group. Fourier transform infrared and scanning electron microscopy revealed that HPU pretreatment partially unfolded the SPI conformation, reduced the intermolecular interactions, and exposed the internal hydrophobic regions. Pearson correlation analysis showed that sulfhydryl groups (r = 0.860), disulfide bonds (r = -0.875) and random coil (r = 0.917) were strongly correlated with the cholesterol-lowering activity of soy protein hydrolysate (SPH), following a simulated gastrointestinal digestion. Finally, the effects of HPU pretreatment on enzymolysis kinetics and thermodynamics of the SPI enzymatic process showed that HPU pretreatment significantly reduced the Mie's constant, activation energy, activation enthalpy, activation entropy and Gibbs free energy. Overall, the study outcome suggested that HPU pretreatment could positively influence the hypocholesterolemic peptide activity, and thus, may be beneficial to the pharmaceutical/food industry.
Collapse
Affiliation(s)
- Wen Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Fan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co. Ltd., Yucheng 251200, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, P.O. Box M20, Accra, Ghana; Department of Agro-processing Technology and Food Bio-sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
Salehi F, Inanloodoghouz M, Karami M. Rheological properties of carboxymethyl cellulose (CMC) solution: Impact of high intensity ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 101:106655. [PMID: 37879217 PMCID: PMC10618764 DOI: 10.1016/j.ultsonch.2023.106655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Today sonication process is used as a new green tool with unique impacts on foods preservation and processing. Ultrasonic modification is an appropriate strategy to obtain good gums with useful physicochemical characteristics and molecular structure. This research aimed to analyze the impacts of sonication at different intensities (0, 75, and 150 W) and time (0, 5, 10, 15, and 20 min) on the viscosity and rheological characteristics of carboxymethyl cellulose (CMC) solution. The results confirmed that the apparent viscosity of CMC solution reduced from 0.030 to 0.021 Pa.s with increasing shear-rate from 12.2 s-1 to 134.5 s-1 (75 W for 10 min). Also, the apparent viscosity of CMC solution reduced from 0.028 to 0.019 Pa.s with enhancing the sonication time from 0 to 20 min (shear-rate = 61 s-1, 150 W). Various rheological equations were employed to fit the empirical values, and the results confirmed that the Power law model was the best fit to explain the flow behaviour of CMC solution. The consistency coefficient of CMC solution significantly reduced from 0.065 Pa.sn to 0.032 Pa.sn (p < 0.05) with enhancing sonication time from 0 to 20 min (75 W). Furthermore, the consistency coefficient of CMC solution decreased significantly (p < 0.05) while the ultrasonic power enhanced. Flow behaviour index of CMC solution enhanced significantly (p < 0.05) while the intensity and time of sonication enhanced.
Collapse
Affiliation(s)
- Fakhreddin Salehi
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
| | - Moein Inanloodoghouz
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| | - Mostafa Karami
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|