1
|
Mishra R, Singh TG, Bhatia R, Awasthi A. Unveiling the therapeutic journey of snail mucus in diabetic wound care. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03657-9. [PMID: 39869187 DOI: 10.1007/s00210-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 01/28/2025]
Abstract
A diabetic wound (DW) is an alteration in the highly orchestrated physiological sequence of wound healing especially, the inflammatory phase. These alterations result in the generation of oxidative stress and inflammation at the injury site. This further leads to the impairment in the angiogenesis, extracellular matrix, collagen deposition, and re-epithelialization. Additionally, in DW there is the presence of microbial load which makes the wound worse and impedes the wound healing cycle. There are several treatment strategies which have been employed by the researchers to mitigate the aforementioned challenges. However, they failed to address the multifactorial pathogenic nature of the disease. Looking at the severity of the disease researchers have explored snail mucus and its components such as achacin, allantoin, elastin, collagen, and glycosaminoglycan due to its multiple therapeutic potentials; however, glycosaminoglycan (GAGs) is very important among all because they accelerate the wound-healing process by promoting reepithelialization, vascularization, granulation, and angiogenesis at the site of injury. Despite its varied applications, the field of snail mucus in wound healing is still underexplored. The present review aims to highlight the role of snail mucus in diabetic wound healing, the advantages of snail mucus over conventional treatments, the therapeutic potential of snail mucus, and the application of snail mucus in DW. Additionally, clinical trials, patents, structural variations, and advancements in snail mucus characterization have been covered in the article.
Collapse
Affiliation(s)
- Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Ankit Awasthi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Shin HY, Jeong WB, Joung MY, Shin KS, Yu KW. Effects of Centella asiatica-isolated pectic polysaccharide on dextran sulfate sodium-induced colitis. Int J Biol Macromol 2024; 285:138237. [PMID: 39622374 DOI: 10.1016/j.ijbiomac.2024.138237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
Dietary supplementation of polysaccharides demonstrates strong therapeutic actions on inflammatory bowel disease (IBD). Centella asiatica (CA) has traditionally been used in Ayurveda and Chinese medicine. However, the effects of CA-isolated pectic polysaccharides on IBD remain unknown. This study determined the effect of a CA-isolated pectic polysaccharide on IBD. The crude polysaccharide (CA-CP), isolated from a hot-water extract of CA, is a typical pectic polysaccharide composed mainly of galacturonic acid (40.6 %), galactose (27.6 %), arabinose (13.5 %), and rhamnose (8.5 %). CA-CP improved clinical symptoms in a DSS-induced colitis murine model, including weight change (9.9-12.0 %), disease activity index (31.6-51.9 %), colon length (13.2-21.5 %), and spleen weight (21.8-26.3 %). CA-CP effectively regulated the levels of inflammatory and junctional factors by mediating the MAPK and NF-κB pathways. CA-CP partially alleviated DSS-induced crypt destruction, submucosal edema, inflammatory infiltration, and mucin secretion. The content of total short-chain fatty acids increased substantially (cecum 29.8-53.7 %, feces 75.4-109.3 %) with oral CA-CP administration compared to the DSS group. Cecal microbial community analysis revealed that CA-CP administration regulated DSS-induced colitis by reducing the abundance of Escherichia (5.0-10.9 %) and Clostridium (0.3-0.4 %), while increasing the abundance of Bacteroidetes (6.8-8.5 %), Ligilactobacillus (2.7-6.0 %), and Bilophilia (0.3-0.6 %). The findings provide fundamental data for developing novel functional therapeutic agents for the prevention and treatment of colitis, using CA-isolated pectic polysaccharides. Furthermore, to the best of our knowledge, our study is the first to demonstrate the effects of pectic polysaccharides isolated from CA on IBD.
Collapse
Affiliation(s)
- Hyun Young Shin
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Won Bi Jeong
- Major in Food & Nutrition, Korea National University of Transportation, Chungbuk 27909, Republic of Korea.
| | - Mi Yeun Joung
- Corporation ChamSunJin Green Juice, Jincheon 27865, Republic of Korea.
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| | - Kwang-Won Yu
- Major in Food & Nutrition, Korea National University of Transportation, Chungbuk 27909, Republic of Korea.
| |
Collapse
|
3
|
Gao X, Guo K, Liu S, Yang W, Sheng J, Tian Y, Peng L, Zhao Y. A Potential Use of Vidarabine: Alleviation of Functional Constipation Through Modulation of the Adenosine A2A Receptor-MLC Signaling Pathway and the Gut Microbiota. Int J Mol Sci 2024; 25:12810. [PMID: 39684522 DOI: 10.3390/ijms252312810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Vidarabine (VID) is an antiviral medication that is commonly utilized to treat conditions such as hand, foot, and mouth disease and herpes. Constipation is a prevalent complication of these diseases. Could VID treat these diseases by influencing defecation behavior? To date, no studies have been conducted on the potential of VID to relieve constipation. Therefore, a systematic investigation was conducted into the laxative effects and mechanisms of VID using loperamide-induced functional constipated mice. The findings indicate that the oral administration of VID promoted gastrointestinal peristalsis, improved fecal properties, facilitated defecation, and demonstrated a significant laxative effect on functional constipated mice. It has been demonstrated that VID may increase the water content of feces by regulating the expression of aquaporins (AQP3, AQP4, and AQP8) in the colon and promote intestinal motility by regulating the expression of neurotransmitters (AChE and VIP) and the adenosine A2A receptor-myosin light chain (A2AR-MLC) signaling pathway in constipated mice. Concurrently, VID may also reduce colonic inflammation in constipated mice, reinforce the gut barrier function, and alter the composition and structure of the gut microbial community. Some microbial taxa, including Firmicutes and Lactobacillus, were found to be associated with the alleviation of constipation, while other taxa, including Bacteroidetes, Proteobacteria, Muribaculaceae, Muribaculum, norank__f__Desulfovibrionaceae, and Parasutterella, were found to be associated with constipation. These results indicate that the gut microbiota may play a significant role in the alleviation of constipation by VID. These findings confirm the efficacy of VID in a constipated animal model, which justifies further investigation into its potential clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Kaifeng Guo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shuangfeng Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weixing Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Zhao
- Division of Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Jang JH, Kim SM, Suh HJ, Gim M, Shin H, Jang H, Choi HS, Han SH, Chang YB. Lactitol Alleviates Loperamide-Induced Constipation in Sprague Dawley Rats by Regulating Serotonin, Short-Chain Fatty Acids, and Gut Microbiota. Foods 2024; 13:2128. [PMID: 38998634 PMCID: PMC11240941 DOI: 10.3390/foods13132128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The objective of this study was to examine the impact of lactitol on constipation caused by loperamide in Sprague Dawley rats, with a particular emphasis on its underlying mechanisms and potential health advantages. The lactitol effectively improved fecal parameters, intestinal tissue structure, and the expression of constipation-related gene expression and proteins. Lactitol alleviated fecal weight and water content altered by loperamide and enhanced gastrointestinal transit. The administration also restored mucosal and muscular layer thickness. Mechanistically, lactitol upregulated the mRNA expression and/or protein levels of mucins (MUC2 and MUC4), occludin, claudin-1, and zonula occludens, indicating improved intestinal barrier function. Lactitol positively regulated the composition of cecal microbiota, leading to an increased relative abundance of Bifidobacterium, Lactobacillus, and Romboutsia. Conversely, lactitol decreased the relative abundance of Prevotella, Aerococcus, Muribaculum, Blautia, and Ruminococcus. This study demonstrated the potential of lactitol to relieve constipation by modulating the gut microbiota. These findings suggest that lactitol is an alternative to traditional laxatives and has potential as a health-promoting food sweetener.
Collapse
Affiliation(s)
- Joo Hyun Jang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Minchul Gim
- LOTTE R&D Center, Seoul 07594, Republic of Korea
| | - Hoyeon Shin
- LOTTE R&D Center, Seoul 07594, Republic of Korea
| | | | - Hyeon-Son Choi
- Department of Food and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sung Hee Han
- Institute of Human Behavior and Genetics, Korea University, Seoul 02841, Republic of Korea
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Singh N, Brown AN, Gold MH. Snail extract for skin: A review of uses, projections, and limitations. J Cosmet Dermatol 2024; 23:1113-1121. [PMID: 38429932 DOI: 10.1111/jocd.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Snail mucin is becoming increasingly popular for its wide range of ingredients and potential benefits. Snail extract's widespread appearance in cosmetic formulations encourages an investigation into the medical and cosmetic benefits. AIMS This study aims to explore current literature on the variety of snail mucin applications. Specifically, we present a review of the uses, global market estimates and projects, and limitations to snail mucin. METHODS A literature search was conducted on PubMed reviewing snail mucin and their application in medical and dermatologic fields examining their uses. Economic reports were also investigated for Global Market estimates. RESULTS The therapeutic use of snail mucin in medical fields has been studied as antimicrobial agents, drug delivery vehicles, antitumor agents, wound healing agents, and biomaterial coatings among others. Additionally, the use in cosmetic fields includes antiaging, hydrating, anti-acne, scarring, and hyperpigmentation treatments. It is important to highlight that most studies conducted were preclinical or small clinical studies, stressing the need for additional large-scale clinical trials to support these claims. Investigations into the global market found estimates ranging from $457 million to $1.2 billion with upward projections in the upcoming decade. Limitations include ethical habitats for collection, allergy investigation, and missing clinical studies. CONCLUSIONS The findings presented here emphasize the expanding uses of snail mucin and its ingredients alongside a growing market cosmetic industry should consider. We also emphasize the need for appropriate clinical trials into the stated benefits of snail mucin to ensure consumer safety and ethical extraction of mucin.
Collapse
Affiliation(s)
- Nupur Singh
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Angela N Brown
- Gold Skin Care Center, Tennessee Clinical Research Center, Nashville, Tennessee, USA
| | - Michael H Gold
- Gold Skin Care Center, Tennessee Clinical Research Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Zhu C, Nie X, Lu Q, Bai Y, Jiang Z. Roles and regulation of Aquaporin-3 in maintaining the gut health: an updated review. Front Physiol 2023; 14:1264570. [PMID: 38089478 PMCID: PMC10714013 DOI: 10.3389/fphys.2023.1264570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2025] Open
Abstract
Aquaporin-3 (AQP3) is a predominant water channel protein expressed in the intestine, and plays important roles in the gut physiology and pathophysiology due to its permeability to water, glycerol and hydrogen peroxide. In this review, we systematically summarized the current understanding of the expression of AQP3 in the intestine of different species, and focused on the potential roles of AQP3 in water transport, different types of diarrhea and constipation, intestinal inflammation, intestinal barrier function, oxidative stress, and autophagy. These updated findings have supported that AQP3 may function as an important target in maintaining gut health of human and animals.
Collapse
Affiliation(s)
- Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoyan Nie
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qi Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|