1
|
Mohamadi-Sodkouieh S, Kalantari M, Askari N. A bioactive self-healing hydrogel wound-dressing based on Tragacanth gum: Structural and invitro biomedical investigations. Int J Biol Macromol 2024; 278:134980. [PMID: 39179077 DOI: 10.1016/j.ijbiomac.2024.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
The design and development of wound-dressing hydrogels with desirable therapeutic effects and proper mechanical and self-healing properties are crucial in the healthcare sector. This research aims to prepare a new self-healing hydrogel based on Tragacanth, polyvinyl alcohol, and borax to be used as a wound dressing, the hydrogel was first prepared through a simple and one-pot reaction. The efficiency of the resulting product was then assessed based on the rheological and self-healing tests as well as cellular tests on a mouse fibroblast cell line (L929) including toxicity and scratch tests as well as the investigation of the expression of TGFβ1, TGFβ2, and VEGF-A gens (using Real-time PCR). The synthesized hydrogel exhibited proper mechanical strength, high self-healing features, and no toxicity (cell viability >100 %). Rheological studies indicate that hydrogels with a higher borax content (PVA: B ratio of 5:1) exhibit a higher storage modulus across all frequencies. The presence of hydrogel improved the migration of the L929 cells and scratch healing. The hydrogel also caused a significant improvement in the expression of the growth factors of the genes (P < 0.001). Therefore, it can be concluded that the prepared wound dressing can actively contribute to wound healing, opening promising potentials in medical applications.
Collapse
Affiliation(s)
| | - Maryam Kalantari
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Nayere Askari
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Immunoregulation Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
2
|
Yasmin T, Mahmood A, Sarfraz RM, Rehman U, Boublia A, Alkahtani AM, Albakri GS, Ijaz H, Ahmed S, Harron B, Albrahim M, Elboughdiri N, Yadav KK, Benguerba Y. Mimosa/quince seed mucilage-co-poly (methacrylate) hydrogels for controlled delivery of capecitabine: Simulation studies, characterization and toxicological evaluation. Int J Biol Macromol 2024; 275:133468. [PMID: 38945341 DOI: 10.1016/j.ijbiomac.2024.133468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
This research focused on developing pH-regulated intelligent networks using quince and mimosa seed mucilage through aqueous polymerization to sustain Capecitabine release while overcoming issues like short half-life, high dosing frequency, and low bioavailability. The resulting MSM/QSM-co-poly(MAA) hydrogel was evaluated for several parameters, including complex structure formation, stability, pH sensitivity, morphology, and elemental composition. FTIR, DSC, and TGA analyses confirmed the formation of a stable, complex cross-linked network, demonstrating excellent stability at elevated temperatures. SEM analysis revealed the hydrogels' smooth, fine texture with porous surfaces. PXRD and EDX results indicated the amorphous dispersion of Capecitabine within the network. The QMM9 formulation achieved an optimal Capecitabine loading of 87.17 %. The gel content of the developed formulations ranged from 65.21 % to 90.23 %. All formulations exhibited excellent swelling behavior, with ratios between 65.91 % and 91.93 % at alkaline pH. In vitro dissolution studies indicated that up to 98 % of Capecitabine was released after 24 h at pH 7.4, demonstrating the potential for sustained release. Furthermore, toxicological evaluation in healthy rabbits confirmed the system's safety, non-toxicity, and biocompatibility.
Collapse
Affiliation(s)
- Tahira Yasmin
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan.
| | | | - Umaira Rehman
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha 61411, Saudi Arabia
| | - Ghadah Shukri Albakri
- Department of Teaching and Learning, College of Education and Human Development, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur 22620, Pakistan
| | - Saeed Ahmed
- Department of Chemistry, University of Chakwal, 48800, Pakistan
| | - Bilal Harron
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Malik Albrahim
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Street Omar ibn El-Khattab, 6029, Gabes, Tunisia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
3
|
Razzaq A, Ashraf MU, Barkat K, Mahmood A, Sarfraz RM, Rehman U, Albrahim M, Elboughdiri N, Benguerba Y. Development and characterization of pH-responsive Delonix regia/mucin co-poly (acrylate) hydrogel for controlled drug delivery of metformin HCl. Int J Biol Macromol 2024; 274:132767. [PMID: 38821296 DOI: 10.1016/j.ijbiomac.2024.132767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
This study introduces a pH-responsive hydrogel developed from Delonix regia and mucin co-poly(acrylate) through free radical polymerization to enhance controlled drug delivery systems. Characterization using FTIR, DSC, TGA, SEM, PXRD, and EDX spectroscopy detailed the hydrogel's amorphous and crystalline structures, thermal stability, surface characteristics, and elemental composition. Tested at a pH of 7.4-mimicking intestinal conditions-the hydrogel demonstrated significant swelling, indicating its capability for targeted drug release. With Metformin HCl as a model drug, the hydrogel exhibited a promising sustained release profile, underscoring its potential for oral administration. Safety and biocompatibility were assessed through acute oral toxicity studies in albino rabbits, encompassing biochemical, hematological, and histopathological evaluations. X-ray imaging confirmed the hydrogel's navigability through the gastrointestinal tract, affirming its application in drug delivery. By potentially mitigating gastrointestinal side effects, enhancing patient compliance, and improving therapeutic efficacy, this Delonix regia/mucin co-poly(acrylate) hydrogel represents a step in pharmaceutical sciences, exploring innovative materials and methodologies for drug delivery.
Collapse
Affiliation(s)
- Asma Razzaq
- Faculty of Pharmacy, The University of Lahore, Lahore 54600, Pakistan
| | | | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore 54600, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan
| | | | - Umaira Rehman
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Malik Albrahim
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
4
|
Mouats N, Djellali S, Ferkous H, Sedik A, Delimi A, Boublia A, Rachedi KO, Berredjem M, Çukurovali A, Alam M, Ernsti B, Benguerba Y. Comprehensive Investigation of the Adsorption, Corrosion Inhibitory Properties, and Quantum Calculations for 2-(2,4,5-Trimethoxybenzylidene) Hydrazine Carbothioamide in Mitigating Corrosion of XC38 Carbon Steel under HCl Environment. ACS OMEGA 2024; 9:27945-27962. [PMID: 38973843 PMCID: PMC11223226 DOI: 10.1021/acsomega.3c10240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
This study investigates the inhibitory effects of 2-(2,4,5-trimethoxy benzylidene) hydrazine carbothioamide (TMBHCA) on the corrosion of carbon steel in a 1 M HCl solution across various concentrations. The assessment employs a comprehensive approach, combining gravimetric analysis, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS). Additionally, scanning electron microscopy (SEM) and quantum chemical calculations are employed to provide a thorough understanding of the corrosion inhibition mechanism. The influence of exposure time on mild steel corrosion is systematically examined. Results reveal a remarkable reduction in the corrosion rate of steel, with TMBHCA demonstrating its highest inhibition efficiency of 97.8% at 200 ppm. Potentiodynamic polarization studies characterize TMBHCA as a mixed-type inhibitor, while Nyquist plots illustrate increased charge transfer resistance and decreased double-layer capacitance with escalating TMBHCA concentrations. Consistency between weight loss measurements and electrochemical findings further validates the efficacy of TMBHCA as a corrosion inhibitor. SEM images substantiate and visually support the obtained results. An immersion test conducted at 25 °C over 28 days showcases a notable enhancement in TMBHCA efficiency (IE%) from 45.16% to 92.43% at 200 ppm as the immersion period progresses from 1 day to 28 days. This improvement is attributed to the augmented adsorption of inhibitor molecules on the steel surface over time. These comprehensive findings significantly contribute to our understanding of TMBHCA's corrosion inhibition behavior, emphasizing its potential as a highly efficient corrosion inhibitor for diverse industrial applications.
Collapse
Affiliation(s)
- Nadia Mouats
- Département
de Technologie, Université20 Août
1955-Skikda, Skikda 21000, Algeria
| | - Souad Djellali
- Laboratoire
de Physico-Chimie des Hauts Polymères (LPCHP), Faculty of Technology, University of Ferhat Abbas Setif 1, Setif 19000, Algeria
| | - Hana Ferkous
- Département
de Technologie, Université20 Août
1955-Skikda, Skikda 21000, Algeria
- Laboratoire
de Génie Mécanique et Matériaux, Faculté
de Technologie, Université 20 Août
1955-Skikda, Skikda 21000, Algeria
| | - Amel Sedik
- Scientific
and Technical Research Center in Physico-chemical Analysis. BP 384, Bou-Ismail industrial zone, Tipaza RP 42004, Algeria
- Nanomaterials,
corrosion and surface treatment laboratory (LNMCT), BP 12, Badji Mokhtar University, Annaba 23000, Algeria
| | - Amel Delimi
- Département
de Technologie, Université20 Août
1955-Skikda, Skikda 21000, Algeria
- Laboratoire
de Génie Mécanique et Matériaux, Faculté
de Technologie, Université 20 Août
1955-Skikda, Skikda 21000, Algeria
| | - Abir Boublia
- Laboratoire
de Physico-Chimie des Hauts Polymères (LPCHP), Faculty of Technology, University of Ferhat Abbas Setif 1, Setif 19000, Algeria
| | - Khadidja Otmane Rachedi
- Laboratory
of Applied Organic Chemistry LCOA, Synthesis of biomolecules and molecular
modelingGroup, Badji -Mokhtar - Annaba University, Box 12 Annaba, 23000, Algeria
| | - Malika Berredjem
- Laboratory
of Applied Organic Chemistry LCOA, Synthesis of biomolecules and molecular
modelingGroup, Badji -Mokhtar - Annaba University, Box 12 Annaba, 23000, Algeria
| | - Alaaddin Çukurovali
- Department
of Chemistry, Faculty of Sciences, Firat
University, Elazĭ 23119, Turkey
| | - Manawwer Alam
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Barbara Ernsti
- Laboratoire
de Reconnaissance et Procédés de Séparation Moléculaire
(RePSeM), Université de Strasbourg,
CNRS, IPHC UMR 7178, ECPM 25 rue Becquerel, Strasbourg F-67000, France
| | - Yacine Benguerba
- Laboratoire
de Biopharmacie Et Pharmacotechnie (LBPT), Ferhat Abbas Setif 1 University, Setif 19000, Algeria
| |
Collapse
|
5
|
Naeem A, Yu C, Wang X. Highly swellable, cytocompatible and biodegradeable guar gum-based hydrogel system for controlled release of bioactive components of liquorice (Glycyrrhiza glabra L.): Synthesis and evaluation. Int J Biol Macromol 2024; 273:132825. [PMID: 38852724 DOI: 10.1016/j.ijbiomac.2024.132825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Glycyrrhiza glabra Linn (liquorice) has been widely used for therapeutic purposes to treat digestive disorders, immunomodulatory disorders, inflammatory disorders, diabetes, viral infections, and cancer. Liquorice contains a wide variety of bioactive compounds, including glycyrrhizin, flavonoids, and terpenoids. Several factors compromise their therapeutic efficacy, such as poor pharmacokinetic profiles and physicochemical properties. Therefore, to improve its overall effectiveness, liquorice solid dispersion (LSD) was incorporated into biopolymer-based guar gum-grafted-2-acrylamido-2-methylpropane sulfonic acid (Guar gum-g-AMPS) hydrogels designed for controlled delivery via the oral route and characterized. The qualitative analysis of LSD revealed 51 compounds. Hydrogel structural properties were assessed for their effect on swelling and release. The highest swelling ratio (6413 %) and drug release (84.12 %) occurred at pH 1.2 compared to pH 7.4 (swelling ratio of 2721 % and drug release of 79.36 %) in 48 h. The hydrogels exhibited high porosity (84.23 %) and biodegradation (9.30 % in 7 days). In vitro hemolysis tests have demonstrated the compatibility of the hydrogel with blood. CCK-8 assay confirmed the biocompatibility of the synthesized hydrogel using osteoblasts and RIN-m5f cells. LSD exhibited good anti-inflammatory activity when loaded into hydrogels after being subjected to protein denaturation experiments. Moreover, LSD-loaded hydrogels have good antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Abid Naeem
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, College of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, 442000 Shiyan, China.
| |
Collapse
|
6
|
Fatima Z, Fatima S, Muhammad G, Hussain MA, Raza MA, Amin M, Majeed A. Stimuli-responsive glucuronoxylan polysaccharide from quince seeds for biomedical, food packaging, and environmental applications. Int J Biol Macromol 2024; 273:133016. [PMID: 38876235 DOI: 10.1016/j.ijbiomac.2024.133016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Mucilage is a gelatinous mixture of polysaccharides secreted from the seed coat and/or pericarp of many plant seeds when soaked in water. Mucilage affected seed germination while maintaining hydration levels during scarcity. Cydonia oblonga (quince) seeds are natural hydrocolloids extruding biocompatible mucilage mainly composed of polysaccharides. Quince seed mucilage (QSM) has fascinated researchers due to its applications in the food and pharmaceutical industries. On a commercial scale, QSM preserved the sensory and physiochemical properties of various products such as yogurt, desserts, cakes, and burgers. QSM is responsive to salts, pH, and solvents and is mainly investigated as edible coatings in the food industry. In tablet formulations, modified and unmodified QSM as a binder sustained the release of various drugs such as cefixime, capecitabine, diclofenac sodium, theophylline, levosulpiride, diphenhydramine, metoprolol tartrate, and acyclovir sodium. QSM acted as a reducing and capping agent to prepare nanoparticles for good antimicrobial resistance, photocatalytic characteristics, and wound-healing potential. The present review discussed the extraction optimization, chemical composition, stimuli-responsiveness, and viscoelastic properties of mucilage. The potential of mucilage in edible films, tissue engineering, and water purification will also be discussed.
Collapse
Affiliation(s)
- Zain Fatima
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| | - Seerat Fatima
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan.
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Arshad Raza
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| | - Muhammad Amin
- Department of Chemistry, University of Lahore, Sargodha Campus, Pakistan
| | - Aamna Majeed
- Department of Chemistry, Government College University Lahore, 54000 Lahore, Pakistan
| |
Collapse
|
7
|
Benachour N, Delimi A, Allal H, Boublia A, Sedik A, Ferkous H, Djedouani A, Brioua S, Boulechfar C, Benzouid H, Houssou A, Oral A, Ernst B, Alam M, Benguerba Y. 3,4-Dimethoxy phenyl thiosemicarbazone as an effective corrosion inhibitor of copper under acidic solution: comprehensive experimental, characterization and theoretical investigations. RSC Adv 2024; 14:12533-12555. [PMID: 38689800 PMCID: PMC11060416 DOI: 10.1039/d3ra08629a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
This study investigates the corrosion inhibition potential of 3,4-dimethoxy phenyl thiosemicarbazone (DMPTS) for copper in 1 M hydrochloric acid (HCl) solutions, aiming to disclose the mechanism behind its protective action. Through an integrative methodology encompassing electrochemical analyses-such as weight loss measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS)-we quantitatively evaluate the corrosion protection efficacy of DMPTS. It was determined that the optimal concentration of DMPTS markedly boosts the corrosion resistance of copper, achieving an impressive inhibition efficiency of up to 89% at 400 ppm. The formation of a protective layer on the copper surface, a critical aspect of DMPTS's inhibitory action, was characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). These techniques provided empirical evidence of surface morphology modifications and roughness changes, affirming the formation of a protective barrier against corrosion. A significant advancement in our study was the application of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, which identified chemical adsorption as the definitive mechanism of corrosion inhibition by DMPTS. The ATR-FTIR results explicitly demonstrated the specific interactions between DMPTS molecules and the copper surface, indicative of a robust protective adsorbed layer formation. This mechanistic insight, crucial to understanding the inhibitory process, aligns with the protective efficacy observed in electrochemical and surface analyses. Theoretical support, provided by the Quantum Theory of Atoms in Molecules (QTAIM) and quantum chemical computations, further validated the strong molecular interaction between DMPTS and copper, corroborating the experimental findings. Collectively, this research not only confirms the superior corrosion inhibition performance of DMPTS in an acidic setting but also elucidates the chemical adsorption mechanism as the foundation of its action, offering valuable insights for the development of effective corrosion inhibitors in industrial applications.
Collapse
Affiliation(s)
- Naima Benachour
- Department of Chemistry, Faculty of Science, Université de Skikda Skikda 21000 Algeria
| | - Amel Delimi
- Laboratory of Mechanical Engineering and Materials, Faculty of Technology, University of 20 Aout 1955 Skikda 21000 Algeria
| | - Hamza Allal
- Unit of Research CHEMS, Chemistry Department, University of Mentouri Brothers Constantine 1 Algeria
- Department of Process Engineering, Faculty of Process Engineering, Salah Boubnider Constantine 3 University Constantine Algeria
| | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1 Sétif 19000 Algeria
| | - Amel Sedik
- Scientific and Technical Research, Center in Physico-chemical Analysis (CRAPC) BP 384, Bou-Ismail Industrial Zone Tipaza RP 42004 Algeria
| | - Hana Ferkous
- Laboratory of Mechanical Engineering and Materials, Faculty of Technology, University of 20 Aout 1955 Skikda 21000 Algeria
| | - Amel Djedouani
- Scientific and Technical Research, Center in Physico-chemical Analysis (CRAPC) BP 384, Bou-Ismail Industrial Zone Tipaza RP 42004 Algeria
| | - Smail Brioua
- Department of Chemistry, Faculty of Science, Université de Skikda Skikda 21000 Algeria
| | - Chérifa Boulechfar
- Laboratory of Mechanical Engineering and Materials, Faculty of Technology, University of 20 Aout 1955 Skikda 21000 Algeria
| | - Hichem Benzouid
- Laboratory of Metallurgy and Materials Engineering, Badji Mokhtar University (UBMA) 23000 Annaba Algeria
| | - Abdelkrim Houssou
- Laboratory of Nanomaterials-Corrosion and Surface Treatments, University Badji Mokhtar Annaba Algeria
| | - Ayhan Oral
- Science, Technology, Application, and Research Center, CanakkaleOnsekiz Mart University, Terzioglu Campus Canakkale Turkey
- Department of Chemistry, Faculty of Sciences, CanakkaleOnsekiz Mart University, Terzioglu Campus Canakkale Turkey
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM) ECPM 25 Rue Becquerel Strasbourg F-67000 France
| | - Manawwer Alam
- Department of Chemistry, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1 Sétif Algeria
| |
Collapse
|
8
|
Chaudhary A, Kumar K, Singh VK, Rai S, Kumar V, Tungala K, Das A, Jana T. Poly(acrylamide)-co-poly(hydroxyethyl)methacrylate-co-poly(cyclohexyl methacrylate) hydrogel platform for stability, storage and biocatalytic applications of urease. Int J Biol Macromol 2024; 265:131039. [PMID: 38518938 DOI: 10.1016/j.ijbiomac.2024.131039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
In our present work, an explicit crosslinked thermo-responsive hydrogel platform has been developed, by using polyacrylamide (PAAm), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(cyclohexyl methacrylate) (PCHMA), and then coupled with urease to yield bioconjugates (BCs). Synergic effect of these polymer units provides thermoresponsive nature, optimum crosslinking with desired swelling behaviour, and stability and improved catalytic to Urease in the resultant BCs. Synthesis of the terpolymer has been achieved by employing HEMA (monomer as well as crosslinker), instead of using the conventional crosslinkers, through free radical solution polymerization technique. Various grades of TRPUBs have been fabricated by varying HEMA and CHMA contents while keeping fixed amounts of AAm. Further, the structural analysis of BCs has been done by fourier transform infra-red spectroscopic study and their thermal stabilities have been studied by thermogravimetric analysis. Urea present in TRPUBs has beenanalysed for its hydrolysis atdifferent temperatures viz., 25 °C, 45 °C and 70 °C. Further, the effect of crosslinking, temperature and reaction time on catalytic activities of TRPUBs has been studied. TRPUBs grades have showna maximum swelling capacity up to 5200 %; excellent catalytic activity even at 70 °C; and 85 % activity retention after 18 days storage in buffer medium.
Collapse
Affiliation(s)
- Aradhana Chaudhary
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India
| | - Krishna Kumar
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India; Department of Chemistry, School of Basic & Applied Science, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
| | - Vinai K Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India
| | - Shailja Rai
- Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, Uttar Pradesh, India
| | - Vinod Kumar
- Department of Chemistry, Babu Shivnath Agrawal College, Mathura 281004, Uttar Pradesh, India
| | - Kranthikumar Tungala
- Department of Chemistry, Ewing Christian College, Allahabad University, Prayagraj 211003, Uttar Pradesh, India
| | - Anupam Das
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India
| |
Collapse
|
9
|
Kapoor DU, Garg R, Gaur M, Pareek A, Prajapati BG, Castro GR, Suttiruengwong S, Sriamornsak P. Pectin hydrogels for controlled drug release: Recent developments and future prospects. Saudi Pharm J 2024; 32:102002. [PMID: 38439951 PMCID: PMC10910345 DOI: 10.1016/j.jsps.2024.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.
Collapse
Affiliation(s)
- Devesh U. Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat 394601, India
| | - Rahul Garg
- Department of Pharmacy, Asian College of Pharmacy, Udaipur, Rajasthan 313001, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302020, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| | - Bhupendra G. Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat 384012, India
| | - Guillermo R. Castro
- Nanomedicine Research Unit, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Sao Paulo 09210-580, Brazil
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
10
|
Elboughdiri N, Ferkous H, Rouibah K, Boublia A, Delimi A, Yadav KK, Erto A, Ghernaout D, Salih AAM, Benaissa M, Benguerba Y. Comprehensive Investigation of Cu 2+ Adsorption from Wastewater Using Olive-Waste-Derived Adsorbents: Experimental and Molecular Insights. Int J Mol Sci 2024; 25:1028. [PMID: 38256105 PMCID: PMC10816160 DOI: 10.3390/ijms25021028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
This study investigates the efficacy of adsorbents from locally sourced olive waste-encompassing olive skins, leaves, and pits, recovered from the initial centrifugation of olives (OWP)-and a composite with sodium alginate (OWPSA) for the removal of Cu2+ ions from synthetic wastewater. Experimental analyses conducted at room temperature, with an initial Cu2+ concentration of 50 mg/L and a solid/liquid ratio of 1 g/L, showed that the removal efficiencies were approximately 79.54% and 94.54% for OWP and OWPSA, respectively, highlighting the positive impact of alginate on adsorption capacity. Utilizing statistical physics isotherm models, particularly the single-layer model coupled to real gas (SLMRG), allowed us to robustly fit the experimental data, providing insights into the adsorption mechanisms. Thermodynamic parameters affirmed the spontaneity and endothermic nature of the processes. Adsorption kinetics were interpreted effectively using the pseudo-second-order (PSO) model. Molecular modeling investigations, including the conductor-like screening model for real solvents (COSMO-RS), density functional theory (DFT), and atom-in-molecule (AIM) analysis, unveiled intricate molecular interactions among the adsorbent components-cellulose, hemicellulose, lignin, and alginate-and the pollutant Cu2+, confirming their physically interactive nature. These findings emphasize the synergistic application of experimental and theoretical approaches, providing a comprehensive understanding of copper adsorption dynamics at the molecular level. This methodology holds promise for unraveling intricate processes across various adsorbent materials in wastewater treatment applications.
Collapse
Affiliation(s)
- Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
| | - Hana Ferkous
- Laboratoire de Génie Mécanique et Matériaux, Faculté de Technologie, Université de Skikda, Skikda 21000, Algeria; (H.F.); (A.D.)
| | - Karima Rouibah
- Laboratory of Materials-Elaborations-Properties-Applications (LMEPA), University of MSBY Jijel, PB98 Ouled Aissa, Jijel 18000, Algeria;
| | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria;
| | - Amel Delimi
- Laboratoire de Génie Mécanique et Matériaux, Faculté de Technologie, Université de Skikda, Skikda 21000, Algeria; (H.F.); (A.D.)
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India;
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Alessandro Erto
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, 80125 Napoli, Italy;
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
| | - Alsamani A. M. Salih
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
| | - Mhamed Benaissa
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
| | - Yacine Benguerba
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
- Laboratoire de Biopharmacie et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| |
Collapse
|