1
|
Jiao H, Zhang M, Sun J, Ali SS, Zhang H, Li Y, Wang X, Fu Y, Wang X, Liu J. Exploring the potential of selective oxidation in bioconjugation of collagen with xyloglucan carboxylates. Int J Biol Macromol 2024; 269:131771. [PMID: 38688792 DOI: 10.1016/j.ijbiomac.2024.131771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/09/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
Xyloglucan (XG), as a natural biopolymer, possesses a sound biocompatibility and an impressive biodegradability, which are usually featured with abundant hydroxyl groups available for the bioconjugation with a bioactive moiety, suggesting a promising or unique value possibly applied in the field of biomedicine. In this study, XG was extracted from Tamarind seeds and subjected to four regioselective oxidation methods to introduce carboxyl groups onto the XG molecules for a bioconjugation with collagen. Galactose oxidase and reducing end aldehyde group oxidation mainly resulted in a low carboxylate content at ∼0.34 mmol/g, whereas the primary and secondary hydroxyl group oxidations would lead to a high carboxyl content at ∼0.84 mmol/g. The number-average molar mass (Mn) and weight-average molar mass (Mw) of XG were 8.8 × 105 g/mol and 1.1 × 106 g/mol, respectively. The oxidized XGs were then subjected to a further biofunctionalization with the collagen through EDC/NHS coupling, which exhibited a degree of conjugation rate, ranged from 50 % to 72 %. The collagen-conjugated at the C6 position of XGs exhibited the highest cell viability recorded at 168 % in promoting cell growth and proliferation after 72 h of culture, surpassing that of pure collagen recorded at 138 %, which may indeed suggest a promising value in a biomedical application.
Collapse
Affiliation(s)
- Haixin Jiao
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Center on High-value Utilization of Agricultural Waste Biomass between Jiangsu University and Mie University, Zhenjiang 212013, China.
| | - Sameh Samir Ali
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hongxing Zhang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiulun Wang
- International Joint Research Center on High-value Utilization of Agricultural Waste Biomass between Jiangsu University and Mie University, Zhenjiang 212013, China; Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Jun Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Center on High-value Utilization of Agricultural Waste Biomass between Jiangsu University and Mie University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Yuan M, Ke S, Wang A, Wang X, Zhuang M, Ning M, Zhou Z. Changes in physicochemical and gut microbiota fermentation property induced by acetylation of polysaccharides from Cyperus esculentus. Int J Biol Macromol 2024; 267:131172. [PMID: 38552701 DOI: 10.1016/j.ijbiomac.2024.131172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
In this study, the impact of acetylation on physicochemical, digestive behavior and fermentation characteristics of Cyperus esculentus polysaccharides (CEP) was investigated. Results indicated that the acetylation led the molecules to be more likely aggregated, followed by a higher crystallinity, a lower apparent viscosity and a higher ratio of G" to G' (tan δ). Importantly, the acetylated polysaccharides (ACEP) had a lower digestibility, but its molecular weight was lower than that of original polysaccharides (CEP) following a simulated saliva-gastrointestinal digestion. Gut microbiota fermentation indicated that both polysaccharides generated outstanding short-chain fatty acids (SCFAs), in which the acetylated polysaccharides had a faster fermentation kinetics than the original one, followed by a quicker reduction of pH and a more accumulation of SCFAs, particularly butyrate. Fermentation of both polysaccharides promoted Akkermansia, followed by a reduced richness of Klebsiella. Importantly, the current study revealed that the fermentation of acetylated polysaccharides enriched Parabacteroides, while fermentation of original ones promoted Bifidobacterium, for indicating their individual fermentation characteristics and gut environmental benefits.
Collapse
Affiliation(s)
- Meiyu Yuan
- College of Food Science, Shihezi University, Shihezi 832003, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sheng Ke
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuanyu Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Min Zhuang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ming Ning
- College of Food Science, Shihezi University, Shihezi 832003, China
| | - Zhongkai Zhou
- College of Food Science, Shihezi University, Shihezi 832003, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Gulbali Institure- Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
3
|
Raj V, Lee S. State-of-the-art progress on tamarind seed polysaccharide (Tamarindus indica) and its diverse potential applications, a review with insight. Carbohydr Polym 2024; 331:121847. [PMID: 38388032 DOI: 10.1016/j.carbpol.2024.121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Tamarind seed polysaccharide (TSP) is a biocompatible, non-ionic polymer with antioxidant properties. Its uses include drug delivery, food industry, and wastewater treatment. TSP has various hydroxy functional groups, one of the most favorable sites for graft copolymerization of different monomers. Hence, various chemical methods for TSP modification were developed to satisfy increasing industrial demand. Of particular interest in scientific community are the methods of graft copolymerization because of their ability to alter the physicochemical properties of TSP, including pH sensitivity and the swelling index, leading to improvements in the adsorption efficiency of hazardous heavy metals and dyes from wastewater effluents. Moreover, in recent years, TSP has been used for controlled drug delivery applications due to its unique advantages of high viscosity, broad pH tolerance, non-carcinogenicity, mucoadhesive properties, biocompatibility, and high drug entrapment capacity. In light of the plethora of literature on the topic, a comprehensive review of TSP-based graft copolymers and unmodified and modified TSP important applications is necessary. Therefore, this review comprehensively highlights several synthetic strategies for TSP-grafted copolymers and discusses unmodified and modified TSP potential applications, including cutting-edge pharmaceutical, environmental applications, etc. In brief, its many advantages make TSP-based polysaccharide a promising material for applications in various industries.
Collapse
Affiliation(s)
- Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Chen H, Li H, Wu Y, Kan J. Functionality differences between esterified and pregelatinized esterified starches simultaneously prepared by octenyl succinic anhydride modification and its application in dough. Int J Biol Macromol 2024; 260:129594. [PMID: 38253147 DOI: 10.1016/j.ijbiomac.2024.129594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Octenyl succinic anhydride (OSA)-modified starches have gained widespread interest, but the modification can produce two starches with different states ignored. Herein, the two types of starches, esterified starch (ES) and pregelatinized esterified starch (PES), prepared by OSA modification were separated, and their structural and functional characteristics were comprehensively explored. Results showed that compared with native starch (NS), ES and PES exhibited high water-holding capacity, solubility, and swelling power and significantly decreased pasting temperature and thermal stability. Dynamic rheological tests illustrated that OSA modification changed the rheological behavior of starches. Fourier transform infrared spectroscopy confirmed that PES with higher degree of substitution showed more obvious ester carbonyl and carboxylate groups than ES. Laser confocal micro-Raman spectroscopy revealed that the short-range molecular order of ES, especially PES, decreased after modification. X-ray diffraction indicated that OSA modification disrupted the crystalline structure of starch, and that more amylose-lipid complex was formed in PES. Scanning electron microscopy showed that OSA modification eroded starchs surface and reduced its smoothness, and significantly disrupted PES integrity. ES and PES could be developed as food additives for retrogradation inhibition of dough. These results provide new insights into OSA modification and expand its functional application in foods.
Collapse
Affiliation(s)
- Huijing Chen
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Huiying Li
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Wu
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Jianquan Kan
- Chinese-Hungarian Cooperative Research Centre for Food Science, College of Food Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|