1
|
Elhassan Taha MM, Abdelwahab SI, Moni SS, Farasani A, Aljahdali IA, Oraibi B, Alfaifi HA, Alzahrani AH, Ali Jerah A. Nano-enhanced immunity: A bibliometric analysis of nanoparticles in vaccine adjuvant research. Hum Vaccin Immunother 2024; 20:2427464. [PMID: 39539151 PMCID: PMC11572201 DOI: 10.1080/21645515.2024.2427464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
This study analyzed the growth, collaboration, citation trends, and emerging topics in nanoparticle-based vaccine and adjuvant research (NVAR) from 1977 to 2023, using data from the Scopus database. The field showed a steady growth rate of 7.53% per year. Leading researchers Jaafari, M.R. and Alving, C.R. contributed significantly to the field, with 24.22% of publications and 38.92% of total citations coming from the United States. International collaboration was very strong, particularly between the US, UK, Germany, China, and France. Key research topics include nanoparticles, immunotherapy, COVID-19, and vaccines with a focus on SARS-CoV-2 and malaria. Emerging topics include vaccine adjuvants, mRNA, and neutralizing antibodies. This study emphasizes the importance of ongoing collaboration and interdisciplinary efforts to advance the field of NVAR.
Collapse
Affiliation(s)
| | | | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Farasani
- Health Research Centre, Jazan University, Jazan, Saudi Arabia
- College of Nursing and Health Science, Jazan University, Jazan, Saudi Arabia
| | - Ieman A. Aljahdali
- Department of Clinical Laboratory Sciences, Taif University, Taif, Saudi Arabia
| | - Bassem Oraibi
- Health Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Hassan Ahmad Alfaifi
- Pharmaceutical Care Administration, Ministry of Health, (Jeddah Second Health Cluster), Riyadh, Saudi Arabia
| | - Amal Hamdan Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Ali Jerah
- College of Nursing and Health Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Edo GI, Mafe AN, Ali ABM, Akpoghelie PO, Yousif E, Apameio JI, Isoje EF, Igbuku UA, Garba Y, Essaghah AEA, Ahmed DS, Umar H, Ozsahin DU. Chitosan and its derivatives: A novel approach to gut microbiota modulation and immune system enhancement. Int J Biol Macromol 2024; 289:138633. [PMID: 39675606 DOI: 10.1016/j.ijbiomac.2024.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a biopolymer derived from the deacetylation of chitin found in crustacean shells and certain fungi, has attracted considerable attention for its promising health benefits, particularly in gut microbiota maintenance and immune system modulation. This review critically examines chitosan's multifaceted role in supporting gut health and enhancing immunity, beginning with a comprehensive overview of its sources, chemical structure, and its dual function as a dietary supplement and biomaterial. Chitosan's prebiotic effects are highlighted, with a focus on its ability to selectively stimulate beneficial gut bacteria, such as Bifidobacteria and Lactobacillus, while enhancing gut barrier integrity and inhibiting the growth of pathogenic microorganisms. The review delves deeply into chitosan's immunomodulatory mechanisms, including its impact on antigen-presenting cells, cytokine profiles, and systemic immune responses. A detailed comparative analysis assesses chitosan's efficacy relative to other prebiotics and immunomodulatory agents, examining challenges related to bioavailability and metabolic activity. Beyond its role in gut health, this review explores chitosan's potential as a dual-action agent that not only supports gut microbiota but also fortifies immune resilience. It introduces emerging research on novel chitosan derivatives, such as chitooligosaccharides, and evaluates their enhanced bioactivity for functional food applications. Special attention is given to sustainability, with an exploration of alternative, plant-based sources of chitosan and their implications for both health and environmental stewardship. Also, the review identifies new research avenues, such as the growing interest in chitosan's role in the gut-brain axis and its potential mental health benefits through microbial interactions. By addressing these innovative areas, the review aims to shift the focus from basic health effects to chitosan's broader impact on public health. The findings encourage further exploration, particularly through human trials, and emphasize chitosan's untapped potential in revolutionizing health and disease management.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, Iraq
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Jesse Innocent Apameio
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Nigeria
| | - Endurance Fegor Isoje
- Department of Science Laboratory Technology (Biochemistry Option), Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Yasal Garba
- Department of Information Engineering, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Dilber Uzun Ozsahin
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus; Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
3
|
Qi W, Yu Y, Yang C, Wang X, Jiang Y, Zhang L, Yu Z. Nanospheres as the delivery vehicle: novel application of Toxoplasma gondii ribosomal protein S2 in PLGA and chitosan nanospheres against acute toxoplasmosis. Front Immunol 2024; 15:1475280. [PMID: 39416787 PMCID: PMC11480959 DOI: 10.3389/fimmu.2024.1475280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a zoonotic disease that poses great harm to humans and animals. So far, no effective T. gondii vaccine has been developed to provide fully protection against such parasites. Recently, numerous researches have focused on the use of poly-lactic-co-glycolic acid (PLGA) and chitosan (CS) for the vaccines against T. gondii infections. In this study, we employed PLGA and CS as the vehicles for T. gondii ribosome protein (TgRPS2) delivery. TgRPS2-PLGA and TgRPS2-CS nanospheres were synthesized by double emulsion solvent evaporation and ionic gelation technique as the nano vaccines. Before immunization in animals, the release efficacy and toxicity of the synthesized nanospheres were evaluated in vitro. Then, ICR mice were immunized intramuscularly, and immune protections of the synthesized nanospheres were assessed. The results showed that TgRPS2-PLGA and TgRPS2-CS nanospheres could induce higher levels of IgG and cytokines, activate dendritic cells, and promote the expression of histocompatibility complexes. The splenic lymphocyte proliferation and the enhancement in the proportion of CD4+ and CD8+ T lymphocytes were also observed in immunized animals. In addition, two types of nanospheres could significantly inhabit the replications of T. gondii in cardiac muscles and spleen tissues. All these obtained results in this study demonstrated that the TgRPS2 protein delivered by PLGA or CS nanospheres provided satisfactory immunoprotective effects in resisting T. gondii, and such formulations illustrated potential as prospective preventive agents for toxoplasmosis.
Collapse
Affiliation(s)
- WeiYu Qi
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YouLi Yu
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Science, Yinchuan, China
| | - ChenChen Yang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - XiaoJuan Wang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - YuChen Jiang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - Li Zhang
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| | - ZhengQing Yu
- College of animal science and technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Zhao Y, Li M, Mao J, Su Y, Huang X, Xia W, Leng X, Zan T. Immunomodulation of wound healing leading to efferocytosis. SMART MEDICINE 2024; 3:e20230036. [PMID: 39188510 PMCID: PMC11235971 DOI: 10.1002/smmd.20230036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 08/28/2024]
Abstract
Effectively eliminating apoptotic cells is precisely controlled by a variety of signaling molecules and a phagocytic effect known as efferocytosis. Abnormalities in efferocytosis may bring about the development of chronic conditions, including angiocardiopathy, chronic inflammatory diseases and autoimmune diseases. During wound healing, failure of efferocytosis leads to the collection of apoptosis, the release of necrotic material and chronic wounds that are difficult to heal. In addition to the traditional phagocytes-macrophages, other important cell species including dendritic cells, neutrophils, vascular endothelial cells, fibroblasts and keratinocytes contribute to wounding healing. This review summarizes how efferocytosis-mediated immunomodulation plays a repair-promoting role in wound healing, providing new insights for patients suffering from various cutaneous wounds.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Minxiong Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinghong Su
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Huang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenzheng Xia
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiangfeng Leng
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Zan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Li L, Guan YC, Bai SY, Jin QW, Tao JP, Zhu GD, Huang SY. Mineralization Reduces the Toxicity and Improves Stability and Protective Immune Response Induced by Toxoplasma gondii. Vaccines (Basel) 2023; 12:35. [PMID: 38250848 PMCID: PMC10819335 DOI: 10.3390/vaccines12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Vaccination is an ideal strategy for the control and prevention of toxoplasmosis. However, the thermostability and effectiveness of vaccines limit their application. Here, calcium mineralization was used to fabricate Toxoplasma gondii tachyzoites as immunogenic core-shell particles with improved immune response and thermostability. In the current study, T. gondii RH particles coated with mineralized shells were fabricated by calcium mineralization. The mineralized shells could maintain the T. gondii tachyzoites structural integrity for at least 12 months and weaken the virulence. Immunization of mice with mineralized tachyzoites induced high levels of T. gondii-specific antibodies and cytokines. The immunized mice were protected with a 100% survival rate in acute and chronic infection, and brain cyst burdens were significantly reduced. This study reported for the first time the strategy of calcium mineralization on T. gondii and proved that mineralized tachyzoites could play an immune protective role, thus expanding the application of biomineralization in T. gondii vaccine delivery.
Collapse
Affiliation(s)
- Ling Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yong-Chao Guan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
| | - Shao-Yuan Bai
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
| | - Guo-Ding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|