1
|
Ni W, Li Y, Feng J, Liu B, Yuan H, Tai G, Bi H. Therapeutic Efficacy and Underlying Mechanisms of a Mannoglucan from Hirsutella sinensis Mycelium on Dextran Sulfate Sodium-Induced Inflammatory Bowel Disease in Mice: Modulation of the Intestinal Barrier, Oxidative Stress and Gut Microbiota. Int J Mol Sci 2024; 25:13100. [PMID: 39684811 DOI: 10.3390/ijms252313100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Hirsutella sinensis (H. sinensis), a non-sexual form of the valuable Chinese medicinal herb, demonstrates various biological activities, such as immune modulation and antioxidative capabilities. Nonetheless, the effects of bioactive polysaccharides derived from H. sinensis on colitis have yet to be investigated. In our prior research, we extracted a mannoglucan (HSWP-1d) from H. sinensis and found that it attenuates TGF-β1-induced epithelial-mesenchymal transition. The present study investigated the protective effects of HSWP-1d against colitis induced by dextran sulfate sodium (DSS) in mice. The results demonstrate that HSWP-1d effectively ameliorates symptoms of colitis and preserves the intestinal barrier's stability by enhancing the expression of tight junction proteins. The administration of HSWP-1d results in a reduction in oxidative stress through the augmentation of antioxidative enzyme activities, concomitant with the suppression of oxidative product generation. Simultaneously, HSWP-1d reduced the levels of pro-inflammatory cytokines while elevating the levels of anti-inflammatory cytokines, effectively mitigating the inflammatory response. Furthermore, HSWP-1d influences and alters short-chain-fatty-acid (SCFA) levels, thereby enhancing the intestinal microenvironment. In conclusion, HSWP-1d contributes to intestinal well-being and holds potential as both a therapeutic choice and a supplier of essential nutrients for the amelioration of colitis.
Collapse
Affiliation(s)
- Weihua Ni
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Yu Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Jingyue Feng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Boxuan Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Hongtao Bi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, CAS, 23 Xinning Road, Xining 810008, China
| |
Collapse
|
2
|
Zhou Z, Li G, Gao L, Zhou Y, Xiao Y, Bi H, Yang H. Lichen pectin-containing polysaccharide from Xanthoria elegans and its ability to effectively protect LX-2 cells from H 2O 2-induced oxidative damage. Int J Biol Macromol 2024; 265:130712. [PMID: 38471602 DOI: 10.1016/j.ijbiomac.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 → 4)-linked and (1 → 4,6)-linked α-D-Glcp, (1 → 4)-linked α-D-GalpA, (1 → 2)-linked, (1 → 6)-linked and (1 → 2,6)-linked α-D-Manp, and (1 → 6)-linked and (1 → 2,6)-linked β-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubi Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|