1
|
He M, Wang D, Xu Y, Jiang F, Zheng J, Feng Y, Cao J, Zhou X. Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14071345. [PMID: 35890241 PMCID: PMC9317153 DOI: 10.3390/pharmaceutics14071345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the first leading cause of death globally. Nitric oxide (NO) is an important signaling molecule that mediates diverse processes in the cardiovascular system, thereby providing a fundamental basis for NO-based therapy of CVD. At present, numerous prodrugs have been developed to release NO in vivo. However, the clinical application of these prodrugs still faces many problems, including the low payloads, burst release, and non-controlled delivery. To address these, various biomaterial-based platforms have been developed as the carriers to deliver NO to the targeted tissues in a controlled and sustained manner. This review aims to summarize recent developments of various therapeutic platforms, engineered to release NO for the treatment of CVD. In addition, two potential strategies to improve the effectiveness of existing NO therapy are also discussed, including the combination of NO-releasing platforms and either hydrogen sulfide-based therapy or stem cell therapy. Hopefully, some NO-releasing platforms may provide important therapeutic benefits for CVD.
Collapse
Affiliation(s)
- Mingyue He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Fangying Jiang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Jian Zheng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| |
Collapse
|
2
|
An S, Wang X, Shi H, Zhang X, Meng H, Li W, Chen D, Ge J. Apelin protects against ischemia-reperfusion injury in diabetic myocardium via inhibiting apoptosis and oxidative stress through PI3K and p38-MAPK signaling pathways. Aging (Albany NY) 2020; 12:25120-25137. [PMID: 33342766 PMCID: PMC7803490 DOI: 10.18632/aging.104106] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Among all diabetes mellitus-associated cardiovascular diseases, morbidity of diabetic myocardium with ischemia reperfusion injury (D-IRI) is increasing year by year. We aimed to discover a therapeutic biomarker and investigate its mechanism in D-IRI. High-fat diet and streptozotocin-induced diabetes rats were operated with IRI or sham. Recombined lentiviral vector encoding Apelin was injected into D-IRI rat via tail vein. Cardiac function, infarct size, cellular death and oxidative stress were major outcome measures. Cardiomyocyte ischemia reperfusion injury was more serious in D-IRI rats than in non-diabetes ischemia reperfusion injury (ND-IRI) rats. The secretion of NTproBNP was increased in D-IRI compared with ND-IRI. Bcl-2 expression was decreased, and Bax and cleaved caspase-3 expression was increased in D-IRI rats compared with ND-IRI rats, which were reversed after treatment with Apelin. Apelin-upregulation improved cardiomyocyte ischemia reperfusion injury and decreased NT-proBNP levels in D-IRI rats. Apelin overexpression enhanced PI3K and eNOS levels while reduced those of p38-MAPK and iNOS in D-IRI rats. Apelin overexpression protected against D-IRI through inhibiting apoptosis and oxidative stress via PI3K and p38MAPK signaling pathways in D-IRI rats. These findings provide critical new insight into understanding of Apelin's cardio-protective effects, which may become a novel therapeutic target for the diabetic IRI patients.
Collapse
Affiliation(s)
- Songtao An
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Xi Wang
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Huairui Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xueqiang Zhang
- Department of Cardiology, Hongxing Hospital, Hami 839000, Xinjiang, China
| | - Hua Meng
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Wenbo Li
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Dongchang Chen
- Department of Cardiology, Henan Province People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Bian X, Su X, Wang Y, Zhao G, Zhang B, Li D. Periostin contributes to renal and cardiac dysfunction in rats with chronic kidney disease: Reduction of PPARα. Biochimie 2019; 160:172-182. [DOI: 10.1016/j.biochi.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
4
|
Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Schwartzman M, Kornwoski R, Aravot D, Abraham NG, Arad M, Hochhauser E. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving 'SIRT1 and PGC-1α'. Cardiovasc Diabetol 2018; 17:111. [PMID: 30071860 PMCID: PMC6090985 DOI: 10.1186/s12933-018-0754-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022] Open
Abstract
Background Metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus (DM2) are all linked to diabetic cardiomyopathy that lead to heart failure. Cardiomyopathy is initially characterized by cardiomyocyte hypertrophy, followed by mitochondrial dysfunction and fibrosis, both of which are aggravated by angiotensin. Caloric restriction (CR) is cardioprotective in animal models of heart disease through its catabolic activity and activation of the expression of adaptive genes. We hypothesized that in the diabetic heart; this effect involves antioxidant defenses and is mediated by SIRT1 and the transcriptional coactivator PGC-1α (Peroxisome proliferator-activated receptor-γ coactivator). Methods Obese Leptin resistant (db/db) mice characterized by DM2 were treated with angiotensin II (AT) for 4 weeks to enhance the development of cardiomyopathy. Mice were concomitantly either on a CR diet or fed ad libitum. Cardiomyocytes were exposed to high levels of glucose and were treated with EX-527 (SIRT1 inhibitor). Cardiac structure and function, gene and protein expression and oxidative stress parameters were analyzed. Results AT treated db/db mice developed cardiomyopathy manifested by elevated levels of serum glucose, cholesterol and cardiac hypertrophy. Leukocyte infiltration, fibrosis and an increase in an inflammatory marker (TNFα) and natriuretic peptides (ANP, BNP) gene expression were also observed. Oxidative stress was manifested by low SOD and PGC-1α levels and an increase in ROS and MDA. DM2 resulted in ERK1/2 activation. CR attenuated all these deleterious perturbations and prevented the development of cardiomyopathy. ERK1/2 phosphorylation was reduced in CR mice (p = 0.008). Concomitantly CR prevented the reduction in SIRT activity and PGC-1α (p < 0.04). Inhibition of SIRT1 activity in cardiomyocytes led to a marked reduction in both SIRT1 and PGC-1α. ROS levels were significantly (p < 0.03) increased by glucose and SIRT1 inhibition. Conclusion In the current study we present evidence of the cardioprotective effects of CR operating through SIRT1 and PGC-1 α, thereby decreasing oxidative stress, fibrosis and inflammation. Our results suggest that increasing SIRT1 and PGC-1α levels offer new therapeutic approaches for the protection of the diabetic heart.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Cohen
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dor Yadin
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim Nudelman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dan Gorfil
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ran Kornwoski
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dan Aravot
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute Petah-Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Felsenstein Research Center, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Jabotinsky St, 49100, Petach Tikva, Israel.
| |
Collapse
|
5
|
Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Curr Hypertens Rep 2018; 20:62. [PMID: 29884931 DOI: 10.1007/s11906-018-0860-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Heterogeneous causes can determinate hypertension. RECENT FINDINGS The renin-angiotensin system (RAS) has a major role in the pathophysiology of blood pressure. Angiotensin II and aldosterone are overexpressed during hypertension and lead to hypertension development and its cardiovascular complications. In several tissues, the overactivation of the canonical WNT/β-catenin pathway leads to inactivation of peroxisome proliferator-activated receptor gamma (PPARγ), while PPARγ stimulation induces a decrease of the canonical WNT/β-catenin pathway. In hypertension, the WNT/β-catenin pathway is upregulated, whereas PPARγ is decreased. The WNT/β-catenin pathway and RAS regulate positively each other during hypertension, whereas PPARγ agonists can decrease the expression of both the WNT/β-catenin pathway and RAS. We focus this review on the hypothesis of an opposite interplay between PPARγ and both the canonical WNT/β-catenin pathway and RAS in regulating the molecular mechanism underlying hypertension. The interactions between PPARγ and the canonical WNT/β-catenin pathway through the regulation of the renin-angiotensin system in hypertension may be an interesting way to better understand the actions and the effects of PPARγ agonists as antihypertensive drugs.
Collapse
|
6
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
7
|
Khan V, Sharma S, Bhandari U, Ali SM, Haque SE. Raspberry ketone protects against isoproterenol-induced myocardial infarction in rats. Life Sci 2017; 194:205-212. [PMID: 29225109 DOI: 10.1016/j.lfs.2017.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022]
Abstract
AIM The cardioprotective role of raspberry ketone (RK) against isoproterenol (ISO)-induced myocardial infarction (MI) in rats was assessed. MATERIALS AND METHODS Rats were randomly divided into Group I - Vehicle control; Group II - Toxic control ISO (85mg/kg, s.c.); Group III, IV and V - RK (50, 100 and 200mg/kg, respectively) with ISO; Group VI- RK (200mg/kg) alone; Group VII - Propranolol (10mg/kg) with ISO; and Group VIII - Propranolol (10mg/kg) alone. After twenty-four hours of the last dose, animals were sacrificed and creatine kinase-MB, lactate dehydrogenase, total cholesterol, triglycerides, high-density-lipoprotein, low-density-lipoprotein, very-low-density-lipoprotein, malondialdehyde, reduced glutathione, superoxide dismutase, catalase, Na+, K+-ATPase, nitric oxide, histopathological and immunohistochemical analysis (tumor necrosis factor-α and inducible nitric oxide synthase) were performed. KEY FINDINGS Treatment with ISO significantly deviated the biochemical parameters from the normal levels, which were considerably restored by RK at 100 and 200mg/kg doses. 50mg/kg dose, however, did not demonstrate any significant cardioprotective action. The histopathological and immunohistochemical analysis further substantiated these findings. SIGNIFICANCE Our study showed a dose-dependent reduction in oxidative stress, inflammation and dyslipidemia by RK in ISO-intoxicated rats, which signifies that RK from the European red raspberry plant might be a valuable entity for the management of MI.
Collapse
Affiliation(s)
- Vasim Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Milia Islamia, New Delhi 110025, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Prediction and Subtyping of Hypertension from Pan-Tissue Transcriptomic and Genetic Analyses. Genetics 2017; 207:1121-1134. [PMID: 28899996 DOI: 10.1534/genetics.117.300280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023] Open
Abstract
Hypertension (HT) is a complex systemic disease involving transcriptional changes in multiple organs. Here we systematically investigate the pan-tissue transcriptional and genetic landscape of HT spanning dozens of tissues in hundreds of individuals. We find that in several tissues, previously identified HT-linked genes are dysregulated and the gene expression profile is predictive of HT. Importantly, many expression quantitative trait loci (eQTL) SNPs associated with the population variance of the dysregulated genes are linked with blood pressure in an independent genome-wide association study, suggesting that the functional effect of HT-associated SNPs may be mediated through tissue-specific transcriptional dysregulation. Analyses of pan-tissue transcriptional dysregulation profile, as well as eQTL SNPs underlying the dysregulated genes, reveals substantial heterogeneity among the HT patients, revealing two broad groupings - a Diffused group where several tissues exhibit HT-associated molecular alterations and a Localized group where such alterations are localized to very few tissues. These two patient subgroups differ in several clinical phenotypes including respiratory, cerebrovascular, diabetes, and heart disease. These findings suggest that the Diffused and Localized subgroups may be driven by different molecular mechanisms and have different genetic underpinning.
Collapse
|
9
|
Toral M, Romero M, Pérez-Vizcaíno F, Duarte J, Jiménez R. Antihypertensive effects of peroxisome proliferator-activated receptor-β/δ activation. Am J Physiol Heart Circ Physiol 2016; 312:H189-H200. [PMID: 27881385 DOI: 10.1152/ajpheart.00155.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors, which is composed of three members encoded by distinct genes: PPARα, PPARβ/δ, and PPARγ. The biological actions of PPARα and PPARγ and their potential as a cardiovascular therapeutic target have been extensively reviewed, whereas the biological actions of PPARβ/δ and its effectiveness as a therapeutic target in the treatment of hypertension remain less investigated. Preclinical studies suggest that pharmacological PPARβ/δ activation induces antihypertensive effects in direct [spontaneously hypertensive rat (SHR), ANG II, and DOCA-salt] and indirect (dyslipemic and gestational) models of hypertension, associated with end-organ damage protection. This review summarizes mechanistic insights into the antihypertensive effects of PPARβ/δ activators, including molecular and functional mechanisms. Pharmacological PPARβ/δ activation induces genomic actions including the increase of regulators of G protein-coupled signaling (RGS), acute nongenomic vasodilator effects, as well as the ability to improve the endothelial dysfunction, reduce vascular inflammation, vasoconstrictor responses, and sympathetic outflow from central nervous system. Evidence from clinical trials is also examined. These preclinical and clinical outcomes of PPARβ/δ ligands may provide a basis for the development of therapies in combating hypertension.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid. Spain; and.,Ciber Enfermedades Respiratorias (Ciberes). Madrid. Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain; .,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| |
Collapse
|
10
|
KVANDOVÁ M, MAJZÚNOVÁ M, DOVINOVÁ I. The Role of PPARγ in Cardiovascular Diseases. Physiol Res 2016; 65:S343-S363. [DOI: 10.33549/physiolres.933439] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The peroxisome proliferator-activated receptors (PPAR) belong to the nuclear superfamily of ligand-activated transcription factors. PPARγ acts as a nutrient sensor that regulates several homeostatic functions. Its disruption can lead to vascular pathologies, disorders of fatty acid/lipid metabolism and insulin resistance. PPARγ can modulate several signaling pathways connected with blood pressure regulation. Firstly, it affects the insulin signaling pathway and endothelial dysfunction by modulation of expression and/or phosphorylation of signaling molecules through the PI3K/Akt/eNOS or MAPK/ET-1 pathways. Secondly, it can modulate gene expression of the renin- angiotensin system – cascade proteins, which potentially slow down the progression of atherosclerosis and hypertension. Thirdly, it can modulate oxidative stress response either directly through PPAR or indirectly through Nrf2 activation. In this context, activation and functioning of PPARγ is very important in the regulation of several disorders such as diabetes mellitus, hypertension and/or metabolic syndrome.
Collapse
Affiliation(s)
| | | | - I. DOVINOVÁ
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
11
|
Giri SR, Bhoi B, Jain MR, Gatne MM. Cardioprotective role of peroxisome proliferator-activated receptor-γ agonist, rosiglitazone in a unique murine model of diabetic cardiopathy. Life Sci 2016; 162:1-13. [PMID: 27530514 DOI: 10.1016/j.lfs.2016.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
AIMS Rosiglitazone (RSZ), a PPARγ agonist was potent efficacious insulin sensitizing blockbuster drug for treatment of Type 2 diabetes mellitus (T2DM) but the benefit of PPARγ activation in congestive heart failure (CHF) was controversial. The present work was planned to study the role of RSZ in diabetic cardiopathy. MAIN METHODS Zucker fa/fa rats, the genetic model of T2DM were subjected to constriction of suprarenal abdominal aorta so that they represent a combined model of diabetes and cardiopathy. The development cardiopathy was assessed biochemically (plasma BNP and aldosterone levels), using echocardiography and expression angiotensin II receptor type 1a gene in heart and Endothelin-1 gene in aorta. Rats were treated with RSZ and in combination with amiloride for four weeks and were assessed to evaluate the effect of RSZ or amiloride or its combination on antidiabetic activity, adverse or toxic effects and congestive heart failure status. KEY FINDINGS RSZ shows its anti-diabetic effect from 0.3mg/kg dose onwards and at 3mg/kg dose levels it caused beneficial effects (reduction of blood pressure) on cardiovascular system and at highest (30mg/kg) dose it starts showing adverse effects like body weight gain, edema, left ventricular hypertrophy. However, when highest dose of RSZ animals were treated with amiloride (ENaC inhibitor) at 2mg/kg the reversal of the adverse effects was evident, indicating the combination of RSZ and amiloride is beneficial in diabetic cardiopathy model. SIGNIFICANCE RSZ and amiloride combination appeared promising treatment in diabetic patients with cardiopathy without any side effect.
Collapse
Affiliation(s)
- Suresh R Giri
- Department of Pharmacology & Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad 382 213, Gujarat, India; Department of Pharmacology & Toxicology, Bombay Veterinary College, Parel, Mumbai 400012, India.
| | - Bibhuti Bhoi
- Department of Pharmacology & Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad 382 213, Gujarat, India
| | - Mukul R Jain
- Department of Pharmacology & Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad 382 213, Gujarat, India
| | - Madhumanjiri M Gatne
- Department of Pharmacology & Toxicology, Bombay Veterinary College, Parel, Mumbai 400012, India
| |
Collapse
|
12
|
Peroxisome Proliferator-Activated Receptor-γ Is Critical to Cardiac Fibrosis. PPAR Res 2016; 2016:2198645. [PMID: 27293418 PMCID: PMC4880703 DOI: 10.1155/2016/2198645] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates that PPARγ agonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress, and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus, in this review we discuss the role of PPARγ in various cardiovascular conditions associated with cardiac fibrosis, including diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPARγ agonists for the clinical management of CVD.
Collapse
|
13
|
Peroxisome Proliferator-Activated Receptors and the Heart: Lessons from the Past and Future Directions. PPAR Res 2015; 2015:271983. [PMID: 26587015 PMCID: PMC4637490 DOI: 10.1155/2015/271983] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear family of ligand activated transcriptional factors and comprise three different isoforms, PPAR-α, PPAR-β/δ, and PPAR-γ. The main role of PPARs is to regulate the expression of genes involved in lipid and glucose metabolism. Several studies have demonstrated that PPAR agonists improve dyslipidemia and glucose control in animals, supporting their potential as a promising therapeutic option to treat diabetes and dyslipidemia. However, substantial differences exist in the therapeutic or adverse effects of specific drug candidates, and clinical studies have yielded inconsistent data on their cardioprotective effects. This review summarizes the current knowledge regarding the molecular function of PPARs and the mechanisms of the PPAR regulation by posttranslational modification in the heart. We also describe the results and lessons learned from important clinical trials on PPAR agonists and discuss the potential future directions for this class of drugs.
Collapse
|
14
|
Abstract
Atherosclerosis is a chronic inflammatory disease with deposition of excessive cholesterol in the arterial intima. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor. Activation of PPARα plays an important role in the metabolism of multiple lipids, including high-density lipoprotein, cholesterol, low-density lipoprotein, triglyceride, phospholipid, bile acids, and fatty acids. Increased PPARα activity also mitigates atherosclerosis by blocking macrophage foam cell formation, vascular inflammation, vascular smooth muscle cell proliferation and migration, plaque instability, and thrombogenicity. Clinical use of synthetic PPARα agonist fibrate improved dyslipidemia and attenuated atherosclerosis-related disease risk. This review summarizes PPARα in lipid and lipoprotein metabolism and atherosclerosis, and also highlights its potential therapeutic benefits.
Collapse
|
15
|
Zhang WL, Yan WJ, Sun B, Zou ZP. Synergistic effects of atorvastatin and rosiglitazone on endothelium protection in rats with dyslipidemia. Lipids Health Dis 2014; 13:168. [PMID: 25361814 PMCID: PMC4232672 DOI: 10.1186/1476-511x-13-168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/16/2014] [Indexed: 01/13/2023] Open
Abstract
Background Endothelial dysfunction is implicated in the initiation and progression of atherosclerosis. Whether atorvastatin combined with rosiglitazone has synergistic effects on endothelial function improvement in the setting of dyslipidemia is unknown. Methods Dyslipidemia rat model was produced with high-fat and high-cholesterol diet administration. Thereafter, atorvastatin, rosiglitazone or atorvastatin combined with rosiglitazone were prescribed for 2 weeks. At baseline, 6 weeks of dyslipidemia model production, and 2 weeks of medical intervention, fasting blood was drawn for parameters of interest evaluation. At the end, myocardium was used for 15-deoxy-delta-12,14-PGJ2 (15-d-PGJ2) assessment. Results Initially, there was no significant difference of parameters between sham and dyslipidemia groups. With 6 weeks’ high-fat and high-cholesterol diet administration, as compared to sham group, serum levels of triglyceride (TG), total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) were significantly increased. Additionally, nitric oxide (NO) production was reduced and serum levels of malondialdehyde (MDA), C-reactive protein (CRP) and asymmetric dimethylarginine (ADMA) were profoundly elevated in dyslipidemia group. After 2 weeks’ medical intervention, lipid profile was slightly improved in atorvastatin and combined groups as compared to control group. Nevertheless, in comparison to control group, NO production was profoundly increased and serum levels of MDA, CRP and ADMA were significantly decreased with atorvastatin or rosiglitazone therapy. 15-d-PGJ2 expression of myocardium was also significantly elevated with atorvastatin or rosiglitazone treatment. Notably, these effects were further enhanced with combined therapy, suggesting that atorvastatin and rosiglitazone had synergistic effects on endothelial protection, and inflammation and oxidation amelioration. Conclusion Atorvastatin and rosiglitazone therapy had synergistic effects on endothelium protection as well as amelioration of oxidative stress and inflammatory reaction in rats with dyslipidemia.
Collapse
Affiliation(s)
| | | | | | - Zhi-Peng Zou
- Department of Cardiology, Hospital of Economic and Technological Development Zone, Yantai, Shandong Province 264001, China.
| |
Collapse
|
16
|
Usuda D, Kanda T. Peroxisome proliferator-activated receptors for hypertension. World J Cardiol 2014; 6:744-754. [PMID: 25228953 PMCID: PMC4163703 DOI: 10.4330/wjc.v6.i8.744] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/21/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes (α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin II receptor blockers, should be studied. This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases.
Collapse
|
17
|
Kuipers I, Li J, Vreeswijk-Baudoin I, Koster J, van der Harst P, Silljé HH, Kuipers F, van Veldhuisen DJ, van Gilst WH, de Boer RA. Activation of liver X receptors with T0901317 attenuates cardiac hypertrophyin vivo. Eur J Heart Fail 2014; 12:1042-50. [DOI: 10.1093/eurjhf/hfq109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Irma Kuipers
- Department of Experimental Cardiology; University Medical Center Groningen; PO Box 30.001, 9700 RB Groningen The Netherlands
| | - Jiang Li
- Department of Experimental Cardiology; University Medical Center Groningen; PO Box 30.001, 9700 RB Groningen The Netherlands
| | - Inge Vreeswijk-Baudoin
- Department of Experimental Cardiology; University Medical Center Groningen; PO Box 30.001, 9700 RB Groningen The Netherlands
| | - Johan Koster
- Department of Experimental Cardiology; University Medical Center Groningen; PO Box 30.001, 9700 RB Groningen The Netherlands
| | - Pim van der Harst
- Department of Experimental Cardiology; University Medical Center Groningen; PO Box 30.001, 9700 RB Groningen The Netherlands
| | - Herman H.W. Silljé
- Department of Experimental Cardiology; University Medical Center Groningen; PO Box 30.001, 9700 RB Groningen The Netherlands
| | - Folkert Kuipers
- Department of Experimental Pediatrics; University Medical Center Groningen; Groningen The Netherlands
| | - Dirk J. van Veldhuisen
- Department of Experimental Cardiology; University Medical Center Groningen; PO Box 30.001, 9700 RB Groningen The Netherlands
| | - Wiek H. van Gilst
- Department of Experimental Cardiology; University Medical Center Groningen; PO Box 30.001, 9700 RB Groningen The Netherlands
| | - Rudolf A. de Boer
- Department of Experimental Cardiology; University Medical Center Groningen; PO Box 30.001, 9700 RB Groningen The Netherlands
| |
Collapse
|
18
|
Lack of human tissue-specific correlations for rodent pancreatic and colorectal carcinogens. Regul Toxicol Pharmacol 2012; 64:442-58. [PMID: 23069141 DOI: 10.1016/j.yrtph.2012.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/12/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022]
Abstract
To better understand the relationships between chemical exposures and human cancer causation, incidence data for human cancer types were identified and pancreatic and colorectal cancers were studied in-depth to assess whether data supporting the causation of pancreatic or colorectal tumors by chemicals in rodents is predictive of causation by the same chemicals of the same tumors in humans. A search of the Carcinogenic Potency Database, the National Toxicology Program (NTP) technical report database, and the published literature identified 38 and 39 chemicals reported to cause pancreatic and colorectal tumors, respectively, in mice or rats. For each of these chemicals, searches were conducted of the International Agency for Research on Cancer monographs, the NTP Report on Carcinogens, and the published literature for evidence of induction of the same tumors in humans. Based on this evaluation, no conclusive evidence was identified to suggest that chemicals reported to cause pancreatic or colorectal tumors in rodents also cause these tumors in humans. These findings suggest that pancreatic tumor data from mouse and rat bioassays are of limited utility with regard to predicting similar tumor induction in humans. For colorectal cancer, a lack of correlation was noted for the vast majority of chemicals.
Collapse
|
19
|
Hernanz R, Martín Á, Pérez-Girón JV, Palacios R, Briones AM, Miguel M, Salaices M, Alonso MJ. Pioglitazone treatment increases COX-2-derived prostacyclin production and reduces oxidative stress in hypertensive rats: role in vascular function. Br J Pharmacol 2012; 166:1303-19. [PMID: 22220498 DOI: 10.1111/j.1476-5381.2012.01825.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE PPARγ agonists, glitazones, have cardioprotective and anti-inflammatory actions associated with gene transcription interference. In this study, we determined whether chronic treatment of adult spontaneously hypertensive rats (SHR) with pioglitazone alters BP and vascular structure and function, and the possible mechanisms involved. EXPERIMENTAL APPROACH Mesenteric resistance arteries from untreated or pioglitazone-treated (2.5 mg·kg⁻¹ ·day⁻¹ , 28 days) SHR and normotensive [Wistar Kyoto (WKY)] rats were used. Vascular structure was studied by pressure myography, vascular function by wire myography, protein expression by Western blot and immunohistochemistry, mRNA levels by RT-PCR, prostanoid levels by commercial kits and reactive oxygen species (ROS) production by dihydroethidium-emitted fluorescence. KEY RESULTS In SHR, pioglitazone did not modify either BP or vascular structural and mechanical alterations or phenylephrine-induced contraction, but it increased vascular COX-2 levels, prostacyclin (PGI₂) production and the inhibitory effects of NS 398, SQ 29,548 and tranylcypromine on phenylephrine responses. The contractile phase of the iloprost response, which was reduced by SQ 29,548, was greater in pioglitazone-treated and pioglitazone-untreated SHR than WKY. In addition, pioglitazone abolished the increased vascular ROS production, NOX-1 levels and the inhibitory effect of apocynin and allopurinol on phenylephrine contraction, whereas it did not modify eNOS expression but restored the potentiating effect of N-nitro-L-arginine methyl ester on phenylephrine responses. CONCLUSIONS AND IMPLICATIONS Although pioglitazone did not reduce BP in SHR, it increased COX-2-derived PGI₂ production, reduced oxidative stress, and increased NO bioavailability, which are all involved in vasoconstrictor responses in resistance arteries. These effects would contribute to the cardioprotective effect of glitazones reported in several pathologies.
Collapse
Affiliation(s)
- Raquel Hernanz
- Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, Alcorcón, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
O'Rourke B, Van Eyk JE, Foster DB. Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. CONGESTIVE HEART FAILURE (GREENWICH, CONN.) 2011; 17:269-82. [PMID: 22103918 PMCID: PMC4067253 DOI: 10.1111/j.1751-7133.2011.00266.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation of mitochondrial proteins has been recognized for decades, and the regulation of pyruvate- and branched-chain α-ketoacid dehydrogenases by an atypical kinase/phosphatase cascade is well established. More recently, the development of new mass spectrometry-based technologies has led to the discovery of many novel phosphorylation sites on a variety of mitochondrial targets. The evidence suggests that the major classes of kinase and several phosphatases may be present at the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix, but many questions remain to be answered as to the location, timing, and reversibility of these phosphorylation events and whether they are functionally relevant. The authors review phosphorylation as a mitochondrial regulatory strategy and highlight its possible role in the pathophysiology of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Brian O'Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD 21205-2195, USA.
| | | | | |
Collapse
|
21
|
Stable reporter cell lines for peroxisome proliferator-activated receptor γ (PPARγ)-mediated modulation of gene expression. Anal Biochem 2011; 414:77-83. [PMID: 21354099 DOI: 10.1016/j.ab.2011.02.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/18/2011] [Indexed: 12/12/2022]
Abstract
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3-3xPPRE-tata-luc or pGL4-3xPPRE-tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ(12,14)-prostaglandin J(2). The potency to induce luciferase decreased in the following order: rosiglitazone>troglitazone=pioglitazone>netoglitazone>ciglitazone. A concentration-dependent decrease in the response to 50nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.
Collapse
|
22
|
Therapeutic Implications of PPARgamma in Cardiovascular Diseases. PPAR Res 2010; 2010. [PMID: 20814542 PMCID: PMC2931381 DOI: 10.1155/2010/876049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/13/2010] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is the members of the nuclear receptor superfamily as a master transcriptional factor that promotes differentiation of preadipocytes by activating adipose-specific gene expression. Although PPARγ is expressed predominantly in adipose tissue and associated with adipocyte differentiation and glucose homeostasis, PPARγ is also present in a variety of cell types including vascular cells and cardiomyocytes. Activation of PPARγ suppresses production of inflammatory cytokines, and there is accumulating data that PPARγ ligands exert antihypertrophy of cardiomyocytes and anti-inflammatory, antioxidative, and antiproliferative effects on vascular wall cells and cardiomyocytes. In addition, activation of PPARγ is implicated in the regulation of endothelial function, proliferation and migration of vascular smooth muscle cells, and activation of macrophages. Many studies suggest that PPARγ ligands not only ameliorate insulin sensitivity, but also have pleiotropic effects on the pathophysiology of atherosclerosis, cardiac hypertrophy, ischemic heart, and myocarditis.
Collapse
|
23
|
Homocysteine and Hypertension in Diabetes: Does PPARgamma Have a Regulatory Role? PPAR Res 2010; 2010:806538. [PMID: 20613990 PMCID: PMC2895301 DOI: 10.1155/2010/806538] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/11/2009] [Accepted: 05/10/2010] [Indexed: 12/31/2022] Open
Abstract
Dysfunction of macro- and microvessels is a major cause of morbidity and mortality in patients with cardio-renovascular diseases such as atherosclerosis, hypertension, and diabetes. Renal failure and impairment of renal function due to vasoconstriction of the glomerular arteriole in diabetic nephropathy leads to renal volume retention and increase in plasma homocysteine level. Homocysteine, which is a nonprotein amino acid, at elevated levels is an independent cardio-renovascular risk factor. Homocysteine induces oxidative injury of vascular endothelial cells, involved in matrix remodeling through modulation of the matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) axis, and increased formation and accumulation of extracellular matrix protein, such as collagen. In heart this leads to increased endothelial-myocyte uncoupling resulting in diastolic dysfunction and hypertension. In the kidney, increased matrix accumulation in the glomerulus causes glomerulosclerosis resulting in hypofiltration, increased renal volume retention, and hypertension. PPARγ agonist reduces tissue homocysteine levels and is reported to ameliorate homocysteine-induced deleterious vascular effects in diabetes. This review, in light of current information, focuses on the beneficial effects of PPARγ agonist in homocysteine-associated hypertension and vascular remodeling in diabetes.
Collapse
|
24
|
Chan SH, Wu KL, Kung PS, Chan JY. Oral Intake of Rosiglitazone Promotes a Central Antihypertensive Effect Via Upregulation of Peroxisome Proliferator-Activated Receptor-γ and Alleviation of Oxidative Stress in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats. Hypertension 2010; 55:1444-53. [PMID: 20404217 DOI: 10.1161/hypertensionaha.109.149146] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rosiglitazone, a synthetic ligand of transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ), possesses a blood pressure–lowering effect beyond insulin sensitizing and glucose lowering. Oxidative stress in rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for the maintenance of neurogenic vasomotor tone are located, contributes to neural mechanisms of hypertension. Activation of PPAR-γ protects against oxidative stress in RVLM by upregulation of mitochondrial uncoupling protein 2 (UCP2). We tested the hypothesis that oral intake of rosiglitazone exerts a central antihypertensive effect by ameliorating oxidative stress in RVLM via transcriptional upregulation of UCP2 after PPAR-γ activation. In adult spontaneously hypertensive rats but not normotensive Wistar-Kyoto rats, oral intake of rosiglitazone for 1 week resulted in vasodepression and a reduction in the vasomotor components of the systemic arterial pressure spectrum, our experimental index for sympathetic vasomotor tone. These antihypertensive effects of rosiglitazone in spontaneously hypertensive rats were abrogated by microinjection bilaterally into RVLM of PPAR-γ small interfering RNA. Oral intake of rosiglitazone also upregulated UCP2 and ameliorated the heightened superoxide anion level in RVLM of spontaneously hypertensive rats. Protection against oxidative stress in RVLM by rosiglitazone was abrogated by PPAR-γ small interfering RNA or by antisense oligonucleotide against
ucp2
mRNA. Gene knockdown of
ucp2
in RVLM also reversed the antihypertensive effect of rosiglitazone. These results suggest that oral intake of rosiglitazone promotes a central antihypertensive effect by decreasing sympathetic vasomotor activity through a PPAR-γ–dependent protection against oxidative stress in RVLM via transcriptional upregulation of the mitochondrial UCP2.
Collapse
Affiliation(s)
- Samuel H.H. Chan
- From the Center for Translation Research in Biomedical Sciences (S.H.H.C.), Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China; Department of Medical Education and Research (K.L.H.W., J.Y.H.C.), Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China; Department of Neurosurgery (P.S.S.K.), Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Kay L.H. Wu
- From the Center for Translation Research in Biomedical Sciences (S.H.H.C.), Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China; Department of Medical Education and Research (K.L.H.W., J.Y.H.C.), Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China; Department of Neurosurgery (P.S.S.K.), Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Peter S.S. Kung
- From the Center for Translation Research in Biomedical Sciences (S.H.H.C.), Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China; Department of Medical Education and Research (K.L.H.W., J.Y.H.C.), Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China; Department of Neurosurgery (P.S.S.K.), Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Julie Y.H. Chan
- From the Center for Translation Research in Biomedical Sciences (S.H.H.C.), Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan, Republic of China; Department of Medical Education and Research (K.L.H.W., J.Y.H.C.), Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China; Department of Neurosurgery (P.S.S.K.), Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
25
|
Sobocanec S, Balog T, Sarić A, Sverko V, Zarković N, Gasparović AC, Zarković K, Waeg G, Macak-Safranko Z, Kusić B, Marotti T. Cyp4a14 overexpression induced by hyperoxia in female CBA mice as a possible contributor of increased resistance to oxidative stress. Free Radic Res 2010; 44:181-90. [PMID: 19905990 DOI: 10.3109/10715760903390820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The beneficial effects of hyperoxia have been noted in treatment of several diseases and pathological states. However, the excessive production of ROS under hyperoxic conditions can directly damage cellular macromolecules if the imbalance in antioxidant status exists. Cytochrome P450 (Cyp) 4a14 has an important role in the metabolism of lipids and as a source of ROS in oxidative stress. This study investigated the oxidant/antioxidant status as a response to hyperoxia treatment in liver of young CBA/Hr mice of both sexes and whether the observed response is mediated by Cyp4a14 via PPAR isoforms in a sex-dependent manner. The overexpression of Cyp4a14, lack of both LPO and of 4-hydroxynonenal(HNE)-protein adducts revealed by immunohistochemical analysis in hyperoxia-treated females indicates their greater resistance to hyperoxia compared to males, which is parallelled to changes in PPARbeta/delta and PPARgamma expression. These results suggest the presence of sex-dependent changes in all investigated parameters, which points out sex-related susceptibility towards oxidative stress and hyperoxia treatment of various pathological conditions and diseases.
Collapse
Affiliation(s)
- Sandra Sobocanec
- Division of Molecular Medicine, Ruder Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Di Nunzio M, Danesi F, Bordoni A. n-3 PUFA as regulators of cardiac gene transcription: a new link between PPAR activation and fatty acid composition. Lipids 2009; 44:1073-9. [PMID: 19859757 DOI: 10.1007/s11745-009-3362-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/05/2009] [Indexed: 02/04/2023]
Abstract
The fatty acids regulate gene expression directly binding to nuclear receptors or affecting the protein content of transcription factors. In this work, supplementing primary cultures of neonatal rat cardiomyocytes with 60 microM EPA or DHA, we demonstrated by an ELISA assay an increased PPAR beta/delta binding to DNA. n-3 PUFA supplementation deeply changed the acyl composition of both cytosolic and nuclear fractions. The high content of total fatty acids, particularly EPA and DHA, and its increase following supplementation suggested a selective accumulation of n-3 PUFAs in the nucleus, supporting the direct interaction of n-3 PUFA with PPAR. The activity of acyl-CoA thioesterase (ACOT), catalyzing the reaction leading to NEFA from acyl-CoA, increased in n-3 PUFA supplemented cells. The NEFA/acyl-CoA ratio is an important regulator of the fatty acid transport to the nucleus and consequent modulation of gene transcription, and although ACOT activity is not the only parameter of this ratio, it is important for the control of the NEFA pool composition. Our data further clarify what happens in cardiomyocytes following n-3 PUFA supplementation, linking the modification of acyl composition to ACOT activity and PPAR activation.
Collapse
Affiliation(s)
- Mattia Di Nunzio
- Department of Biochemistry G. Moruzzi, Alma Mater Studiorum, University of Bologna, 40126, Bologna (BO), Italy
| | | | | |
Collapse
|
27
|
Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: results from the IQOLA Project. International Quality of Life Assessment. PPAR Res 1998; 2016:9282087. [PMID: 27051413 PMCID: PMC4802016 DOI: 10.1155/2016/9282087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Activated AMPK protects the heart from cardiac ischemia-reperfusion (IR) injury and is associated with inhibition of mitochondrial permeability transition pore (PTP) opening. On the other hand, pharmacological inhibition of the PTP reduces infarct size and improves cardiac function. However, it is unclear whether beneficial effects of AMPK are mediated through the PTP and, if they are not, whether simultaneous activation of AMPK and inhibition of the PTP exert synergistic protective effects against cardiac IR injury. Here, we examined the effects of the AMPK activator, A-769662 in combination with the PTP inhibitor, sanglifehrin A (SfA) on in vivo cardiac IR. Cardiac dysfunction following IR injury was associated with decreased activity of the mitochondrial electron transport chain (ETC) and increased mitochondrial ROS and PTP opening. Administration of A-769662 or SfA individually upon reperfusion improved cardiac function, reduced infarction size, and inhibited ROS production and PTP opening. However, simultaneous administration of SfA and A-769662 did not provide synergistic improvement of postischemic recovery of cardiac and mitochondrial function, though both compounds disrupted IR-induced interaction between PPARα and CyP-D. In conclusion, A-769662 or SfA prevents PPARα interaction with CyP-D, improving cardiac outcomes and increasing mitochondrial function, and simultaneous administration of the drugs does not provide synergistic effects.
Collapse
|