1
|
Xiong Y, Tang R, Xu J, Jiang W, Gong Z, Zhang L, Ning Y, Huang P, Xu J, Chen G, Li X, Hu M, Xu J, Wu C, Jin C, Li X, Qian H, Yang Y. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway. Stem Cell Res Ther 2022; 13:289. [PMID: 35799283 PMCID: PMC9264662 DOI: 10.1186/s13287-022-02969-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Bone marrow cells (BMCs), especially mesenchymal stem cells (MSCs), have shown attractive application prospects in acute myocardial infarction (AMI). However, the weak efficacy becomes their main limitation in clinical translation. Based on the anti-inflammation and anti-apoptosis effects of a Chinese medicine-Tongxinluo (TXL), we aimed to explore the effects of TXL-pretreated MSCs (MSCsTXL) in enhancing cardiac repair and further investigated the underlying mechanism. Methods MSCsTXL or MSCs and the derived exosomes (MSCsTXL-exo or MSCs-exo) were collected and injected into the infarct zone of rat hearts. In vivo, the anti-apoptotic and anti-inflammation effects, and cardiac functional and histological recovery were evaluated. In vitro, the apoptosis was evaluated by western blotting and flow cytometry. miRNA sequencing was utilized to identify the significant differentially expressed miRNAs between MSCsTXL-exo and MSCs-exo, and the miRNA mimics and inhibitors were applied to explore the specific mechanism. Results Compared to MSCs, MSCsTXL enhanced cardiac repair with reduced cardiomyocytes apoptosis and inflammation at the early stage of AMI and significantly improved left ventricular ejection fraction (LVEF) with reduced infarct size in an exosome-dependent way. Similarly, MSCsTXL-exo exerted superior therapeutic effects in anti-apoptosis and anti-inflammation, as well as improving LVEF and reducing infarct size compared to MSCs-exo. Further exosomal miRNA analysis demonstrated that miR-146a-5p was the candidate effector of the superior effects of MSCsTXL-exo. Besides, miR-146a-5p targeted and decreased IRAK1, which inhibited the nuclear translocation of NF-κB p65 thus protecting H9C2 cells from hypoxia injury. Conclusions This study suggested that MSCsTXL markedly facilitated cardiac repair via a new mechanism of the exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway, which has great potential for clinical translation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02969-y.
Collapse
Affiliation(s)
- Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Ruijie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Junyan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Zhaoting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Lili Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Peisen Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Mengjin Hu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Chunxiao Wu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Xiangdong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Haiyan Qian
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China.
| |
Collapse
|
2
|
Xiang J, Zhou L, Xie Y, Zhu Y, Xiao L, Chen Y, Zhou W, Chen D, Wang M, Cai L, Guo L. Mesh-like electrospun membrane loaded with atorvastatin facilitates cutaneous wound healing by promoting the paracrine function of mesenchymal stem cells. Stem Cell Res Ther 2022; 13:190. [PMID: 35526075 PMCID: PMC9080129 DOI: 10.1186/s13287-022-02865-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Functional electrospun membranes are promising dressings for promoting wound healing. However, their microstructure and drug loading capacity need further improvements. It is the first time to design a novel mesh-like electrospun fiber loaded with atorvastatin (ATV) and investigated its effects on paracrine secretion by bone marrow-derived mesenchymal stem cells (BMSCs) and wound healing in vivo. METHODS We fabricated a mesh-like electrospun membrane using a copper mesh receiver. The physical properties of the membranes were evaluated by SEM, FTIR spectroscopy, tensile strength analysis, and contrast angle test. Drug release was measured by plotting concentration as a function of time. We tested the effects of conditioned media (CM) derived from BMSCs on endothelial cell migration and angiogenesis. We used these BMSCs and performed RT-PCR and ELISA to evaluate the expressions of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) genes and proteins, respectively. The involvement of FAK and AKT mechanotransduction pathways in the regulation of BMSC secretion by material surface topography was also investigated. Furthermore, we established a rat model of wound healing, applied ATV-loaded mesh-like membranes (PCL/MAT) seeded with BMSCs on wounds, and assessed their efficacy for promoting wound healing. RESULTS FTIR spectroscopy revealed successful ATV loading in PCL/MAT. Compared with random electrospun fibers (PCL/R) and mesh-like electrospun fibers without drug load (PCL/M), PCL/MAT induced maximum promotion of human umbilical vein endothelial cell (HUVEC) migration. In the PCL/MAT group, the cell sheet scratches were nearly closed after 24 h. However, the cell sheet scratches remained open in other treatments at the same time point. The PCL/MAT promoted angiogenesis and led to the generation of longer tubes than the other treatments. Finally, the PCL/MAT induced maximum gene expression and protein secretion of VEGF and b-FGF. As for material surface topography effect on BMSCs, FAK and AKT signaling pathways were shown to participate in the modulation of MSC morphology and its paracrine function. In vivo, PCL/MAT seeded with BMSCs significantly accelerated healing and improved neovascularization and collagen reconstruction in the wound area compared to the other treatments. CONCLUSIONS The mesh-like topography of fibrous scaffolds combined with ATV release creates a unique microenvironment that promotes paracrine secretion of BMSCs, thereby accelerating wound healing. Hence, drug-loaded mesh-like electrospun membranes may be highly efficacious for wound healing and as artificial skin. It is a promising approach to solve the traumatic skin defect and accelerate recovery, which is essential to developing functional materials for future regenerative medicine.
Collapse
Affiliation(s)
- Jieyu Xiang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yufan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yan Chen
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Atorvastatin Pretreatment Ameliorates Mesenchymal Stem Cell Migration through miR-146a/CXCR4 Signaling. Tissue Eng Regen Med 2021; 18:863-873. [PMID: 34260048 DOI: 10.1007/s13770-021-00362-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND We previously found that atorvastatin (ATV) enhanced mesenchymal stem cells (MSCs) migration, by a yet unknown mechanism. CXC chemokine receptor 4 (CXCR4) is critical to cell migration and regulated by microRNA-146a (miR-146a). Therefore, this study aimed to assess whether ATV ameliorates MSCs migration through miR-146a/CXCR4 signaling. METHODS Expression of CXCR4 was evaluated by flow cytometry. Expression of miR-146a was examined by reverse transcription-quantitative polymerase chain reaction. A transwell system was used to assess the migration ability of MSCs. Recruitment of systematically delivered MSCs to the infarcted heart was evaluated in Sprague-Dawley rats with acute myocardial infarction (AMI). Mimics of miR-146a were used in vitro, and miR-146a overexpression lentivirus was used in vivo, to assess the role of miR-146a in the migration ability of MSCs. RESULTS The results showed that ATV pretreatment in vitro upregulated CXCR4 and induced MSCs migration. In addition, flow cytometry demonstrated that miR-146a mimics suppressed CXCR4, and ATV pretreatment no longer ameliorated MSCs migration because of decreased CXCR4. In the AMI model, miR-146a-overexpressing MSCs increased infarct size and fibrosis. CONCLUSION The miR-146a/CXCR4 signaling pathway contributes to MSCs migration and homing induced by ATV pretreatment. miR-146a may be a novel therapeutic target for stimulating MSCs migration to the ischemic tissue for improved repair.
Collapse
|
4
|
Wu G, Chang F, Fang H, Zheng X, Zhuang M, Liu X, Hou W, Xu L, Chen Z, Tang C, Wu Y, Sun Y, Zhu F. Non-muscle myosin II knockdown improves survival and therapeutic effects of implanted bone marrow-derived mesenchymal stem cells in lipopolysaccharide-induced acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:262. [PMID: 33708889 PMCID: PMC7940885 DOI: 10.21037/atm-20-4851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to have some beneficial effects in acute lung injury (ALI), but the therapeutic effects are limited due to apoptosis or necrosis after transplantation into injured lungs. Here, we aim to explore whether Non-muscle myosin II (NM-II) knockdown could enhance BMSCs survival and improve therapeutic effects in ALI. Methods MSCs, isolated from rat bone marrow, were transfected with the small interfering RNA (siRNA) targeted to NM-II mRNA by a lentivirus vector. Rats were equally randomized to four groups: the control group was given normal saline via tail vein; the other three groups underwent intratracheal lipopolysaccharide (LPS) instillation followed by administration with either normal saline, BMSCs transduced with lentivirus-enhanced green fluorescent protein (eGFP) empty vector, or BMSCs transduced with lentivirus-eGFP NM-II siRNA. Hematoxylin and eosin staining was used to evaluate lung histopathologic changes and Masson trichrome staining was used to assess lung fibrosis. The myeloperoxidase activity was also tested in lung tissues. The mRNA expression of inflammatory cytokines in lung tissues was determined via quantitative reverse transcription PCR. Sex-determining region of the Y chromosome gene expression was measured by fluorescence in situ hybridization (FISH) assay. The expression of self-renewal activity and apoptosis-associated proteins were measured by Western blot. Results Transplantation of NM-II siRNA-modified BMSCs could improve histopathological morphology, decrease inflammatory infiltrates, down-regulate the expression levels of inflammatory cytokines, and reduce pulmonary interstitial edema. NM-II siRNA-modified BMSCs showed antifibrotic properties and alleviated the degrees of pulmonary fibrosis induced by endotoxin. In addition, NM-II knockdown BMSCs showed slightly better therapeutic effect on lung inflammation when compared with control BMSCs. The beneficial effects of NM-II siRNA-modified BMSCs may be attributed to enhanced self-renewal activity and decreased apoptosis. Conclusions NM-II knockdown could inhibit the apoptosis of implanted BMSCs in lung tissues and improve its self-renewal activity. NM-II siRNA-modified BMSCs have a slightly enhanced ability to attenuate lung injury after LPS challenge.
Collapse
Affiliation(s)
- Guosheng Wu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fei Chang
- Department of Burn and Plastic Surgery, The Affiliated Zhang Jiagang Hospital of Soochow University, Suzhou, China
| | - He Fang
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xingfeng Zheng
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mingzhu Zhuang
- Clinical BioBank, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaobin Liu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenjia Hou
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Long Xu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhengli Chen
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chenqi Tang
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Wu
- Department of Anesthesiology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yu Sun
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Feng Zhu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Sienko D, Klimczak-Tomaniak D, Kulesza A, Symonides H, Kuch M, Paczek L, Burdzinska A. The influence of oxygen deprivation and donor age on the effect of statins on human mesenchymal stromal cells. Tissue Cell 2020; 67:101427. [PMID: 32911449 DOI: 10.1016/j.tice.2020.101427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
To date, no study evaluated the effect of oxygen deprivation together with statins pretreatment on human mesenchymal stromal cells (MSCs). The aim of our study was to establish the influence of atorvastatin and rosuvastatin on MSC proliferation and cytotoxicity in different oxygenic conditions. Human MSCs isolated from the bone marrow (n = 12) were incubated with statins. The proliferation rate and cytotoxic effect were evaluated in normoxic (21 %O2) and hypoxic (2%O2) conditions, also in relation to donor age. The treatment with atorvastatin was associated with significantly higher proliferation rate compared to control, both in hypoxic (19 % median increase) and normoxic conditions (20 %), p = 0.02 and p = 0.04, respectively. Atorvastatin had no significant cytotoxic effect on MSCs. Treatment with rosuvastatin in hypoxia resulted in significantly higher proliferation rate (15 %, p = 0.02) comparing to control with no significant cytotoxicity. In atmospheric oxygen concentration, rosuvastatin was associated with no significant change in proliferation and higher cytotoxicity compared to untreated control (p = 0.042 and p = 0.015, for 0.04 μM and 1 μM solutions respectively). There were no differences in the effect of statins on MSC from young donors vs. aged donors. These results suggest that statins could support MSC-based therapy of acute myocardial infarction.
Collapse
Affiliation(s)
- Damian Sienko
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Dominika Klimczak-Tomaniak
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Kondratowicza 8, 03-242, Warsaw, Poland
| | - Agnieszka Kulesza
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Helena Symonides
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Marek Kuch
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Kondratowicza 8, 03-242, Warsaw, Poland
| | - Leszek Paczek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland; Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Anna Burdzinska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland.
| |
Collapse
|
6
|
Effect of resveratrol combined with atorvastatin on re-endothelialization after drug-eluting stents implantation and the underlying mechanism. Life Sci 2020; 245:117349. [PMID: 31981632 DOI: 10.1016/j.lfs.2020.117349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/20/2022]
Abstract
AIMS To explore whether the combination of atorvastatins and resveratrol is superior to each individual drug alone regarding re-endothelialization after drug-eluting stents (DESs) implantation. MATERIALS AND METHODS Ninety-four rabbits were randomized into control, atorvastatin, resveratrol, and combined medication groups. Abdominal aorta injury was induced via ballooning, followed by DES implantation. Neointimal formation and re-endothelialization after stent implantation were assessed via optical coherence tomography and scanning electron microscopy. The effects of resveratrol and atorvastatin on bone marrow-derived mesenchymal derived stem cells (BMSCs) were assessed. KEY FINDINGS Compared with the findings in the resveratrol and atorvastatin groups, the neointimal area and mean neointimal thickness were greater in the combined medication group, which also exhibited improved re-endothelialization. Compared with the effects of monotherapy, combined treatment further protected BMSCs against rapamycin-induced apoptosis and improved cell migration. Combined medication significantly upregulated Akt, p-Akt, eNOS, p-eNOS, and CXCR4 expression in BMSCs compared with the effects of monotherapy, and these effects were abolished by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. SIGNIFICANCE The combination of atorvastatin and resveratrol has the potential of accelerating re-endothelialization after stent implantation, reducing the risk of thrombosis and improving the safety of DESs.
Collapse
|
7
|
Gorabi AM, Kiaie N, Pirro M, Bianconi V, Jamialahmadi T, Sahebkar A. Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications. Heart Fail Rev 2020; 26:1259-1272. [PMID: 32008148 DOI: 10.1007/s10741-020-09929-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Statins are well-known lipid-lowering drugs. The pleiotropic effects of statins have brought about some beneficial effects on improving the therapeutic outcomes of cell therapy and tissue engineering approaches. In this review, the impact of statins on mesenchymal stem cell behaviors including differentiation, apoptosis, proliferation, migration, and angiogenesis, as well as molecular pathways which are responsible for such phenomena, are discussed. A better understanding of pathways and mechanisms of statin-mediated effects on mesenchymal stem cells will pave the way for the expansion of statin applications. Furthermore, since designing a suitable carrier for statins is required to maintain a sufficient dose of active statins at the desired site of the body, different systems for local delivery of statins are also reviewed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Statin-Induced Nitric Oxide Signaling: Mechanisms and Therapeutic Implications. J Clin Med 2019; 8:jcm8122051. [PMID: 31766595 PMCID: PMC6947613 DOI: 10.3390/jcm8122051] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022] Open
Abstract
In addition to their cholesterol-lowering effects, statins are associated with pleiotropic effects including improvements in heart failure (HF), reduced blood pressure, prevention of the rupture of atherosclerotic plaques and improved angiogenesis. In addition to these cardiovascular benefits, statins have been implicated in the treatment of neurological injuries, cancer, sepsis, and cirrhosis. These cholesterol-independent beneficial effects of statins are predominantly mediated through signaling pathways leading to increased production and bioavailability of nitric oxide (NO). In this review, the mechanistic pathways and therapeutic effects of statin-mediated elevations of NO are described and discussed.
Collapse
|
9
|
Nantavisai S, Rodprasert W, Pathanachai K, Wikran P, Kitcharoenthaworn P, Smithiwong S, Archasappawat S, Sawangmak C. Simvastatin enhances proliferation and pluripotent gene expression by canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) in vitro. Heliyon 2019; 5:e02663. [PMID: 31687506 PMCID: PMC6820287 DOI: 10.1016/j.heliyon.2019.e02663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/05/2019] [Accepted: 10/11/2019] [Indexed: 01/08/2023] Open
Abstract
Establishing the intervention to enhance proliferation and differentiation potential is crucial for the clinical translation of stem cell-based therapy. In this study, the effects of simvastatin on these regards were explored. Canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) were treated with 4 doses of simvastatin, 0.1, 1, 10, and 100 nM. Simvastatin in low-dose range, 0.1 and 1 nM, enhanced dose-dependent cell proliferation at day 5 and 7. Exploration of the mechanisms revealed that simvastatin in low-dose range dose-dependently upregulated sets of cell cycle regulators, Cyclin D1 and Cyclin D2; proliferation marker, Ki-67; and anti-apoptotic gene; Bcl-2. Interestingly, pluripotent markers, Rex1 and Oct4, were dramatically increased upon the low-dose treatment. Contrastingly, treatment with high-dose simvastatin suppressed the expression of those genes. Thus, the results suggested beneficial effects of simvastatin on cBM-MSCs proliferation and expansion. Further study regarding differentiation potential and underlying mechanisms will accelerate the clinical application of the molecule on veterinary stem cell-based therapy.
Collapse
Affiliation(s)
- Sirirat Nantavisai
- Veterinary Pharmacology and Stem Cell Research Laboratory, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Special Task Force for Activating Research (STAR) in Biology of Embryo and Stem Cell Research in Veterinary Science, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watchareewan Rodprasert
- Veterinary Pharmacology and Stem Cell Research Laboratory, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Special Task Force for Activating Research (STAR) in Biology of Embryo and Stem Cell Research in Veterinary Science, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Koranis Pathanachai
- Veterinary Pharmacology and Stem Cell Research Laboratory, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Special Task Force for Activating Research (STAR) in Biology of Embryo and Stem Cell Research in Veterinary Science, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parattakorn Wikran
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | | | - Chenphop Sawangmak
- Veterinary Pharmacology and Stem Cell Research Laboratory, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Special Task Force for Activating Research (STAR) in Biology of Embryo and Stem Cell Research in Veterinary Science, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Xu J, Xiong Y, Li Q, Hu M, Huang P, Xu J, Tian X, Jin C, Liu J, Qian L, Yang Y. Optimization of Timing and Times for Administration of Atorvastatin-Pretreated Mesenchymal Stem Cells in a Preclinical Model of Acute Myocardial Infarction. Stem Cells Transl Med 2019; 8:1068-1083. [PMID: 31245934 PMCID: PMC6766601 DOI: 10.1002/sctm.19-0013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous studies showed that the combination of atorvastatin (ATV) and single injection of ATV-pretreated mesenchymal stem cells (MSCs) (ATV -MSCs) at 1 week post-acute myocardial infarction (AMI) promoted MSC recruitment and survival. This study aimed to investigate whether the combinatorial therapy of intensive ATV with multiple injections of ATV -MSCs has greater efficacy at different stages to better define the optimal strategy for MSC therapy in AMI. In order to determine the optimal time window for MSC treatment, we first assessed stromal cell-derived factor-1 (SDF-1) dynamic expression and inflammation. Next, we compared MSC recruitment and differentiation, cardiac function, infarct size, and angiogenesis among animal groups with single, dual, and triple injections of ATV -MSCs at early (Early1, Early2, Early3), mid-term (Mid1, Mid2, Mid3), and late (Late1, Late2, Late3) stages. Compared with AMI control, intensive ATV significantly augmented SDF-1 expression 1.5∼2.6-fold in peri-infarcted region with inhibited inflammation. ATV -MSCs implantation with ATV administration further enhanced MSC recruitment rate by 3.9%∼24.0%, improved left ventricular ejection fraction (LVEF) by 2.0%∼16.2%, and reduced infarct size in all groups 6 weeks post-AMI with most prominent improvement in mid groups and still effective in late groups. Mechanistically, ATV -MSCs remarkably suppressed inflammation and apoptosis while increasing angiogenesis. Furthermore, triple injections of ATV -MSCs were much more effective than single administration during early and mid-term stages of AMI with the best effects in Mid3 group. We conclude that the optimal strategy is multiple injections of ATV -MSCs combined with intensive ATV administration at mid-term stage of AMI. The translational potential of this strategy is clinically promising. Stem Cells Translational Medicine 2019;8:1068-1083.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Yu‐Yan Xiong
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Qing Li
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Meng‐Jin Hu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Pei‐Sen Huang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Jun‐Yan Xu
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Xia‐Qiu Tian
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Jian‐Dong Liu
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
- Department of Pathology and Laboratory MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUnited States
| | - Yue‐Jin Yang
- State Key Laboratory of Cardiovascular DiseaseFuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| |
Collapse
|
11
|
Xu Z, Li C, Liu Q, Yang H, Li P. Ginsenoside Rg1 protects H9c2 cells against nutritional stress-induced injury via aldolase /AMPK/PINK1 signalling. J Cell Biochem 2019; 120:18388-18397. [PMID: 31209925 DOI: 10.1002/jcb.29150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Insufficient nutrients supply will greatly affect the function of cardiac myocytes. The adaptive responses of cardiac myocytes to nutritional stress are not fully known. Ginsenoside Rg1 is one of the most pharmacologically active components in Panax Ginseng and possesses protective effects on cardiomyocyte. Here, we investigate the effects of ginsenoside Rg1 on H9c2 cells which were subjected to nutritional stress. Nutritional stress-induced by glucose deprivation strongly induced cell death and this response was inhibited by ginsenoside Rg1. Importantly, glucose deprivation decreased intracellular ATP levels and mitochondrial membrane potential. Ginsenoside Rg1 rescued ATP levels and mitochondrial membrane potential in nutrient-starved cells. For molecular mechanisms, ginsenoside Rg1 increased the expressions of PTEN-induced kinase 1 (PINK1) and p-AMPK in glucose deprivation treated H9c2 cells. Reducing the expression of aldolase in H9c2 cells inhibited ginsenoside Rg1's actions on PINK1 and p-AMPK. Further, the nutritional stress mice were used to verify the mechanisms obtained in vitro. Ginsenoside Rg1 increased the expressions of aldolase, p-AMPK, and PINK1 in starved mice heart. Taken together, our results reveal that ginsenoside Rg1 limits nutritional stress-induced H9c2 cells injury by regulating the aldolase /AMP-activated protein kinase/PINK1 pathway.
Collapse
Affiliation(s)
- ZhiMeng Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - ChengBin Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - QingLing Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Tanshinone IIA protects against heart failure post-myocardial infarction via AMPKs/mTOR-dependent autophagy pathway. Biomed Pharmacother 2019; 112:108599. [PMID: 30798134 DOI: 10.1016/j.biopha.2019.108599] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/05/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Heart failure (HF) leads to an increase in morbidity and mortality globally. Tanshinone IIA is an important traditional Chinese medicine monomer and has been shown to have remarkable protective effect against HF. Autophagy is critically involved in the progression of HF. The effect of Tanshinone IIA on autophagy has not been clarified yet. In this study, left anterior descending (LAD) ligation was used to induce HF model and a hydrogen peroxide-(H2O2-)-induced H9C2 cell injury model was established. in vivo, echocardiography results showed that Tanshinone IIA could significantly improve heart function. Western Blot result showed that Tanshinone IIA treatment enhanced autophagy and regulated expressions of key autophagy-related molecules, including protein 1 light chain 3 (LC3), p62 and Beclin1. Tanshinone IIA also inhibited apoptosis and regulated expressions of key apoptotic protein, including B cell lymphoma-2 (Bcl-2) and Bcl-2 Associated X Protein (Bax) and cleaved caspase-3 and -7. Further experiments demonstrated that the effects of Tanshinone IIA were mediated through upregulation of AMP-activated protein kinase (AMPK) and downregulation of mammalian target of rapamycin (mTOR) simultaneously. The mTOR agonist MHY1485 could abrogate the therapeutic effect of Tanshinone IIA in vitro. In conclusion, Tanshinone IIA protects cardiomyocytes and improves cardiac function by inhibiting apoptosis and inducing autophagy via activation of the AMPK-mTOR signaling pathway.
Collapse
|
13
|
Godoy JC, Niesman IR, Busija AR, Kassan A, Schilling JM, Schwarz A, Alvarez EA, Dalton ND, Drummond JC, Roth DM, Kararigas G, Patel HH, Zemljic-Harpf AE. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes. FASEB J 2018; 33:1209-1225. [PMID: 30169110 DOI: 10.1096/fj.201800876r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Statins, which reduce LDL-cholesterol by inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, are among the most widely prescribed drugs. Skeletal myopathy is a known statin-induced adverse effect associated with mitochondrial changes. We hypothesized that similar effects would occur in cardiac myocytes in a lipophilicity-dependent manner between 2 common statins: atorvastatin (lipophilic) and pravastatin (hydrophilic). Neonatal cardiac ventricular myocytes were treated with atorvastatin and pravastatin for 48 h. Both statins induced endoplasmic reticular (ER) stress, but only atorvastatin inhibited ERK1/2T202/Y204, AktSer473, and mammalian target of rapamycin signaling; reduced protein abundance of caveolin-1, dystrophin, epidermal growth factor receptor, and insulin receptor-β; decreased Ras homolog gene family member A activation; and induced apoptosis. In cardiomyocyte-equivalent HL-1 cells, atorvastatin, but not pravastatin, reduced mitochondrial oxygen consumption. When male mice underwent atorvastatin and pravastatin administration per os for up to 7 mo, only long-term atorvastatin, but not pravastatin, induced elevated serum creatine kinase; swollen, misaligned, size-variable, and disconnected cardiac mitochondria; alteration of ER structure; repression of mitochondria- and endoplasmic reticulum-related genes; and a 21% increase in mortality in cardiac-specific vinculin-knockout mice during the first 2 months of administration. To our knowledge, we are the first to demonstrate in vivo that long-term atorvastatin administration alters cardiac ultrastructure, a finding with important clinical implications.-Godoy, J. C., Niesman, I. R., Busija, A. R., Kassan, A., Schilling, J. M., Schwarz, A., Alvarez, E. A., Dalton, N. D., Drummond, J. C., Roth, D. M., Kararigas, G., Patel, H. H., Zemljic-Harpf, A. E. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes.
Collapse
Affiliation(s)
- Joseph C Godoy
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Ingrid R Niesman
- Department of Anesthesiology, University of California, San Diego, San Diego, California, USA
| | - Anna R Busija
- Department of Anesthesiology, University of California, San Diego, San Diego, California, USA
| | - Adam Kassan
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, University of California, San Diego, San Diego, California, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, West Coast University, North Hollywood, California, USA
| | - Jan M Schilling
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, University of California, San Diego, San Diego, California, USA
| | - Anna Schwarz
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Erika A Alvarez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nancy D Dalton
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - John C Drummond
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, University of California, San Diego, San Diego, California, USA
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, University of California, San Diego, San Diego, California, USA
| | - Georgios Kararigas
- Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, University of California, San Diego, San Diego, California, USA
| | - Alice E Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
14
|
Liao Y, Zhang P, Yuan B, Li L, Bao S. Pravastatin Protects Against Avascular Necrosis of Femoral Head via Autophagy. Front Physiol 2018; 9:307. [PMID: 29686621 PMCID: PMC5900057 DOI: 10.3389/fphys.2018.00307] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
Abstract
Autophagy serves as a stress response and may contribute to the pathogenesis of avascular necrosis of the femoral head induced by steroids. Statins promote angiogenesis and ameliorate endothelial functions through apoptosis inhibition and necrosis of endothelial progenitor cells, however the process used by statins to modulate autophagy in avascular necrosis of the femoral head remains unclear. This manuscript determines whether pravastatin protects against dexamethasone-induced avascular necrosis of the femoral head by activating endothelial progenitor cell autophagy. Pravastatin was observed to enhance the autophagy activity in endothelial progenitor cells, specifically by upregulating LC3-II/Beclin-1 (autophagy related proteins), and autophagosome formation in vivo and in vitro. An autophagy inhibitor, 3-MA, reduced pravastatin protection in endothelial progenitor cells exposed to dexamethasone by attenuating pravastatin-induced autophagy. Adenosine monophosphate-activated protein kinase (AMPK) is a key autophagy regulator by sensing cellular energy changes, and indirectly suppressing activation of the mammalian target of rapamycin (mTOR). We found that phosphorylation of AMPK was upregulated however phosphorylation of mTOR was downregulated in pravastatin-treated endothelial progenitor cells, which was attenuated by AMPK inhibitor compound C. Furthermore, liver kinase B1 (a phosphorylase of AMPK) knockdown eliminated pravastatin regulated autophagy protein LC3-II in endothelial progenitor cells in vitro. We therefore demonstrated pravastatin rescued endothelial progenitor cells from dexamethasone-induced autophagy dysfunction through the AMPK-mTOR signaling pathway in a liver kinase B1-dependent manner. Our results provide useful information for the development of novel therapeutics for management of glucocorticoids-induced avascular necrosis of the femoral head.
Collapse
Affiliation(s)
- Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ping Zhang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Yuan
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shisan Bao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Discipline of Pathology, Charles Perkin Center, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Inhibition of iron overload-induced apoptosis and necrosis of bone marrow mesenchymal stem cells by melatonin. Oncotarget 2018; 8:31626-31637. [PMID: 28415572 PMCID: PMC5458235 DOI: 10.18632/oncotarget.16382] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/02/2017] [Indexed: 01/10/2023] Open
Abstract
Iron overload induces severe damage to several vital organs such as the liver, heart and bone, and thus contributes to the dysfunction of these organs. The aim of this study is to investigate whether iron overload causes the apoptosis and necrosis of bone marrow mesenchymal stem cells (BMSCs) and melatonin may prevent its toxicity. Perls’ Prussion blue staining showed that exposure to increased concentrations of ferric ammonium citrate (FAC) induced a gradual increase of intracellular iron level in BMSCs. Trypan blue staining demonstrated that FAC decreased the viability of BMSCs in a concentration-dependent manner. Notably, melatonin protected BMSCs against apoptosis and necrosis induced by FAC and it was vertified by Live/Dead, TUNEL and PI/Hoechst stainings. Furthermore, melatonin pretreatment suppressed FAC-induced reactive oxygen species accumulation. Western blot showed that exposure to FAC resulted in the decrease of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bax and Cleaved Caspase-3, and necrosis-related proteins RIP1 and RIP3, which were significantly inhibited by melatonin treatment. At last, melatonin receptor blocker luzindole failed to block the protection of BMSCs apoptosis and necrosis by melatonin. Taken together, melatonin protected BMSCs from iron overload induced apoptosis and necrosis by regulating Bcl-2, Bax, Cleaved Caspase-3, RIP1 and RIP3 pathways.
Collapse
|
16
|
Li F, Zheng X, Fan X, Zhai K, Tan Y, Kou J, Yu B. YiQiFuMai Powder Injection Attenuates Ischemia/Reperfusion-Induced Myocardial Apoptosis Through AMPK Activation. Rejuvenation Res 2016; 19:495-508. [DOI: 10.1089/rej.2015.1801] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, P.R. China
| | - Xianjie Zheng
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, P.R. China
| | - Xiaoxue Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, P.R. China
| | - Kefeng Zhai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, P.R. China
| | - Yisha Tan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, P.R. China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, P.R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
17
|
Park HS, Kim JH, Sun BK, Song SU, Suh W, Sung JH. Hypoxia induces glucose uptake and metabolism of adipose‑derived stem cells. Mol Med Rep 2016; 14:4706-4714. [PMID: 27748854 DOI: 10.3892/mmr.2016.5796] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/12/2016] [Indexed: 11/05/2022] Open
Abstract
It has previously been demonstrated that hypoxia has diverse stimulatory effects on adipose‑derived stem cells (ASCs), however, metabolic responses under hypoxia remain to be elucidated. Thus, the present study aimed to investigate the glucose uptake and metabolism of ASCs under hypoxic conditions, and to identify the underlying molecular mechanisms. ASCs were cultured in 1% oxygen, and experiments were conducted in vitro. As determined by proteomic analysis and western blotting, GAPDH and enolase 1 (ENO1) expression were upregulated under hypoxia. In addition, lactate production was significantly increased, and mRNA levels of glycolytic enzymes, including GAPDH, ENO1, hexokinase 2 (HK2), and lactate dehydrogenase α (LDHα) were upregulated. Hypoxia‑inducible factor 1‑α (HIF‑1α) expression was increased as demonstrated by western blotting, and a pharmacological inhibitor of HIF‑1α significantly attenuated hypoxia‑induced lactate production and expression of glycolytic enzymes. It was also observed that hypoxia significantly increased glucose uptake in ASCs, and glucose transporter (GLUT)1 and GLUT3 expression were upregulated under hypoxia. Pharmacological inhibition of the HIF‑1α signaling pathways also attenuated hypoxia‑induced GLUT1 and GLUT3 expression. These results collectively indicate that hypoxia increases glucose uptake via GLUT1 and GLUT3 upregulation, and induces lactate production of ASCs via GAPDH, ENO1, HK2, and LDHα. Furthermore, HIF‑1α is involved in glucose uptake and metabolism of ASCs.
Collapse
Affiliation(s)
- Hyoung Sook Park
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Ji Hye Kim
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Bo Kyung Sun
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Sun U Song
- Translational Research Center, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Wonhee Suh
- Department of Pharmacy, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Jong-Hyuk Sung
- Department of Pharmaceutics and Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
18
|
Zhao L, Fan C, Zhang Y, Yang Y, Wang D, Deng C, Hu W, Ma Z, Jiang S, Di S, Qin Z, Lv J, Sun Y, Yi W. Adiponectin enhances bone marrow mesenchymal stem cell resistance to flow shear stress through AMP-activated protein kinase signaling. Sci Rep 2016; 6:28752. [PMID: 27418435 PMCID: PMC4945870 DOI: 10.1038/srep28752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/08/2016] [Indexed: 12/17/2022] Open
Abstract
Adiponectin has been demonstrated to protect the cardiovascular system and bone marrow mesenchymal stem cells (BMSCs). However, it is unclear whether adiponectin can protect BMSCs against flow shear stress (FSS). In this study, our aim was to explore the effects of adiponectin on BMSCs and to explore the role of AMP-activated protein kinase (AMPK) signaling in this process. Shear stress significantly inhibits the survival and increases the apoptosis of BMSCs in an intensity-dependent manner. The expression levels of TGF-β, bFGF, VEGF, PDGF, and Bcl2 are simultaneously reduced, and the phosphorylation levels of AMPK and ACC, as well as the expression level of Bax, are increased. Supplementation with adiponectin promotes the survival of BMSCs; reverses the changes in the expression levels of TGF-β, bFGF, VEGF, PDGF, Bcl2, and Bax; and further amplifies the phosphorylation of AMPK and ACC. Furthermore, the protective effects of adiponectin can be partially neutralized by AMPK siRNA. In summary, we have demonstrated for the first time that adiponectin can effectively protect BMSCs from FSS and that this effect depends, at least in part, on the activation of AMPK signaling.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.,Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yu Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Shouyi Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhigang Qin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Jianjun Lv
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
19
|
Yang Y, Fan C, Deng C, Zhao L, Hu W, Di S, Ma Z, Zhang Y, Qin Z, Jin Z, Yan X, Jiang S, Sun Y, Yi W. Melatonin reverses flow shear stress-induced injury in bone marrow mesenchymal stem cells via activation of AMP-activated protein kinase signaling. J Pineal Res 2016; 60:228-41. [PMID: 26707568 DOI: 10.1111/jpi.12306] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/17/2015] [Indexed: 12/24/2022]
Abstract
Tissue-engineered heart valves (TEHVs) are a promising treatment for valvular heart disease, although their application is limited by high flow shear stress (FSS). Melatonin has a wide range of physiological functions and is currently under clinical investigation for expanded applications; moreover, extensive protective effects on the cardiovascular system have been reported. In this study, we investigated the protection conferred by melatonin supplementation against FSS-induced injury in bone marrow mesenchymal stem cells (BMSCs) and elucidated the potential mechanism in this process. Melatonin markedly reduced BMSC apoptotic death in a concentration-dependent manner while increasing the levels of transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and B-cell lymphoma 2 (Bcl2), and decreasing those of Bcl-2-associated X protein (Bax), p53 upregulated modulator of apoptosis (PUMA), and caspase 3. Notably, melatonin exerted its protective effects by upregulating the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), which promotes acetyl-CoA carboxylase (ACC) phosphorylation. Further molecular experiments revealed that luzindole, a nonselective antagonist of melatonin receptors, blocked the anti-FSS injury (anti-FSSI) effects of melatonin. Inhibition of AMPK by Compound C also counteracted the protective effects of melatonin, suggesting that melatonin reverses FSSI in BMSCs through the AMPK-dependent pathway. Overall, our findings indicate that melatonin contributes to the amelioration of FSS-induced BMSC injury by activating melatonin receptors and AMPK/ACC signaling. Our findings may provide a basis for the design of more effective strategies that promote the use of TEHCs in patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhigang Qin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Departments of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Cell Therapy in Ischemic Heart Disease: Interventions That Modulate Cardiac Regeneration. Stem Cells Int 2016; 2016:2171035. [PMID: 26880938 PMCID: PMC4736413 DOI: 10.1155/2016/2171035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/26/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
The incidence of severe ischemic heart disease caused by coronary obstruction has progressively increased. Alternative forms of treatment have been studied in an attempt to regenerate myocardial tissue, induce angiogenesis, and improve clinical conditions. In this context, cell therapy has emerged as a promising alternative using cells with regenerative potential, focusing on the release of paracrine and autocrine factors that contribute to cell survival, angiogenesis, and tissue remodeling. Evidence of the safety, feasibility, and potential effectiveness of cell therapy has emerged from several clinical trials using different lineages of adult stem cells. The clinical benefit, however, is not yet well established. In this review, we discuss the therapeutic potential of cell therapy in terms of regenerative and angiogenic capacity after myocardial ischemia. In addition, we addressed nonpharmacological interventions that may influence this therapeutic practice, such as diet and physical training. This review brings together current data on pharmacological and nonpharmacological approaches to improve cell homing and cardiac repair.
Collapse
|
21
|
Zeng K, Deng BP, Jiang HQ, Wang M, Hua P, Zhang HW, Deng YB, Yang YQ. Prostaglandin E₁ protects bone marrow-derived mesenchymal stem cells against serum deprivation-induced apoptosis. Mol Med Rep 2015; 12:5723-9. [PMID: 26252504 PMCID: PMC4581785 DOI: 10.3892/mmr.2015.4176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 12/09/2014] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have become a recent focus of experimental and clinical research regarding myocardial regeneration. However, the therapeutic potential of these cells is limited by poor survival. Prostaglandin E1 (PGE1) is known to have anti-inflammatory and anti-apoptotic effects on the myocardium. The aim of the present study was to determine whether PGE1 could protect MSCs against serum deprivation (SD)-induced apoptosis. An SD model was used to induce apoptosis in MSCs in vitro. Apoptotic morphological changes were detected by Hoechst 33258 fluorescent nuclear staining; and Annexin V-fluorescein isothiocyanate/propidium iodide (PI) double staining and flow cytometry was used to quantify the rate of apoptosis. Western blot analysis was used to detect the expression levels of the apoptosis-associated proteins Bcl-2, Bax and caspase-3. The results of the present study demonstrated that SD induced apoptosis of MSCs, and that treatment with PGE1 attenuated the morphological changes characteristic of apoptosis. Annexin V/PI staining showed that the rate of apoptosis gradually increased with the duration of ischemia. Furthermore, treatment with PGE1 significantly reduced SD-induced apoptosis, decreased the protein expression levels of Bax and caspase-3, and increased the expression levels of Bcl-2. These data suggest that PGE1 is able to influence the survival of MSCs under certain conditions. These results may aid in improving the therapeutic efficacy of MSC transplantation used to treat chronic ischemic heart disease.
Collapse
Affiliation(s)
- Kuan Zeng
- Department of Cardiac Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Bao Ping Deng
- Department of Cardiac Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hui-Qi Jiang
- Department of Cardiac Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Meng Wang
- Department of Cardiac Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ping Hua
- Department of Cardiac Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hong-Wu Zhang
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu-Bin Deng
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yan-Qi Yang
- Department of Cardiac Surgery, Sun Yat‑sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
22
|
Wang B, Tan L, Deng D, Lu T, Zhou C, Li Z, Tang Z, Wu Z, Tang H. Novel stable cytokine delivery system in physiological pH solution: chitosan oligosaccharide/heparin nanoparticles. Int J Nanomedicine 2015; 10:3417-27. [PMID: 26056441 PMCID: PMC4431508 DOI: 10.2147/ijn.s82091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Cell therapy is a promising strategy for tissue regeneration. Key to this strategy is mobilization and recruitment of exogenous or autologous stem/progenitor cells by cytokines. However, there is no effective cytokine delivery system available for clinic application, in particular for myocardial regeneration. The aim of this study was to develop a novel cytokine delivery system that is stable in solution at physiological pH. Methods Four groups of self-assembled chitosan oligosaccharide/heparin (CSO/H) nanoparticles were prepared with various volume ratios of chitosan oligosaccharide to heparin (5:2, 5:4, 4:15, 1:5) and characterized by laser diffraction, particle size analysis, and transmission electron microscopy. The encapsulation efficiency and loading content of two cytokines, ie, stromal cell-derived factor (SDF)-1α and vascular endothelial growth factor (VEGF) were quantified using an enzyme-linked immunosorbent assay. The biological activity of the loaded SDF-1α and VEGF was evaluated using the transwell migration assay and MTT assay. The dispersion profiles for the cytokine-loaded nanoparticles were quantified using fluorescence molecular tomography. Results CSO/H nanoparticles were prepared successfully in solution with physiological pH. The particle sizes in the four treatment groups were in the range of 96.2–210.5 nm and the zeta potential ranged from −29.4 mV to 24.2 mV. The loading efficiency in the CSO/H nanoparticle groups with the first three ratios was more than 90%. SDF-1α loaded into CSO/H nanoparticles retained its migration activity and VEGF loaded into CSO/H nanoparticles continued to show proliferation activity. The in vivo dispersion test showed that the CSO/H nanoparticles enabled to VEGF to accumulate locally for a longer period of time. Conclusion CSO/H nanoparticles have a high cytokine loading capacity and allow cytokines to maintain their bioactivity for longer, are stable in an environment with physiological pH, and may be a promising cytokine delivery system for tissue regeneration.
Collapse
Affiliation(s)
- Bin Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Dengpu Deng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ting Lu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Changwei Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhongkui Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhenjie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhongshi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
23
|
GUO ZENG, LI CONGSHENG, WANG CHUNMIAO, XIE YANGJING, WANG AILING. CSE/H2S system protects mesenchymal stem cells from hypoxia and serum deprivation-induced apoptosis via mitochondrial injury, endoplasmic reticulum stress and PI3K/Akt activation pathways. Mol Med Rep 2015; 12:2128-34. [DOI: 10.3892/mmr.2015.3651] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 03/18/2015] [Indexed: 11/05/2022] Open
|
24
|
Cytoprotective effect of melatonin against hypoxia/serum deprivation-induced cell death of bone marrow mesenchymal stem cells in vitro. Eur J Pharmacol 2015; 748:157-65. [DOI: 10.1016/j.ejphar.2014.09.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/05/2023]
|
25
|
Tongxinluo decreases apoptosis of mesenchymal stem cells concentration-dependently under hypoxia and serum deprivation conditions through the AMPK/eNOS pathway. J Cardiovasc Pharmacol 2014; 63:265-73. [PMID: 24220313 DOI: 10.1097/fjc.0000000000000044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tongxinluo (TXL), a traditional Chinese medicine, is widely used to treat cardiovascular diseases in China. Our previous study has demonstrated the pro-survival role of TXL on mesenchymal stem cells (MSCs) in vivo. But whether TXL could decrease apoptosis of MSCs in vitro, and the underlying mechanism are still unknown. Moreover, AMPK/eNOS pathway is crucial in regulating cell apoptosis. Therefore, we designed the study to investigate whether TXL could decrease MSCs apoptosis under hypoxia and serum deprivation (H/SD) conditions and to determine the role of AMPK/eNOS pathway. To test the hypothesis, MSCs were treated with TXL (50-400 μg/mL) under H/SD for 6 hours. For inhibitor studies, the cells were preincubated with AMPK inhibitor compound C. Results indicated that TXL decreased MSCs apoptosis concentration-dependently evidenced by reduced Annexin V+/PI- cells and increased red/green ratio of JC-1. Further, TXL enhanced the phosphorylation of AMPK and eNOS. Whereas, treatment with compound C decreased the phosphorylation of AMPK and eNOS and was accompanied by attenuated anti-apoptotic effect of TXL. In conclusion, TXL protected MSCs against H/SD-induced injury at least in part through the AMPK/eNOS pathway, which provides a novel explanation for the multi-effect of TXL on cardiovascular system.
Collapse
|
26
|
Choudhury TR, Mathur A. The birth of 'regenerative pharmacology': a clinical perspective. Br J Pharmacol 2014; 169:239-46. [PMID: 23425309 DOI: 10.1111/bph.12128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
27
|
Mesenchymal stem cells overexpressing integrin-linked kinase attenuate left ventricular remodeling and improve cardiac function after myocardial infarction. Mol Cell Biochem 2014; 397:203-14. [PMID: 25134935 DOI: 10.1007/s11010-014-2188-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/08/2014] [Indexed: 01/26/2023]
Abstract
In the present study, we investigated whether mesenchymal stem cells (MSCs) overexpressing integrin-linked kinase (ILK) might regulate ventricular remodeling and cardiac function in a porcine myocardial infarction model. ILK-modified MSCs (ILK-MSCs) (n = 8), MSCs (n = 8) or placebo (n = 8) were injected into peri-infarct myocardium 7 days after ligation of the left anterior descending coronary artery. ILK expression was confirmed by immunofluorescence, real-time PCR, Western blot analysis, and flow cytometry. In vitro assays indicated increased proliferation and reduced apoptosis of MSCs due to overexpression of ILK. Echocardiographic, single-photon emission computed tomography and positron emission tomography analyses demonstrated preserved cardiac function and myocardial perfusion. Reduced fibrosis, increased cardiomyocyte proliferation, and enhanced angiogenesis were observed in the ILK-MSC group. Reduced apoptosis, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis, was also noted. In conclusion, ILK promotes MSC proliferation and suppresses apoptosis. ILK-MSC transplantation improves ventricular remodeling and cardiac function in pigs after MI. It is associated with increased angiogenesis, reduced apoptosis, and increased cardiomyocyte proliferation. This may represent a new approach to the treatment of post-infarct remodeling and subsequent heart failure.
Collapse
|
28
|
Ankrum JA, Miranda OR, Ng KS, Sarkar D, Xu C, Karp JM. Engineering cells with intracellular agent-loaded microparticles to control cell phenotype. Nat Protoc 2014; 9:233-45. [PMID: 24407352 DOI: 10.1038/nprot.2014.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cell therapies enable unprecedented treatment options to replace tissues, destroy tumors and facilitate regeneration. The greatest challenge facing cell therapy is the inability to control the fate and function of cells after transplantation. We have developed an approach to control cell phenotype in vitro and after transplantation by engineering cells with intracellular depots that continuously release phenotype-altering agents for days to weeks. The platform enables control of cells' secretome, viability, proliferation and differentiation, and the platform can be used to deliver drugs or other factors (e.g., dexamethasone, rhodamine and iron oxide) to the cell's microenvironment. The preparation, efficient internalization and intracellular stabilization of ∼1-μm drug-loaded microparticles are critical for establishing sustained control of cell phenotype. Herein we provide a protocol to generate and characterize micrometer-sized agent-doped poly(lactic-co-glycolic) acid (PLGA) particles by using a single-emulsion evaporation technique (7 h), to uniformly engineer cultured cells (15 h), to confirm particle internalization and to troubleshoot commonly experienced obstacles.
Collapse
Affiliation(s)
- James A Ankrum
- 1] Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard-MIT Division of Health Sciences and Technology, Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Oscar R Miranda
- 1] Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard-MIT Division of Health Sciences and Technology, Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Kelvin S Ng
- 1] Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard-MIT Division of Health Sciences and Technology, Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Debanjan Sarkar
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Chenjie Xu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Jeffrey M Karp
- 1] Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard-MIT Division of Health Sciences and Technology, Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Wood WG, Igbavboa U, Muller WE, Eckert GP. Statins, Bcl-2, and apoptosis: cell death or cell protection? Mol Neurobiol 2013; 48:308-14. [PMID: 23821030 DOI: 10.1007/s12035-013-8496-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/16/2013] [Indexed: 01/12/2023]
Abstract
Statins have proven their effectiveness in the treatment of cardiovascular disease. This class of drugs has also attracted attention as a potential treatment for dissimilar diseases such as certain types of cancers and neurodegenerative diseases. What appears to be a contradiction is that, in the case of cancer, it has been suggested that statins increase apoptosis and alter levels of Bcl-2 family members (e.g., reduce Bcl-2 and increase Bax), whereas studies mainly using noncancerous cells report opposite effects. This review examined studies reporting on the effects of statins on Bcl-2 family members, apoptosis, cell death, and cell protection. Much, but not all, of the evidence supporting the pro-apoptotic effects of statins is based on data in cancer cell lines and the use of relatively high drug concentrations. Studies indicating an anti-apoptotic effect of statins are fewer in number and generally used much lower drug concentrations and normal cells. Those conclusions are not definitive, and certainly, there is a need for additional research to determine if statin repositioning is justified for noncardiovascular diseases.
Collapse
Affiliation(s)
- W Gibson Wood
- Department of Pharmacology, Geriatric Research, Education and Clinical Center, VA Medical Center, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA,
| | | | | | | |
Collapse
|
30
|
Song L, Yang YJ, Dong QT, Qian HY, Gao RL, Qiao SB, Shen R, He ZX, Lu MJ, Zhao SH, Geng YJ, Gersh BJ. Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase. PLoS One 2013; 8:e65702. [PMID: 23741509 PMCID: PMC3669282 DOI: 10.1371/journal.pone.0065702] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/26/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In a swine model of acute myocardial infarction (AMI), Statins can enhance the therapeutic efficacy of mesenchymal stem cell (MSCs) transplantation. However, the mechanisms remain unclear. This study aims at assessing whether atorvastatin (Ator) facilitates the effects of MSCs through activation of nitric oxide synthase (NOS), especially endothelial nitric oxide synthase (eNOS), which is known to protect against ischemic injury. METHODS AND RESULTS 42 miniswines were randomized into six groups (n = 7/group): Sham operation; AMI control; Ator only; MSC only, Ator+MSCs and Ator+MSCs+NG-nitrol-L-arginine (L-NNA), an inhibitor of NOS. In an open-heart surgery, swine coronary artery ligation and reperfusion model were established, and autologous bone-marrow MSCs were injected intramyocardium. Four weeks after transplantation, compared with the control group, Ator+MSCs animals exhibited decreased defect areas of both "perfusion" defined by Single-Photon Emission Computed Tomography (-6.2±1.8% vs. 2.0±5.1%, P = 0.0001) and "metabolism" defined by Positron Emission Tomography (-3.00±1.41% vs. 4.20±4.09%, P = 0.0004); Ejection fraction by Magnetic Resonance Imaging increased substantially (14.22±12.8% vs. 1.64±2.64%, P = 0.019). In addition, indices of inflammation, fibrosis, and apoptosis were reduced and survivals of MSCs or MSC-derived cells were increased in Ator+MSCs animals. In Ator or MSCs alone group, perfusion, metabolism, inflammation, fibrosis or apoptosis were reduced but there were no benefits in terms of heart function and cell survival. Furthermore, the above benefits of Ator+MSCs treatment could be partially blocked by L-NNA. CONCLUSIONS Atorvastatin facilitates survival of implanted MSCs, improves function and morphology of infarcted hearts, mediated by activation of eNOS and alleviated by NOS inhibitor. The data reveal the cellular and molecular mechanism for anti-AMI therapy with a combination of statin and stem cells.
Collapse
Affiliation(s)
- Lei Song
- Coronary Heart Disease Center, Department of Cardiology, Fuwai Hospital and Cardiovascular Institute, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang D, Liu Z, Zhang H, Luo Q. Ghrelin protects human pulmonary artery endothelial cells against hypoxia-induced injury via PI3-kinase/Akt. Peptides 2013; 42:112-7. [PMID: 23391508 DOI: 10.1016/j.peptides.2013.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 01/30/2023]
Abstract
Endothelial injury and diminished NO release induced by hypoxia is thought to be a critical factor in the development of pulmonary artery hypertension (PAH). Ghrelin (Ghr) is a well-characterized hormone and has protective effects on the cardiovascular system, specifically by promoting the vascular endothelial cell function. The aim of this study was to investigate the effect of the Ghr on the hypoxia-induced injury in human pulmonary artery endothelial cells (HPAECs) and on the involved transduction pathway. Effects were investigated by treating cells with varying concentrations of Ghr in the absence or presence of inhibitors that target phosphoinositide 3-kinase (PI3K), in normoxic or hypoxic conditions for 24h. Our results indicated that the treatment with 10(-7) mol/l Ghr significantly enhanced cell viability (P<0.05, n=5) and upregulated the ratio of Bcl-2/Bax under hypoxic condition (P<0.05, n=4), as compared with the hypoxic condition alone. However, an addition of the PI3K/Akt inhibitor LY294002 inhibited these Ghr-mediated effects. Moreover, the Ghr (10(-7)mol/l) significantly increased NO secretion and eNOS phosphorylation in comparison with the hypoxia or normoxia alone group (P<0.05, n=4). Nevertheless, the treatment with LY294002 (20 μmol/l) decreased the Ghr-induced NO release as well as the eNOS activity. In conclusion, the Ghr could inhibit hypoxia-mediated HPAECs dysfunction via the PI3K/Akt pathway, and the bcl-2/bax ratio was also involved in the protective action of the Ghr in HPAECs. As such, the Ghr demonstrates a significant potential to prevent and treat PAH affected by the endothelial dysfunction.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Srivastava K, Bath PMW, Bayraktutan U. Current therapeutic strategies to mitigate the eNOS dysfunction in ischaemic stroke. Cell Mol Neurobiol 2012; 32:319-36. [PMID: 22198555 DOI: 10.1007/s10571-011-9777-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/29/2011] [Indexed: 12/22/2022]
Abstract
Impairment of endothelial nitric oxide synthase (eNOS) activity is implicated in the pathogenesis of endothelial dysfunction in many diseases including ischaemic stroke. The modulation of eNOS during and/or following ischaemic injury often represents a futile compensatory mechanism due to a significant decrease in nitric oxide (NO) bioavailability coupled with dramatic increases in the levels of reactive oxygen species that further neutralise NO. However, applications of a number of therapeutic agents alone or in combination have been shown to augment eNOS activity under a variety of pathological conditions by potentiating the expression and/or activity of Akt/eNOS/NO pathway components. The list of these therapeutic agents include NO donors, statins, angiotensin-converting enzyme inhibitors, calcium channel blockers, phosphodiesterase-3 inhibitors, aspirin, dipyridamole and ellagic acid. While most of these compounds exhibit anti-platelet properties and are able to up-regulate eNOS expression in endothelial cells and platelets, others suppress eNOS uncoupling and tetrahydrobiopterin (an eNOS stabiliser) oxidation. As the number of therapeutic molecules that modulate the expression and activity of eNOS increases, further detailed research is required to reveal their mode of action in preventing and/or reversing the endothelial dysfunction.
Collapse
Affiliation(s)
- Kirtiman Srivastava
- Division of Stroke, Clinical Sciences Building, Nottingham City Hospital Campus, The University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
33
|
Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, Xu H. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev 2012; 21:1321-32. [PMID: 22356678 DOI: 10.1089/scd.2011.0684] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a complex "self-eating" process and could be utilized for cell survival under stresses. Statins, which could reduce apoptosis in mesenchymal stem cells (MSCs) during both ischemia and hypoxia/serum deprivation (H/SD), have been proved to induce autophagy in some cell lines. We have previously shown that atorvastatin (ATV) could regulate AMP-activated protein kinase (AMPK), a positive modulator of autophagy, in MSCs. Thus, we hypothesized that autophagy activation through AMPK and its downstream molecule mammalian target of rapamycin (mTOR) may be a novel mechanism of ATV to protect MSCs from apoptosis during H/SD. Here, we demonstrated that H/SD induced autophagy in MSCs significantly as identified by increasing acidic vesicular organelle-positive cells, type II of light chain 3 (LC3-II) expression, and autophagosome formation. The levels of H/SD-induced apoptosis were increased by autophagy inhibitor 3-methyladenine (3-MA) while decreased by rapamycin, an autophagic inducer. ATV further enhanced the autophagic activity observed in MSCs exposed to H/SD. Treatment with 3-MA attenuated ATV-induced autophagy and abrogated the protective effects of ATV on MSC apoptosis, while rapamycin failed to cause additional effects on either autophagy or apoptosis compared with ATV alone. The phosphorylation of AMPK was upregulated whereas the phosphorylation of mTOR was downregulated in ATV-treated MSCs, which were both attenuated by AMPK inhibitor compound C. Further, treatment with compound C reduced the ATV-induced autophagy in MSCs under H/SD. These data suggest that autophagy plays a protective role in H/SD-induced apoptosis of MSCs, and ATV could effectively activate autophagy via AMPK/mTOR pathway to enhance MSC survival during H/SD.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Rayatnia F, Javadi-Paydar M, Allami N, Zakeri M, Rastegar H, Norouzi A, Dehpour AR. Nitric oxide involvement in consolidation, but not retrieval phase of cognitive performance enhanced by atorvastatin in mice. Eur J Pharmacol 2011; 666:122-30. [DOI: 10.1016/j.ejphar.2011.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/19/2011] [Accepted: 05/03/2011] [Indexed: 02/08/2023]
|