1
|
Chen Z, Huo X, Huang Y, Cheng Z, Xu X, Li Z. Elevated plasma solMER concentrations link ambient PM 2.5 and PAHs to myocardial injury and reduced left ventricular systolic function in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124151. [PMID: 38740242 DOI: 10.1016/j.envpol.2024.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Exposure to fine particulate matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) is known to be associated with the polarization of pro-inflammatory macrophages and the development of various cardiovascular diseases. The pro-inflammatory polarization of resident cardiac macrophages (cMacs) enhances the cleavage of membrane-bound myeloid-epithelial-reproductive receptor tyrosine kinase (MerTK) and promotes the formation of soluble MerTK (solMER). This process influences the involvement of cMacs in cardiac repair, thus leading to an imbalance in cardiac homeostasis, myocardial injury, and reduced cardiac function. However, the relative impacts of PM2.5 and PAHs on human cMacs have yet to be elucidated. In this study, we aimed to investigate the effects of PM2.5 and PAH exposure on solMER in terms of myocardial injury and left ventricular (LV) systolic function in healthy children. A total of 258 children (aged three to six years) were recruited from Guiyu (an area exposed to e-waste) and Haojiang (a reference area). Mean daily PM2.5 concentration data were collected to calculate the individual chronic daily intake (CDI) of PM2.5. We determined concentrations of solMER and creatine kinase MB (CKMB) in plasma, and hydroxylated PAHs (OH-PAHs) in urine. LV systolic function was evaluated by stroke volume (SV). Higher CDI values and OH-PAH concentrations were detected in the exposed group. Plasma solMER and CKMB were higher in the exposed group and were associated with a reduced SV. Elevated CDI and 1-hydroxynaphthalene (1-OHNa) were associated with a higher solMER. Furthermore, increased solMER concentrations were associated with a lower SV and higher CKMB. CDI and 1-OHNa were positively associated with CKMB and mediated by solMER. In conclusion, exposure to PM2.5 and PAHs may lead to the pro-inflammatory polarization of cMacs and increase the risk of myocardial injury and systolic function impairment in children. Furthermore, the pro-inflammatory polarization of cMacs may mediate cardiotoxicity caused by PM2.5 and PAHs.
Collapse
Affiliation(s)
- Zihan Chen
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China; Shantou University Medical College, Shantou, 15041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Yu Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhi Li
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China.
| |
Collapse
|
2
|
MacIver DH, Zhang H. Quantifying myocardial active strain energy density: A comparative analysis of analytic and finite element methods for estimating left ventricular wall stress and strain. Int J Cardiol 2024; 408:132139. [PMID: 38705203 DOI: 10.1016/j.ijcard.2024.132139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
AIMS This study compared commonly used methods for calculating left ventricular wall stress with the finite element analysis and evaluated different approaches to strain estimation. We sought to improve the accuracy of contractance estimation by developing a novel stress equation. BACKGROUND Multiple methods for calculating LV contractile stress and strain exist. Contractance is derived from stress and strain information and is a measure of myocardial work per unit volume of muscle. Precise stress and strain information are essential for its accurate evaluation. METHODS AND RESULTS We compared widely used methods for stress and strain calculations across diverse clinical scenarios representing distinct types of left ventricular myocardial disease. Our analysis revealed significant discrepancies in both the stress and strain values obtained with different methods. However, a newly developed modified version of the Mirsky equation demonstrated close agreement with the finite element analysis results for circumferential stress, while the Lamé method produced results close to those of finite element analysis for longitudinal stress and improved contractance accuracy. CONCLUSION This study highlights significant inconsistencies in stress and strain values calculated using different methods, emphasising the potential impact on contractance calculations and subsequent clinical interpretation. We recommend adopting the Lamé method for longitudinal stress assessment and the modified Mirsky equation for circumferential stress analysis. These methods offer a balance between accuracy and feasibility, making them advantageous for clinical practice. By adopting these recommendations, we can improve the accuracy of LV wall stress and strain estimates, leading to more dependable contractance calculations, better prognostication and improved clinical decisions. CLINICAL AND TRANSLATIONAL IMPACT STATEMENT Accurately estimating myocardial stress and strain is of paramount significance in clinical practice because the calculation of the contractance, defined and quantified by myocardial active strain energy density, necessitates correct stress and strain data. Contractance, which assesses myocardial work per unit muscle volume, has emerged as a promising indicator of contractile function and a predictor of future risk. The new recommendations for calculating myocardial stress improve the reliability of calculating contractance and enhance the understanding of myocardial diseases.
Collapse
Affiliation(s)
- David H MacIver
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom; Department of Cardiology, Taunton & Somerset Hospital, United Kingdom.
| | - Henggui Zhang
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Zhang H, Lian H, Wang X, Zhang Q, Liu D. Tricuspid annular plane systolic excursion/mitral annular plane systolic excursion ratio in critically ill patients: an index of right- and left-ventricular function mismatch and a risk factor for cardiogenic pulmonary edema. BMC Anesthesiol 2023; 23:175. [PMID: 37217863 DOI: 10.1186/s12871-023-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND This study aimed to explore whether the tricuspid annular systolic excursion (TAPSE)/mitral annular systolic excursion (MAPSE) ratio was associated with the occurrence of cardiogenic pulmonary edema (CPE) in critically ill patients. MATERIALS AND METHODS This was a prospective observational study conducted in a tertiary hospital. Adult patients admitted to the intensive care unit who were on mechanical ventilation or in need of oxygen therapy were prospectively screened for enrolment. The diagnosis of CPE was determined based on lung ultrasound and echocardiography findings. TAPSE ≥ 17 mm and MAPSE ≥ 11 mm were used as normal references. RESULTS Among the 290 patients enrolled in this study, 86 had CPE. In the logistic regression analysis, the TASPE/MAPSE ratio was independently associated with the occurrence of CPE (odds ratio 4.855, 95% CI: 2.215-10.641, p < 0.001). The patients' heart function could be categorized into four types: normal TAPSE in combination with normal MAPSE (TAPSE↑/MAPSE↑) (n = 157), abnormal TAPSE in combination with abnormal MAPSE (TAPSE↓/MAPSE↓) (n = 40), abnormal TAPSE in combination with normal MAPSE (TAPSE↓/MAPSE↑) (n = 50) and normal TAPSE in combination with abnormal MAPSE (TAPSE↑/MAPSE↓) (n = 43). The prevalence of CPE in patients with TAPSE↑/MAPSE↓ (86.0%) was significantly higher than that in patients with TAPSE↑/MAPSE↑ (15.3%), TAPSE↓/MAPSE↓ (37.5%), or TAPSE↓/MAPSE↑ (20.0%) (p < 0.001). The ROC analysis showed that the area under the curve for the TAPSE/MAPSE ratio was 0.761 (95% CI: 0.698-0.824, p < 0.001). A TAPSE/MAPSE ratio of 1.7 allowed the identification of patients at risk of CPE with a sensitivity of 62.8%, a specificity of 77.9%, a positive predictive value of 54.7% and a negative predictive value of 83.3%. CONCLUSIONS The TAPSE/MAPSE ratio can be used to identify critically ill patients at higher risk of CPE.
Collapse
Affiliation(s)
- Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China.
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China.
| | - Qing Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730, China
| |
Collapse
|
4
|
MacIver DH, Scrase T, Zhang H. Left ventricular contractance: A new measure of contractile function. Int J Cardiol 2023; 371:345-353. [PMID: 36084798 DOI: 10.1016/j.ijcard.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
AIMS Myocardial contractility is poorly defined and difficult to compare between studies. Contractance or myocardial active strain energy density (MASED) measures the mechanical work done per unit volume (with units of kJ/m3) by any cardiac tissue during contraction. Contractance is an ideal candidate for measuring contractile function as it combines information from both stress and strain. METHODS AND RESULTS Data obtained from three previously published experimental studies using trabecular tissue was used to provide contemporaneous nominal stress and strain data in 18 different scenarios with different loading conditions. Contractance varied in the differing loading conditions with values of 1.16 (low preload), 2.02 (high afterload) and 3.76 kJ/m3 (normal). Contractance varied between 0 with isometric loading and 2.14 kJ/m3 with an isotonic and moderate afterload. Increasing inotropy increased contractance to 4.7 kJ/m3. CONCLUSION We showed that calculating MASED was feasible and provided a measure of energy production (work done) per unit volume of myocardium during contraction. The new term for contractile function, contractance, can be defined and quantified by MASED. Contractance measures contractile function in differing preload, afterload and inotropic settings. The method of measuring contractance is transferable to the assessment of global and regional systolic function.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton & Somerset Hospital, United Kingdom; Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom.
| | - Thomas Scrase
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
MacIver DH, Agger P, Rodrigues JCL, Zhang H. Left ventricular active strain energy density is a promising new measure of systolic function. Sci Rep 2022; 12:12717. [PMID: 35882913 PMCID: PMC9325776 DOI: 10.1038/s41598-022-15509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
The left ventricular ejection fraction does not accurately predict exercise capacity or symptom severity and has a limited role in predicting prognosis in heart failure. A better method of assessing ventricular performance is needed to aid understanding of the pathophysiological mechanisms and guide management in conditions such as heart failure. In this study, we propose two novel measures to quantify myocardial performance, the global longitudinal active strain energy (GLASE) and its density (GLASED) and compare them to existing measures in normal and diseased left ventricles. GLASED calculates the work done per unit volume of muscle (energy density) by combining information from myocardial strain and wall stress (contractile force per unit cross sectional area). Magnetic resonance images were obtained from 183 individuals forming four cohorts (normal, hypertension, dilated cardiomyopathy, and cardiac amyloidosis). GLASE and GLASED were compared with the standard ejection fraction, the corrected ejection fraction, myocardial strains, stroke work and myocardial forces. Myocardial shortening was decreased in all disease cohorts. Longitudinal stress was normal in hypertension, increased in dilated cardiomyopathy and severely decreased in amyloid heart disease. GLASE was increased in hypertension. GLASED was mildly reduced in hypertension (1.39 ± 0.65 kJ/m3), moderately reduced in dilated cardiomyopathy (0.86 ± 0.45 kJ/m3) and severely reduced in amyloid heart disease (0.42 ± 0.28 kJ/m3) compared to the control cohort (1.94 ± 0.49 kJ/m3). GLASED progressively decreased in the hypertension, dilated cardiomyopathy and cardiac amyloid cohorts indicating that mechanical work done and systolic performance is severely reduced in cardiac amyloid despite the relatively preserved ejection fraction. GLASED provides a new technique for assessing left ventricular myocardial health and contractile function.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton & Somerset Hospital, Musgrove Park, UK.
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, UK.
| | - Peter Agger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonathan C L Rodrigues
- Department of Radiology, Royal United Hospital Bath NHS Trust, Bath, UK
- Department of Health, University of Bath, Bath, UK
| | - Henggui Zhang
- Biological Physics Group, Department of Astronomy and Physics, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Rodrigues JCL, Rooms B, Hyde K, Rohan S, Nightingale AK, Paton J, Manghat N, Bucciarelli-Ducci C, Hamilton M, Zhang H, MacIver DH. The corrected left ventricular ejection fraction: a potential new measure of ventricular function. Int J Cardiovasc Imaging 2021; 37:1987-1997. [PMID: 33616783 DOI: 10.1007/s10554-021-02193-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/12/2021] [Indexed: 12/28/2022]
Abstract
Left ventricular ejection fraction (LVEF) has a limited role in predicting outlook in heart diseases including heart failure. We quantified the independent geometric factors that determine LVEF using cardiac MRI and sought to provide an improved measure of ventricular function by adjusting for such independent variables. A mathematical model was used to analyse the independent effects of structural variables and myocardial shortening on LVEF. These results informed analysis of cardiac MRI data from 183 patients (53 idiopathic dilated cardiomyopathy (DCM), 36 amyloidosis, 55 hypertensives and 39 healthy controls). Left ventricular volumes, LVEF, wall thickness, internal dimensions and longitudinal and midwall fractional shortening were measured. The modelling demonstrated LVEF increased in a curvilinear manner with increasing mFS and longitudinal shortening and wall thickness but decreased with increasing internal diameter. Controls in the clinical cohort had a mean LVEF 64 ± 7%, hypertensives 66 ± 8%, amyloid 49 ± 16% and DCM 30 ± 11%. The mean end-diastolic wall thickness in controls was 8 ± 1 mm, DCM 8 ± 1 mm, hypertensives 11 ± 3 mm and amyloid 14 ± 3 mm, P < 0.0001). LVEF correlated with absolute wall thickening relative to ventricular size (R2 = 0.766). A regression equation was derived from raw MRI data (R2 = 0.856) and used to 'correct' LVEF (EFc) by adjusting the wall thickness and ventricular size to the mean of the control group. Improved quantification of the effects of geometric changes and strain significantly enhances understanding the myocardial mechanics. The EFc resulted in reclassification of a 'ventricular function' in some individuals and may provide an improved measure of myocardial performance especially in thick-walled, low-volume ventricles.
Collapse
Affiliation(s)
- Jonathan Carl Luis Rodrigues
- NIHR Bristol Cardiovascular Biomedical Research Centre, Cardiac Magnetic Resonance Department, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK.,Department of Radiology, Royal United Hospital Bath NHS Foundation Trust, Bath, UK
| | - Benjamin Rooms
- Medical School, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Katie Hyde
- Medical School, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Stephen Rohan
- Medical School, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Angus K Nightingale
- CardioNomics Research Group, Clinical Research and Imaging Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Julian Paton
- CardioNomics Research Group, Clinical Research and Imaging Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK.,Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nathan Manghat
- Department of Radiology, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Chiara Bucciarelli-Ducci
- NIHR Bristol Cardiovascular Biomedical Research Centre, Cardiac Magnetic Resonance Department, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mark Hamilton
- Department of Radiology, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - David H MacIver
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK. .,Department of Cardiology, Musgrove Park Hospital, Taunton, TA1 5DA, UK.
| |
Collapse
|
7
|
Kourek C, Karatzanos E, Psarra K, Georgiopoulos G, Delis D, Linardatou V, Gavrielatos G, Papadopoulos C, Nanas S, Dimopoulos S. Endothelial progenitor cells mobilization after maximal exercise according to heart failure severity. World J Cardiol 2020; 12:526-539. [PMID: 33312438 PMCID: PMC7701904 DOI: 10.4330/wjc.v12.i11.526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vascular endothelial dysfunction is an underlying pathophysiological feature of chronic heart failure (CHF). Patients with CHF are characterized by impaired vasodilation and inflammation of the vascular endothelium. They also have low levels of endothelial progenitor cells (EPCs). EPCs are bone marrow derived cells involved in endothelium regeneration, homeostasis, and neovascularization. Exercise has been shown to improve vasodilation and stimulate the mobilization of EPCs in healthy people and patients with cardiovascular comorbidities. However, the effects of exercise on EPCs in different stages of CHF remain under investigation.
AIM To evaluate the effect of a symptom-limited maximal cardiopulmonary exercise testing (CPET) on EPCs in CHF patients of different severity.
METHODS Forty-nine consecutive patients (41 males) with stable CHF [mean age (years): 56 ± 10, ejection fraction (EF, %): 32 ± 8, peak oxygen uptake (VO2, mL/kg/min): 18.1 ± 4.4] underwent a CPET on a cycle ergometer. Venous blood was sampled before and after CPET. Five circulating endothelial populations were quantified by flow cytometry: Three subgroups of EPCs [CD34+/CD45-/CD133+, CD34+/CD45-/CD133+/VEGFR2 and CD34+/CD133+/vascular endothelial growth factor receptor 2 (VEGFR2)] and two subgroups of circulating endothelial cells (CD34+/CD45-/CD133- and CD34+/CD45-/CD133-/VEGFR2). Patients were divided in two groups of severity according to the median value of peak VO2 (18.0 mL/kg/min), predicted peak VO2 (65.5%), ventilation/carbon dioxide output slope (32.5) and EF (reduced and mid-ranged EF). EPCs values are expressed as median (25th-75th percentiles) in cells/106 enucleated cells.
RESULTS Patients with lower peak VO2 increased the mobilization of CD34+/CD45-/CD133+ [pre CPET: 60 (25-76) vs post CPET: 90 (70-103) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133+/VEGFR2 [pre CPET: 1 (1-4) vs post CPET: 5 (3-8) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133- [pre CPET: 186 (141-361) vs post CPET: 488 (247-658) cells/106 enucleated cells, P < 0.001] and CD34+/CD45-/CD133-/VEGFR2 [pre CPET: 2 (1-2) vs post CPET: 3 (2-5) cells/106 enucleated cells, P < 0.001], while patients with higher VO2 increased the mobilization of CD34+/CD45-/CD133+ [pre CPET: 42 (19-73) vs post CPET: 90 (39-118) cells/106 enucleated cells, P < 0.001], CD34+/CD45-/CD133+/VEGFR2 [pre CPET: 2 (1-3) vs post CPET: 6 (3-9) cells/106 enucleated cells, P < 0.001], CD34+/CD133+/VEGFR2 [pre CPET: 10 (7-18) vs post CPET: 14 (10-19) cells/106 enucleated cells, P < 0.01], CD34+/CD45-/CD133- [pre CPET: 218 (158-247) vs post CPET: 311 (254-569) cells/106 enucleated cells, P < 0.001] and CD34+/CD45-/CD133-/VEGFR2 [pre CPET: 1 (1-2) vs post CPET: 4 (2-6) cells/106 enucleated cells, P < 0.001]. A similar increase in the mobilization of at least four out of five cellular populations was observed after maximal exercise within each severity group regarding predicted peak, ventilation/carbon dioxide output slope and EF as well (P < 0.05). However, there were no statistically significant differences in the mobilization of endothelial cellular populations between severity groups in each comparison (P > 0.05).
CONCLUSION Our study has shown an increased EPCs and circulating endothelial cells mobilization after maximal exercise in CHF patients, but this increase was not associated with syndrome severity. Further investigation, however, is needed.
Collapse
Affiliation(s)
- Christos Kourek
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Eleftherios Karatzanos
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Katherina Psarra
- Immunology and Histocompatibility Department, Evaggelismos Hospital, Athens 10676, Greece
| | | | - Dimitrios Delis
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Vasiliki Linardatou
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Gerasimos Gavrielatos
- Department of Cardiology, Tzaneio General Hospital of Piraeus, Piraeus 18536, Greece
| | - Costas Papadopoulos
- 2nd Cardiology Department, Korgialenio-Benakio Red Cross Hospital, Athens 11526, Greece
| | - Serafim Nanas
- Department of Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, Evaggelismos Hospital, Athens 10676, Greece
| | - Stavros Dimopoulos
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, Athens 17674, Greece
| |
Collapse
|
8
|
Jones TL, Tan MC, Nguyen V, Kearney KE, Maynard CC, Anderson E, Mahr C, McCabe JM. Outcome differences in acute vs. acute on chronic heart failure and cardiogenic shock. ESC Heart Fail 2020; 7:1118-1124. [PMID: 32160418 PMCID: PMC7261534 DOI: 10.1002/ehf2.12670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
Aims Despite advances in coronary reperfusion and percutaneous mechanical circulatory support, mortality among patients presenting with cardiogenic shock (CS) remains unacceptably high. Clinical trials and risk stratification tools have largely focused on acute CS, particularly secondary to acute coronary syndrome. Considerably less is understood about CS in the setting of acute decompensation in patients with chronic heart failure (HF). We sought to compare outcomes between patients with acute CS and patients with acute on chronic decompensated HF presenting with laboratory and haemodynamic features consistent with CS. Methods and results Sequential patients admitted with CS at a single quaternary centre between January 2014 and August 2017 were identified. Acute on chronic CS was defined by having a prior diagnosis of HF. Initial haemodynamic and laboratory data were collected for analysis. The primary outcome was in‐hospital mortality. Secondary outcomes were use of temporary mechanical circulatory support, durable ventricular assist device implantation, total artificial heart implantation, or heart transplantation. Comparison of continuous variables was performed using Student's t‐test. For categorical variables, the χ2 statistic was used. A total of 235 patients were identified: 51 patients (32.8%) had acute CS, and 184 patients (64.3%) had acute decompensation of chronic HF with no differences in age (52 ± 22 vs. 55 ± 14 years, P = 0.28) or gender (26% vs. 23%, P = 0.75) between the two groups. Patients with acute CS were more likely to suffer in‐hospital death (31.4% vs. 9.8%, P < 0.01) despite higher usage of temporary mechanical circulatory support (52% vs. 25%, P < 0.01) compared with patients presenting with acute on chronic HF. The only clinically significant haemodynamic differences at admission were a higher heart rate (101 ± 29 vs. 82 ± 17 b.p.m., P < 0.01) and wider pulse pressure (34 ± 19 vs. 29 ± 10 mmHg, P < 0.01) in the acute CS group. There were no significant differences in degree of shock based on commonly used CS parameters including mean arterial pressure (72 ± 12 vs. 74 ± 10 mmHg, P = 0.23), cardiac output (3.9 ± 1.2 vs. 3.8 ± 1.2 L/min, P = 0.70), or cardiac power index (0.32 ± 0.09 vs. 0.30 ± 0.09 W/m2, P = 0.24) between the two groups. Conclusions Current definitions and risk stratification models for CS based on clinical trials performed in the setting of acute coronary syndrome may not accurately reflect CS in patients with acute on chronic HF. Further investigation into CS in patients with acute on chronic HF is warranted.
Collapse
Affiliation(s)
- Tara L Jones
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA.,Division of Cardiology, Department of Medicine, University of Washington Heart Institute, 1959 NE Pacific St., 3rd Floor, Seattle, WA, 98195, USA
| | - Michael C Tan
- Division of Cardiology, Department of Medicine, University of Washington Heart Institute, 1959 NE Pacific St., 3rd Floor, Seattle, WA, 98195, USA
| | - Vidang Nguyen
- Division of Cardiology, Department of Medicine, University of Washington Heart Institute, 1959 NE Pacific St., 3rd Floor, Seattle, WA, 98195, USA
| | - Kathleen E Kearney
- Division of Cardiology, Department of Medicine, University of Washington Heart Institute, 1959 NE Pacific St., 3rd Floor, Seattle, WA, 98195, USA
| | - Charles C Maynard
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Emily Anderson
- Division of Cardiology, Department of Medicine, University of Washington Heart Institute, 1959 NE Pacific St., 3rd Floor, Seattle, WA, 98195, USA
| | - Claudius Mahr
- Division of Cardiology, Department of Medicine, University of Washington Heart Institute, 1959 NE Pacific St., 3rd Floor, Seattle, WA, 98195, USA
| | - James M McCabe
- Division of Cardiology, Department of Medicine, University of Washington Heart Institute, 1959 NE Pacific St., 3rd Floor, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Chronic intermittent hypoxia in obstructive sleep apnea: a narrative review from pathophysiological pathways to a precision clinical approach. Sleep Breath 2019; 24:751-760. [DOI: 10.1007/s11325-019-01967-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
|
10
|
MacIver DH, Partridge JB, Agger P, Stephenson RS, Boukens BJD, Omann C, Jarvis JC, Zhang H. The end of the unique myocardial band: Part II. Clinical and functional considerations. Eur J Cardiothorac Surg 2018; 53:120-128. [PMID: 29029119 DOI: 10.1093/ejcts/ezx335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/20/2017] [Indexed: 12/25/2022] Open
Abstract
Two of the leading concepts of mural ventricular architecture are the unique myocardial band and the myocardial mesh model. We have described, in an accompanying article published in this journal, how the anatomical, histological and high-resolution computed tomographic studies strongly favour the latter concept. We now extend the argument to describe the linkage between mural architecture and ventricular function in both health and disease. We show that clinical imaging by echocardiography and magnetic resonance imaging, and electrophysiological studies, all support the myocardial mesh model. We also provide evidence that the unique myocardial band model is not compatible with much of scientific research.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton and Somerset Hospital, Musgrove Park, Taunton, UK.,Medical Education, University of Bristol, Senate House, Bristol, UK.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - John B Partridge
- Eurobodalla Unit, Rural Clinical School of the ANU College of Medicine, Biology & Environment, Batemans Bay, NSW, Australia
| | - Peter Agger
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark.,Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Robert S Stephenson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bastiaan J D Boukens
- Department of Medical Biology, Academic Medical Centre, Amsterdam University, Amsterdam, Netherlands
| | - Camilla Omann
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jonathan C Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Restoration of cardiac function after anaemia-induced heart failure in zebrafish. J Mol Cell Cardiol 2018; 121:223-232. [PMID: 30009777 DOI: 10.1016/j.yjmcc.2018.07.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023]
Abstract
AIMS New therapeutic approaches are needed to fight against the growing epidemic of heart failure. Unlike mammals, zebrafish possess the incredible ability to regenerate cardiac tissue after acute trauma such as apical resection. Yet, the ability of zebrafish to recover after a chronic stress leading to heart failure has not been reported. The aim of this study was to test whether zebrafish can recover a normal cardiac function after anaemia-induced heart failure. METHODS AND RESULTS Eight- to ten-month-old zebrafish were treated with phenylhydrazine hydrochloride, an anaemia inducer, to generate heart failure. Treatment was stopped after 5 weeks and fish were followed-up for 3 weeks. Assessment of ventricular function by ultrasound at the end of the treatment revealed an increase in ventricle diameter (+47%) and a decrease in heart rate (-36%) and fractional shortening (-30%). A decrease in swim capacity was also observed (-31%). Tissue staining showed a thickening of the ventricular wall (5-fold), cell apoptosis and proliferation but no fibrosis. Expression of foetal genes, angiogenic factor and inflammation markers was increased, and β-adrenergic receptor-1 was decreased. Three weeks after phenylhydrazine hydrochloride withdrawal, all parameters returned to baseline and the fish recovered a normal cardiac function, tissue morphology and gene expression. CONCLUSIONS Zebrafish are able to completely recover from anaemia-induced heart failure. This model represents a unique opportunity to investigate the mechanisms of cardiac repair and may lead to the discovery of novel therapeutic targets of heart failure.
Collapse
|
12
|
Van Aelst LNL, Mebazaa A. Beyond left ventricular ejection fraction there is a right heart that pumps: reply. Eur J Heart Fail 2018; 20:1076-1077. [PMID: 29624796 DOI: 10.1002/ejhf.1184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Lucas N L Van Aelst
- Department of Cardiovascular Sciences KU Leuven, Campus Gasthuisberg O&N1, Leuven, Belgium.,Department of Cardiology, Hôpital Lariboisière, Paris, France.,U942 INSERM, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Alexandre Mebazaa
- U942 INSERM, Assistance Publique - Hôpitaux de Paris, Paris, France.,Department of Anesthesia and Critical Care, Hôpitaux Universitaires Saint Louis-Lariboisière, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
13
|
Urmaliya V, Franchelli G. A multidimensional sight on cardiac failure: uncovered from structural to molecular level. Heart Fail Rev 2018; 22:357-370. [PMID: 28474325 DOI: 10.1007/s10741-017-9610-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heart failure is one of the leading causes of death, with high mortality rate within 5 years after diagnosis. Treatment and prognosis options for heart failure primarily targeted on hemodynamic and neurohumoral components that drive progressive deterioration of the heart. However, given the multifactorial background that eventually leads to the "phenotype" named heart failure, better insight into the various components may lead to personalized treatment opportunities. Indeed, currently used criteria to diagnose and/or classify heart failure are possibly too focused on phenotypic improvement rather than the molecular driver of the disease and could therefore be further refined by integrating the leap of molecular and cellular knowledge. The ambiguity of the ejection fraction-based classification criteria became evident with development of advanced molecular techniques and the dawn of omics disciplines which introduced the idea that disease is caused by a myriad of cellular and molecular processes rather than a single event or pathway. The fact that different signaling pathways may underlie similar clinical manifestations calls for a more holistic study of heart failure. In this context, the systems biology approach can offer a better understanding of how different components of a system are altered during disease and how they interact with each other, potentially leading to improved diagnosis and classification of this condition. This review is aimed at addressing heart failure through a multilayer approach that covers individually some of the anatomical, morphological, functional, and tissue aspects, with focus on cellular and subcellular features as an alternative insight into new therapeutic opportunities.
Collapse
Affiliation(s)
- Vijay Urmaliya
- Discovery Sciences, Janssen Research & Development, Beerse, Belgium.
| | | |
Collapse
|
14
|
Williams BA, Doddamani S, Troup MA, Mowery AL, Kline CM, Gerringer JA, Faillace RT. Agreement between heart failure patients and providers in assessing New York Heart Association functional class. Heart Lung 2017; 46:293-299. [PMID: 28558929 DOI: 10.1016/j.hrtlng.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND Uncertainty persists regarding whether patient assessment of New York Heart Association (NYHA) functional classification should be preferred over provider assessment among patients with heart failure (HF). OBJECTIVES To compare patient against provider NYHA assessments, and both to distance walked on a 6-minute walk test (6MWT) among patients with HF. METHODS In this prospective study, we enrolled 101 HF patients who self-assessed NYHA classification. Health care providers who were blinded to patient ratings of NYHA also rated NYHA. Patients completed a 6MWT according to a standardized protocol. We used Spearman coefficients (rs) to evaluate the correlations between variables. RESULTS Patient- and provider-determined NYHA class were poorly correlated, but the relationship was statistically significant (rs = 0.40, p < 0.001). Patients consistently reported better NYHA class (class I: 72% vs 15%) than providers. Provider-determined NYHA had a stronger correlation with 6MWT distance (rs = -0.36, p < 0.001 vs. rs = -0.22, p = 0.03). Providers assigned a worse class to older patients who had comorbidity; patients with dyspnea and longer HF duration assigned themselves a worse class. CONCLUSION Patients and providers exhibited poor agreement in NYHA assignment.
Collapse
|
15
|
Cardiovascular Mechanisms of Extravascular Lung Water Accumulation in Divers. Am J Cardiol 2017; 119:929-932. [PMID: 28189252 DOI: 10.1016/j.amjcard.2016.11.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 11/22/2022]
Abstract
This study assessed the relation between altered cardiac function and the development of interstitial pulmonary edema in scuba divers. Fifteen healthy men performed a 30-minute scuba dive in open sea. They were instructed to fin for 30 minutes and were wearing wet suits. Before and immediately after immersion, cardiac indexes and extravascular lung water were measured using echocardiography and lung ultrasound, respectively. The mean ultrasound lung comet score increased from 0 to 4.6 ± 3.4. The diameter of the inferior caval vein increased by 47 ± 5.2%, systolic pulmonary artery pressure by 105 ± 8.6%, left atrial volume by 18.0 ± 3.3%, and left ventricle end-diastolic volume by 10 ± 2.4% suggesting that both right and left ventricular (LV) filling pressures were elevated. Doppler studies showed an increased mitral E peak (+2.5 ± 0.3%) and E/A ratio (+22.5 ± 3.4%) with a decreased mitral A peak (-16.4 ± 2.7%), E peak deceleration time (-14.5 ± 2.4%) consistent with rapid early LV filling but without a change in LV stroke volume. There was an increase in right/left ventricle diameter ratio (+33.6 ± 4.8%) suggesting a relative increase in right-sided heart output compared with the left. Furthermore, the lung comet score correlated significantly with inferior caval vein diameter, systolic pulmonary artery pressure, right/left ventricle diameter ratio, and E-wave deceleration time. In conclusion, the altered right/left heart stroke volume balance could play an essential role in the development of immersion pulmonary edema. Our findings have important implications for the pathogenesis of cardiogenic pulmonary edema.
Collapse
|
16
|
Abstract
Heart failure with reduced ejection fraction (HFrEF) represents at least half of the cases of heart failure, which is a syndrome defined as the inability of the heart to supply the body's tissues with an adequate amount of blood under conditions of normal cardiac filling pressure. HFrEF is responsible for high costs and rates of mortality, morbidity, and hospital admissions, mainly in developed countries. Thus, the need for better diagnostic methods and therapeutic approaches and consequently better outcomes is clear. In this article, we review the principal aspects of pathophysiology and diagnosis of HFrEF, with focus on emerging biomarkers and on recent echocardiographic methods for the assessment of left ventricular function. Furthermore, we discuss several major developments in pharmacological and nonpharmacological treatment of HFrEF in the last years, including cardiac resynchronization therapy, implantable cardioverter defibrillators, and the recent and promising drug LCZ696, focusing on current indications, unanswered questions, and other relevant aspects.
Collapse
|
17
|
Rodrigues JCL, Rohan S, Dastidar AG, Trickey A, Szantho G, Ratcliffe LEK, Burchell AE, Hart EC, Bucciarelli-Ducci C, Hamilton MCK, Nightingale AK, Paton JFR, Manghat NE, MacIver DH. The Relationship Between Left Ventricular Wall Thickness, Myocardial Shortening, and Ejection Fraction in Hypertensive Heart Disease: Insights From Cardiac Magnetic Resonance Imaging. J Clin Hypertens (Greenwich) 2016; 18:1119-1127. [PMID: 27316563 PMCID: PMC8032154 DOI: 10.1111/jch.12849] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
Hypertensive heart disease is often associated with a preserved left ventricular ejection fraction despite impaired myocardial shortening. The authors investigated this paradox in 55 hypertensive patients (52±13 years, 58% male) and 32 age- and sex-matched normotensive control patients (49±11 years, 56% male) who underwent cardiac magnetic resonance imaging at 1.5T. Long-axis shortening (R=0.62), midwall fractional shortening (R=0.68), and radial strain (R=0.48) all decreased (P<.001) as end-diastolic wall thickness increased. However, absolute wall thickening (defined as end-systolic minus end-diastolic wall thickness) was maintained, despite the reduced myocardial shortening. Absolute wall thickening correlated with ejection fraction (R=0.70, P<.0001). In multiple linear regression analysis, increasing wall thickness by 1 mm independently increased ejection fraction by 3.43 percentage points (adjusted β-coefficient: 3.43 [2.60-4.26], P<.0001). Increasing end-diastolic wall thickness augments ejection fraction through preservation of absolute wall thickening. Left ventricular ejection fraction should not be used in patients with hypertensive heart disease without correction for degree of hypertrophy.
Collapse
Affiliation(s)
- Jonathan C L Rodrigues
- NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Stephen Rohan
- Medical School, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Amardeep Ghosh Dastidar
- NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Adam Trickey
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Gergely Szantho
- NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Laura E K Ratcliffe
- CardioNomics Research Group, Clinical Research and Imaging Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Amy E Burchell
- CardioNomics Research Group, Clinical Research and Imaging Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
- CardioNomics Research Group, Clinical Research and Imaging Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Chiara Bucciarelli-Ducci
- NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mark C K Hamilton
- NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Angus K Nightingale
- CardioNomics Research Group, Clinical Research and Imaging Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
- CardioNomics Research Group, Clinical Research and Imaging Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Nathan E Manghat
- NIHR Bristol Cardiovascular Biomedical Research Unit, Cardiac Magnetic Resonance Department Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - David H MacIver
- Medical School, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
- Department of Cardiology, Musgrove Park Hospital, Taunton, UK.
- Biological Physics Group School of Physics & Astronomy, University of Manchester, Manchester, UK.
| |
Collapse
|
18
|
Agger P, Stephenson RS, Dobrzynski H, Atkinson A, Iaizzo PA, Anderson RH, Jarvis JC, Allan SL, Partridge JB, Zhao J, Zhang H, MacIver DH. Insights from echocardiography, magnetic resonance imaging, and microcomputed tomography relative to the mid-myocardial left ventricular echogenic zone. Echocardiography 2016; 33:1546-1556. [DOI: 10.1111/echo.13324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Peter Agger
- Department of Cardiothoracic and Vascular Surgery; Deptartment of Clinical Medicine; Aarhus University Hospital; Aarhus Denmark
| | - Robert S. Stephenson
- Research Institute for Sport and Exercise Sciences; Liverpool John Moores University; Liverpool United Kingdom
- School of Dentistry; The University of Central Lancashire; Preston United Kingdom
| | - Halina Dobrzynski
- School of Medicine; University of Manchester; Manchester United Kingdom
| | - Andrew Atkinson
- School of Medicine; University of Manchester; Manchester United Kingdom
| | - Paul A. Iaizzo
- Institute for Engineering in Medicine; Department of Surgery; University of Minnesota; Minneapolis Minnesota
| | - Robert H. Anderson
- Institute of Genetic Medicine; Newcastle University; Newcastle Upon Tyne United Kingdom
- Division of Biomedical Sciences; University College London; London United Kingdom
| | - Jonathan C. Jarvis
- Research Institute for Sport and Exercise Sciences; Liverpool John Moores University; Liverpool United Kingdom
| | - Sarah L. Allan
- Department of Cardiology; Taunton & Somerset Hospital; Taunton United Kingdom
| | - John B. Partridge
- Eurobodalla Unit; Rural Clinical School of the ANU College of Medicine, Biology & Environment; Batemans Bay NSW Australia
| | - Jichao Zhao
- Auckland Bioengineering Institute; University of Auckland; Auckland New Zealand
| | - Henggui Zhang
- Biological Physics Group; School of Astronomy and Physics; University of Manchester; Manchester United Kingdom
| | - David H. MacIver
- Department of Cardiology; Taunton & Somerset Hospital; Taunton United Kingdom
- Biological Physics Group; School of Astronomy and Physics; University of Manchester; Manchester United Kingdom
| |
Collapse
|
19
|
MacIver DH, Adeniran I, MacIver IR, Revell A, Zhang H. Physiological mechanisms of pulmonary hypertension. Am Heart J 2016; 180:1-11. [PMID: 27659877 DOI: 10.1016/j.ahj.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
Pulmonary hypertension is usually related to obstruction of pulmonary blood flow at the level of the pulmonary arteries (eg, pulmonary embolus), pulmonary arterioles (idiopathic pulmonary hypertension), pulmonary veins (pulmonary venoocclusive disease) or mitral valve (mitral stenosis and regurgitation). Pulmonary hypertension is also observed in heart failure due to left ventricle myocardial diseases regardless of the ejection fraction. Pulmonary hypertension is often regarded as a passive response to the obstruction to pulmonary flow. We review established fluid dynamics and physiology and discuss the mechanisms underlying pulmonary hypertension. The important role that the right ventricle plays in the development and maintenance of pulmonary hypertension is discussed. We use principles of thermodynamics and discuss a potential common mechanism for a number of disease states, including pulmonary edema, through adding pressure energy to the pulmonary circulation.
Collapse
Affiliation(s)
- David H MacIver
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, United Kingdom; Department of Cardiology, Taunton & Somerset Hospital, Musgrove Park, Taunton, United Kingdom; Medical Education, University of Bristol, Senate House, Tyndall Avenue, Bristol, United Kingdom.
| | - Ismail Adeniran
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, United Kingdom
| | - Iain R MacIver
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, United Kingdom
| | - Alistair Revell
- Modelling & Simulation Centre, School of Mechanical, Aerospace & Civil Engineering, University of Manchester, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Contractile Dysfunction in Sarcomeric Hypertrophic Cardiomyopathy. J Card Fail 2016; 22:731-7. [DOI: 10.1016/j.cardfail.2016.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/06/2016] [Accepted: 03/18/2016] [Indexed: 12/29/2022]
|
21
|
van der Velde AR, Meijers WC, van den Heuvel ER, Bakker SJ, van Gilst WH, van der Harst P, Hillege H, de Boer RA. Determinants of temporal changes in galectin-3 level in the general population: Data of PREVEND. Int J Cardiol 2016; 222:385-390. [PMID: 27505321 DOI: 10.1016/j.ijcard.2016.07.241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND High baseline galectin-3 levels are associated with increased risk for adverse cardiovascular outcomes in the general population, but determinants of changes in galectin-3 levels over time have not been established. Therefore, we aimed to identify determinants of (temporal) change in galectin-3 levels. METHODS Galectin-3 plasma levels were measured in a large community based cohort (PREVEND study) at 3 different time points: at baseline, after ~4 and ~9years. The association of baseline clinical and biochemical factors and (temporal) changes in galectin-3 level was assessed using multivariable mixed-effects regression modeling. RESULTS In 4355 subjects, galectin-3 plasma levels were available at all time points (mean age: 48±12years; 50% female). Median galectin-3 level at baseline was 10.7 [8.9-12.7] ng/mL which gradually increased to 11.5 [9.4-14.3] ng/mL after ~9years. Using mixed-effects regression modeling, we first validated as independent determinants of baseline circulating galectin-3: eGFR (chi square (χ(2)):210.27, p<0.0001), gender (χ(2):43.85; p<0.0001), BMI (χ(2):19.68, p=0.0001), NT-proBNP (χ(2):18.76, p=0.0001) and serum (total) cholesterol (χ(2):8.63, p=0.01). Furthermore, we identified urinary albumin excretion (χ(2):34.03, p-value: <0.0001) and systolic blood pressure (χ(2):16.81, p=0.002) as independent determinants of temporal changes of galectin-3. CONCLUSIONS In the general population, urinary albumin excretion >30mg/24h and systolic blood pressure >170mmHg were identified as significant determinants of dynamic increases in galectin-3 levels over time. These results implicate that treatment of high blood pressure might be effective to prevent increasing galectin-3 levels and its associated conditions.
Collapse
Affiliation(s)
- A Rogier van der Velde
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Wouter C Meijers
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Edwin R van den Heuvel
- Eindhoven University of Technology, Department of Mathematics and Computer Science, Eindhoven, The Netherlands
| | - Stephan J Bakker
- University of Groningen, University Medical Center Groningen, Department of Nephrology, Groningen, The Netherlands
| | - Wiek H van Gilst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Hans Hillege
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands.
| |
Collapse
|
22
|
MacIver DH, Adeniran I, Zhang H. Left ventricular ejection fraction is determined by both global myocardial strain and wall thickness. IJC HEART & VASCULATURE 2015; 7:113-118. [PMID: 28785658 PMCID: PMC5497228 DOI: 10.1016/j.ijcha.2015.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/08/2014] [Accepted: 03/31/2015] [Indexed: 01/13/2023]
Abstract
Objectives The purpose of this study was to determine the mathematical relationship between left ventricular ejection fraction and global myocardial strain. A reduction in myocardial strain would be expected to cause a fall in ejection fraction. However, there is abundant evidence that abnormalities of myocardial strain can occur with a normal ejection fraction. Explanations such as a compensatory increase in radial or circumferential strain are not supported by clinical studies. We set out to determine the biomechanical relationship between ejection fraction, wall thickness and global myocardial strain. Methods The study used an established abstract model of left ventricular contraction to examine the effect of global myocardial strain and wall thickness on ejection fraction. Equations for the relationship between ejection fraction, wall thickness and myocardial strain were obtained using curve fitting methods. Results The mathematical relationship between ejection fraction, ventricular wall thickness and myocardial strain was derived as follows: φ = e(0.14Ln(ε) + 0.06)ω + (0.9Ln(ε) + 1.2), where φ is ejection fraction (%), ω is wall thickness (cm) and ε is myocardial strain (−%). Conclusion The findings of this study explain the coexistence of reduced global myocardial strain and normal ejection fraction seen in clinical observational studies. Our understanding of the pathophysiological processes in heart failure and associated conditions is substantially enhanced. These results provide a much better insight into the biophysical inter-relationship between myocardial strain and ejection fraction. This improved understanding provides an essential foundation for the design and interpretation of future clinical mechanistic and prognostic studies. Ejection fraction has a limited value in predicting mortality and functional capacity. Myocardial mechanics including the relationship between myocardial strain and ejection fraction are currently poorly understood. We showed that there is biophysical relationship between end-diastolic wall thickness, myocardial strain and ejection fraction. Such a relationship explains the poor correlation of ejection fraction with prognosis and functional capacity. The study provides the foundation for determining the relationship between ventricular hypertrophy, ejection fraction and prognosis. words
Collapse
Affiliation(s)
- David H MacIver
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK.,Department of Cardiology, Taunton & Somerset Hospital, Musgrove Park, Taunton, UK.,Medical Education, University of Bristol, Senate House, Tyndall Avenue, Bristol BS8 1TH, UK
| | - Ismail Adeniran
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
MacIver DH, Clark AL. The vital role of the right ventricle in the pathogenesis of acute pulmonary edema. Am J Cardiol 2015; 115:992-1000. [PMID: 25697920 DOI: 10.1016/j.amjcard.2015.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/19/2022]
Abstract
The development of acute pulmonary edema involves a complex interplay between the capillary hydrostatic, interstitial hydrostatic, and oncotic pressures and the capillary permeability. We review the pathophysiological processes involved and illustrate the concepts in a number of common clinical situations including heart failure with normal and reduced ejection fractions, mitral regurgitation, and arrhythmias. We also describe other rarer causes including exercise, swimming, and diving-induced acute pulmonary edema. We suggest a unifying framework in which the critical abnormality is a mismatch or imbalance between the right and left ventricular stroke volumes. In conclusion, we hypothesize that increased right ventricular contraction is an important contributor to the sudden increase in capillary hydrostatic pressure, and therefore, a central mechanism involved in the development of alveolar edema.
Collapse
Affiliation(s)
- David H MacIver
- Department of Cardiology, Taunton and Somerset Hospital, Taunton, United Kingdom; Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom; Medical Education, University of Bristol, Bristol, United Kingdom.
| | - Andrew L Clark
- Department of Cardiology, Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, United Kingdom
| |
Collapse
|
24
|
Salles TA, dos Santos L, Barauna VG, Girardi ACC. Potential role of dipeptidyl peptidase IV in the pathophysiology of heart failure. Int J Mol Sci 2015; 16:4226-49. [PMID: 25690036 PMCID: PMC4346954 DOI: 10.3390/ijms16024226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
Dipeptidyl peptidase IV (DPPIV) is a widely expressed multifunctional serine peptidase that exists as a membrane-anchored cell surface protein or in a soluble form in the plasma and other body fluids. Numerous substrates are cleaved at the penultimate amino acid by DPPIV, including glucagon-like peptide-1 (GLP-1), brain natriuretic peptide (BNP) and stromal cell-derived factor-1 (SDF-α), all of which play important roles in the cardiovascular system. In this regard, recent reports have documented that circulating DPPIV activity correlates with poorer cardiovascular outcomes in human and experimental heart failure (HF). Moreover, emerging evidence indicates that DPPIV inhibitors exert cardioprotective and renoprotective actions in a variety of experimental models of cardiac dysfunction. On the other hand, conflicting results have been found when translating these promising findings from preclinical animal models to clinical therapy. In this review, we discuss how DPPIV might be involved in the cardio-renal axis in HF. In addition, the potential role for DPPIV inhibitors in ameliorating heart disease is revised, focusing on the effects of the main DPPIV substrates on cardiac remodeling and renal handling of salt and water.
Collapse
Affiliation(s)
- Thiago A Salles
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| | - Leonardo dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Valério G Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria 29043-900, ES, Brazil.
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo 05403-000, SP, Brazil.
| |
Collapse
|
25
|
Chen H, Chan JYW, Yang X, Wyman IW, Bardelang D, Macartney DH, Lee SMY, Wang R. Developmental and organ-specific toxicity of cucurbit[7]uril: in vivo study on zebrafish models. RSC Adv 2015. [DOI: 10.1039/c5ra04335b] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The macrocyclic Cucurbit[7]uril was evaluated for its in vivo toxicity profile, including developmental toxicity and organ-specific toxicities using zebrafish models.
Collapse
Affiliation(s)
- Huanxian Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Judy Y. W. Chan
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Xue Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ian W. Wyman
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | - David Bardelang
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire
- UMR 7273
- 13397 Marseille
| | | | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
26
|
Casey H, Dastidar AG, MacIver D. Swimming-induced pulmonary oedema in two triathletes: a novel pathophysiological explanation. J R Soc Med 2014; 107:450-2. [PMID: 25341446 DOI: 10.1177/0141076814543214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Swimming-induced pulmonary oedema/edema (SIPO/SIPE) is likely to become commoner with increasing popularity of endurance sports meaning an increased awareness by participants, organisers and medical personnel is important, especially as individuals are at increased risk of future life threatening episodes and drowning if an accurate diagnosis and appropriate advice are not given. The most important risk factors we identified are a highly trained individual, competitive exercise, hypertension and cold environment.
Collapse
Affiliation(s)
- Helen Casey
- Department of Cardiology, Musgrove Park Hospital, Taunton TA1 5DA, Somerset, UK
| | | | - David MacIver
- Department of Cardiology, Musgrove Park Hospital, Taunton TA1 5DA, Somerset, UK
| |
Collapse
|
27
|
MacIver DH. A new understanding and definition of non-compaction cardiomyopathy using analysis of left ventricular wall mechanics and stresses. Int J Cardiol 2014; 174:819-21. [DOI: 10.1016/j.ijcard.2014.04.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/12/2014] [Indexed: 12/31/2022]
|
28
|
Bagate F, Mansencal N, Leprince P, Delobelle J, Arslan M, Dubourg O. Febrile unilateral pulmonary edema: a potential misdiagnosis. Int J Cardiol 2014; 174:867-8. [PMID: 24814544 DOI: 10.1016/j.ijcard.2014.04.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
Affiliation(s)
- François Bagate
- Pôle V Thorax Vasculaire Digestif Métabolisme, Université de Versailles-Saint Quentin, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de référence des Maladies Cardiaques Héréditaires, Cardiology Department, Boulogne-Billancourt, France
| | - Nicolas Mansencal
- Pôle V Thorax Vasculaire Digestif Métabolisme, Université de Versailles-Saint Quentin, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de référence des Maladies Cardiaques Héréditaires, Cardiology Department, Boulogne-Billancourt, France.
| | - Pascal Leprince
- Division of Thoracic and Cardio-Vascular Surgery, Institute of Cardiology, Pierre and Marie Curie University, Paris VI, AP-HP, Pitié-Salpetrière Hospital, Paris, France
| | - Julien Delobelle
- Pôle V Thorax Vasculaire Digestif Métabolisme, Université de Versailles-Saint Quentin, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de référence des Maladies Cardiaques Héréditaires, Cardiology Department, Boulogne-Billancourt, France
| | - Maria Arslan
- Pôle V Thorax Vasculaire Digestif Métabolisme, Université de Versailles-Saint Quentin, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de référence des Maladies Cardiaques Héréditaires, Cardiology Department, Boulogne-Billancourt, France
| | - Olivier Dubourg
- Pôle V Thorax Vasculaire Digestif Métabolisme, Université de Versailles-Saint Quentin, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de référence des Maladies Cardiaques Héréditaires, Cardiology Department, Boulogne-Billancourt, France
| |
Collapse
|