1
|
Paracrine-mediated rejuvenation of aged mesenchymal stem cells is associated with downregulation of the autophagy-lysosomal pathway. NPJ AGING 2022; 8:10. [PMID: 35927427 PMCID: PMC9293998 DOI: 10.1038/s41514-022-00091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/30/2022] [Indexed: 12/02/2022]
Abstract
Age-related differences in stem-cell potency contribute to variable outcomes in clinical stem cell trials. To help understand the effect of age on stem cell potency, bone marrow-derived mesenchymal stem cells (MSCs) were isolated from young (6 weeks) and old (18–24 months) mice. HUVEC tubule formation (TF) induced by the old and young MSCs and ELISA of conditioned media were compared to one another, and to old MSCs after 7 d in indirect co-culture with young MSCs. Old MSCs induced less TF than did young (1.56 ± 0.11 vs 2.38 ± 0.17, p = 0.0003) and released lower amounts of VEGF (p = 0.009) and IGF1 (p = 0.037). After 7 d in co-culture with young MSCs, TF by the old MSCs significantly improved (to 2.09 ± 0.18 from 1.56 ± 0.11; p = 0.013), and was no longer different compared to TF from young MSCs (2.09 ± 0.18 vs 2.38 ± 0.17; p = 0.27). RNA seq of old MSCs, young MSCs, and old MSCs following co-culture with young MSCs revealed that the age-related differences were broadly modified by co-culture, with the most significant changes associated with lysosomal pathways. These results indicate that the age-associated decreased paracrine-mediated effects of old MSCs are improved following indirect co-culture with young MSC. The observed effect is associated with broad transcriptional modification, suggesting potential targets to both assess and improve the therapeutic potency of stem cells from older patients.
Collapse
|
2
|
Mezu-Ndubuisi OJ, Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr Res 2021; 89:1619-1626. [PMID: 33027803 PMCID: PMC8249239 DOI: 10.1038/s41390-020-01177-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Integrins are heterodimeric transmembrane cell adhesion molecules made up of alpha (α) and beta (β) subunits arranged in numerous dimeric pairings. These complexes have varying affinities to extracellular ligands. Integrins regulate cellular growth, proliferation, migration, signaling, and cytokine activation and release and thereby play important roles in cell proliferation and migration, apoptosis, tissue repair, as well as in all processes critical to inflammation, infection, and angiogenesis. This review presents current evidence from human and animal studies on integrin structure and molecular signaling, with particular emphasis on signal transduction in infants. We have included evidence from our own laboratory studies and from an extensive literature search in databases PubMed, EMBASE, Scopus, and the electronic archives of abstracts presented at the annual meetings of the Pediatric Academic Societies. To avoid bias in identification of existing studies, key words were short-listed prior to the actual search both from anecdotal experience and from PubMed's Medical Subject Heading (MeSH) thesaurus. IMPACT: Integrins are a family of ubiquitous αβ heterodimeric receptors that interact with numerous ligands in physiology and disease. Integrins play a key role in cell proliferation, tissue repair, inflammation, infection, and angiogenesis. This review summarizes current evidence from human and animal studies on integrin structure and molecular signaling and promising role in diseases of inflammation, infection, and angiogenesis in infants. This review shows that integrin receptors and ligands are novel therapeutic targets of clinical interest and hold promise as novel therapeutic targets in the management of several neonatal diseases.
Collapse
Affiliation(s)
- Olachi J. Mezu-Ndubuisi
- grid.14003.360000 0001 2167 3675Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Akhil Maheshwari
- grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
3
|
Lian C, Zhao L, Qiu J, Wang Y, Chen R, Liu Z, Cui J, Zhu X, Wen X, Wang S, Wang J. miR-25-3p promotes endothelial cell angiogenesis in aging mice via TULA-2/SYK/VEGFR-2 downregulation. Aging (Albany NY) 2020; 12:22599-22613. [PMID: 33201836 PMCID: PMC7746355 DOI: 10.18632/aging.103834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
In aging, the regulation of angiogenesis is a dynamic and complex process. We aimed to identify and characterize microRNAs that regulate angiogenesis during aging. We showed that, in response to vascular endothelial senescence, microRNA-25-3p (miR-25-3p) plays the role of an angiogenic microRNA by targeting TULA-2 (T-cell ubiquitin ligand-2)/SYK (spleen tyrosine kinase)/VEGFR-2 (vascular endothelial growth factor receptor 2) signaling in vitro and in vivo. Mechanistic studies demonstrated that miR-25-3p inhibits a TULA-2/SYK/VEGFR-2 signaling pathway in endothelial cells. In old endothelial cells (OECs), upregulation of miR-25-3p inhibited the expression of TULA-2, which caused downregulation of the interaction between TULA-2 and SYK and increased phosphorylation of SYK Y323. The increased SYK Y323 phosphorylation level upregulated the phosphorylation of VEGFR-2 Y1175, which plays a vital role in angiogenesis, while miR-25-3p downregulation in YECs showed opposite effects. Finally, a salvage study showed that miR-25-3p upregulation promoted capillary regeneration and hindlimb blood flow recovery in aging mice with hindlimb ischemia. These findings suggest that miR-25-3p acts as an agonist of TULA-2/SYK/VEGFR-2 and mediates the endothelial cell angiogenesis response, which shows that the miR-25-3p/TULA-2 pathway may be potential therapeutic targets for angiogenesis during aging.
Collapse
Affiliation(s)
- Chong Lian
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Lei Zhao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Jiacong Qiu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Yang Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Rencong Chen
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Zhen Liu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Jin Cui
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Xiaonan Zhu
- Department of Pharmacology Laboratory, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xuejun Wen
- Institute for Engineering and Medicine, Department of Biomedical Engineering, Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Jinsong Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| |
Collapse
|
4
|
Cathepsin K Deficiency Impaired Ischemia-Induced Neovascularization in Aged Mice. Stem Cells Int 2020; 2020:6938620. [PMID: 32676120 PMCID: PMC7346230 DOI: 10.1155/2020/6938620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Aging is a major risk factor for cardiovascular disease. Cysteine protease cathepsin K (CatK) has been implicated in the process of angiogenesis, but the exact roles of individual CatK in vessel formation during aging are poorly understood. Methods and Results To study the putative role of CatK in ischemia-induced angiogenesis, we applied a hindlimb ischemia model to aged wild-type (CatK+/+) and CatK-deficient (CatK−/−) mice. A serial laser Doppler blood-flow analysis revealed that the recovery of the ischemic/normal blood-flow ratio in the aged CatK−/−mice was impaired throughout the follow-up period. On postoperative day 14, CatK deficiency had also impaired capillary formation. CatK deficiency reduced the levels of cleaved Notch1, phospho-Akt, and/or vascular endothelial growth factor (VEGF) proteins in the ischemic muscles and bone marrow-derived c-Kit+ cells. A flow cytometry analysis revealed that CatK deficiency reduced the numbers of endothelial progenitor cell (EPC)-like CD31+/c-Kit+ cells in the peripheral blood as well as the ischemic vasculature. In vitro experiments, CatK−/− impaired bone-derived c-Kit+ cellular functions (migration, invasion, proliferation, and tubulogenesis) in aged mice. Our findings demonstrated that aging impaired the ischemia-induced angiogenesis associated with the reductions of the production and mobilization of CD31+/c-Kit+ cells in mice. Conclusions These findings established that the impairment of ischemia-induced neovascularization in aged CatK−/− mice is due, at least in part, to the reduction of EPC mobilization and the homing of the cells into vasculature that is associated with the impairment of Notch1 signaling activation at advanced ages.
Collapse
|
5
|
Xu W, Yu C, Piao L, Inoue A, Wang H, Meng X, Li X, Cui L, Umegaki H, Shi GP, Murohara T, Kuzuya M, Cheng XW. Cathepsin S-Mediated Negative Regulation of Wnt5a/SC35 Activation Contributes to Ischemia-Induced Neovascularization in Aged Mice. Circ J 2019; 83:2537-2546. [PMID: 31645525 DOI: 10.1253/circj.cj-19-0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
BACKGROUND Given that cathepsin S (CatS) gained attention due to its enzymatic and non-enzymatic functions in signaling, the role of CatS in ischemia-induced angiogenesis of aged mice was explored. METHODS AND RESULTS To study the role of CatS in the decline in aging-related vascular regeneration capacity, a hindlimb ischemia model was applied to aged wild-type (CatS+/+) and CatS-deficient (CatS-/-) mice. CatS-/-mice exhibited impaired blood flow recovery and capillary formation and increased levels of p-insulin receptor substrate-1, Wnt5a, and SC35 proteins and decreased levels of phospho-endothelial nitric oxide synthase (p-eNOS), p-mTOR, p-Akt, p-ERK1/2, p-glycogen synthase kinase-3α/β, and galatin-3 proteins, as well as decreased macrophage infiltration and matrix metalloproteinase-2/-9 activities in the ischemic muscles. In vitro, CatS knockdown altered the levels of these targeted essential molecules for angiogenesis. Together, the results suggested that CatS-/-leads to defective endothelial cell functions and that CatS-/-is associated with decreased circulating endothelial progenitor cell (EPC)-like CD31+/c-Kit+cells. This notion was reinforced by the study finding that pharmacological CatS inhibition led to a declined angiogenic capacity accompanied by increased Wnt5a and SC35 levels and decreased eNOS/Akt-ERK1/2 signaling in response to ischemia. CONCLUSIONS These findings demonstrated that the impairment of ischemia-induced neovascularization in aged CatS-/-mice is due, at least in part, to the attenuation of endothelial cell/EPC functions and/or mobilization associated with Wnt5a/SC35 activation in advanced age.
Collapse
Affiliation(s)
- Wenhu Xu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Chenglin Yu
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Aiko Inoue
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Xiangkun Meng
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Xiang Li
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Lan Cui
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Hiroyuki Umegaki
- Department of Geriatrics, Nagoya University Graduate School of Medicine
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Masafumi Kuzuya
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital
- Department of Geriatrics, Nagoya University Graduate School of Medicine
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine
| |
Collapse
|
6
|
Wang R, Liu L, Liu H, Wu K, Liu Y, Bai L, Wang Q, Qi B, Qi B, Zhang L. Reduced NRF2 expression suppresses endothelial progenitor cell function and induces senescence during aging. Aging (Albany NY) 2019; 11:7021-7035. [PMID: 31494646 PMCID: PMC6756903 DOI: 10.18632/aging.102234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 08/21/2019] [Indexed: 05/25/2023]
Abstract
Aging is associated with an increased risk of cardiovascular disease. Numerical and functional declines in endothelial progenitor cells (EPCs) limit their capacity for endothelial repair and promote the development of cardiovascular disease. We explored the effects of nuclear factor (erythroid-derived 2)-like 2 (NRF2) on EPC activity during aging. Both in vitro and in vivo, the biological functioning of EPCs decreased with aging. The expression of NRF2 and its target genes (Ho-1, Nqo-1 and Trx) also declined with aging, while Nod-like receptor protein 3 (NLRP3) expression increased. Aging was associated with oxidative stress, as evidenced by increased reactive oxygen species and malondialdehyde levels and reduced superoxide dismutase activity. Nrf2 silencing impaired the functioning of EPCs and induced oxidative stress in EPCs from young mice. On the other hand, NRF2 activation in EPCs from aged mice protected these cells against oxidative stress, ameliorated their biological dysfunction and downregulated the NLRP3 inflammasome. These findings suggest NRF2 can prevent the functional damage of EPCs and downregulate the NLRP3 inflammasome through NF-κB signaling.
Collapse
Affiliation(s)
- Ruiyun Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lihua Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxia Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kefei Wu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lijuan Bai
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Benming Qi
- Department of Otorhinolaryngology, First People’s Hospital of Yunnan Province, Kunming, Yunnan 650000, China
| | - Benling Qi
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Lee HP, Wang SW, Wu YC, Tsai CH, Tsai FJ, Chung JG, Huang CY, Yang JS, Hsu YM, Yin MC, Li TM, Tang CH. Glucocerebroside reduces endothelial progenitor cell-induced angiogenesis. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1660623] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products and Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chang-Hai Tsai
- China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Mei-Chin Yin
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Hu J, Wang W, Liu C, Li M, Nice E, Xu H. Receptor tyrosine kinase inhibitor Sunitinib and integrin antagonist peptide HM-3 show similar lipid raft dependent biphasic regulation of tumor angiogenesis and metastasis. J Exp Clin Cancer Res 2019; 38:381. [PMID: 31462260 PMCID: PMC6714448 DOI: 10.1186/s13046-019-1324-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anti-angiogenesis remains an attractive strategy for cancer therapy. Some anti-angiogenic reagents have bell-shape dose-response curves with higher than the effective doses yielding lower anti-angiogenic effects. In this study, two different types of anti-angiogenic reagents, a receptor tyrosine kinase inhibitor Sunitinib and an integrin antagonist peptide HM-3, were selected and their effects on tumor angiogenesis and metastasis were compared. The involved molecular mechanisms were investigated. METHODS The effect of high dose Sunitinib and HM-3 on tumor angiogenesis and metastasis was investigated with two animal models: metastasis of B16F10 cells in syngeneic mice and metastasis of human MDA-MB-231 cells in nude mice. Furthermore, mechanistic studies were performed with cell migration and invasion assays and with biochemical pull-down assays of intracellular RhoGTPases. Distribution of integrin αvβ3, α5β1, VEGFR2 and the complex of integrin αvβ3 and VEGFR2 inside or outside of lipid rafts was detected with lipid raft isolation and Western-blot analysis. RESULTS Both Sunitinib and HM-3 showed a bell-shape dose-response curve on tumor angiogenesis and metastasis in both animal models. The effects of Sunitinib and HM-3 on endothelial cell and tumor cell proliferation and migration were characterized. Activation of intracellular RhoGTPases and actin stress fiber formation in endothelial and cancer cells following Sunitinib and HM-3 treatment correlated with cell migration analysis. Mechanistic studies confirmed that HM-3 and Sunitinib regulated distribution of integrin αvβ3, α5β1, VEGFR2 and αvβ3-VEGFR2 complexes, both inside and outside of the lipid raft regions to regulate endothelial cell migration and intracellular RhoGTPase activities. CONCLUSIONS These data confirmed that a general non-linear dose-effect relationship for these anti-angiogenic drugs exists and their mechanisms are correlative. It also suggests that the effective dose of an anti-angiogenic drug may have to be strictly defined to achieve its optimal clinical effects.
Collapse
Affiliation(s)
- Jialiang Hu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| | - Wenjing Wang
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
| | - Chen Liu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| | - Mengwei Li
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Hanmei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People’s Republic of China
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Nanjing, 211198 People’s Republic of China
| |
Collapse
|
9
|
Zhang B, Kasoju N, Li Q, Soliman E, Yang A, Cui Z, Ma J, Wang H, Ye H. Culture surfaces induce hypoxia-regulated genes in human mesenchymal stromal cells. ACTA ACUST UNITED AC 2019; 14:035012. [PMID: 30849767 DOI: 10.1088/1748-605x/ab0e61] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Culturing human Mesenchymal stromal cells (hMSCs) in vitro in hypoxic conditions resulted in reduced senescence, enhanced pluripotency and altered proliferation rate. It has been known that in vitro hypoxia affects expression of cell surface proteins. However, the impact of culture surfaces on the hypoxia-regulated genes (HRG) have not yet been reported. This study utilized Next-Generation sequencing to analyse the changes in the gene expression levels of HRG for hMSCs cultured on different culture surfaces. The samples, which were cultured on four different synthesized surfaces (treatments) and tissue culture plate (control), resulted in a difference in growth rate. The sequencing results revealed that the transcription of a number of key genes involved in regulating hypoxic functions were significantly altered, including HIF2A, a marker for potency, differentiation, and various cellular functions. Significant alternations in the expression levels of previously reported oxygen-sensitive surface proteins were detected in this study, some of which closely correlate with the expression levels of HIF2A. Our analysis of the hMSCs transcriptome and HRG mapped out a list of genes encoding surface proteins which may directly regulate or be regulated by HIF2A. The findings from this study showed that culture surfaces have an impact on regulating the expression profile of HRG. Therefore, novel culture surfaces may be designed to selectively activate HIF2A and other HRG and pathways under in vitro normoxia. The understanding of the crosstalk between the regulating genes of hypoxia and culture surfaces may be utilized to strengthen desired hypoxic functions.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom. Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Smykiewicz P, Segiet A, Keag M, Żera T. Proinflammatory cytokines and ageing of the cardiovascular-renal system. Mech Ageing Dev 2018; 175:35-45. [DOI: 10.1016/j.mad.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
|
11
|
Piao L, Yu C, Xu W, Inoue A, Shibata R, Li X, Nan Y, Zhao G, Wang H, Meng X, Lei Y, Goto H, Ouchi N, Murohara T, Kuzuya M, Cheng XW. Adiponectin/AdiopR1 signal inactivation contributes to impaired angiogenesis in mice of advanced age. Int J Cardiol 2018; 267:150-155. [DOI: 10.1016/j.ijcard.2018.05.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
|
12
|
Sawada N, Arany Z. Metabolic Regulation of Angiogenesis in Diabetes and Aging. Physiology (Bethesda) 2018; 32:290-307. [PMID: 28615313 DOI: 10.1152/physiol.00039.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Impaired angiogenesis and endothelial dysfunction are hallmarks of diabetes and aging. Clinical efforts at promoting angiogenesis have largely focused on growth factor pathways, with mixed results. Recently, a new repertoire of endothelial intracellular molecules critical to endothelial metabolism has emerged as playing an important role in regulating angiogenesis. This review thus focuses on the emerging importance and therapeutic potential of these proteins and of endothelial bioenergetics in diabetes and aging.
Collapse
Affiliation(s)
- Naoki Sawada
- Department of Cell Biology and Molecular Medicine, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey.,Department of Cell Biology and Molecular Medicine, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey.,Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; and
| | - Zolt Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Wang F, Feng J, Yang Y, Liu J, Liu M, Wang Z, Pei H, Wei Y, Li H. The Chinese herbal formula Fuzheng Quxie Decoction attenuates cognitive impairment and protects cerebrovascular function in SAMP8 mice. Neuropsychiatr Dis Treat 2018; 14:3037-3051. [PMID: 30519025 PMCID: PMC6233692 DOI: 10.2147/ndt.s175484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE This study was designed to explore the underlying mechanism of action for a Fuzheng Quxie Decoction (FQD) in Alzheimer's disease (AD), to validate its neuroprotective effects, and to provide experimental support for its predicted mechanism of action. METHODS An integrative approach to network pharmacology was performed to predict the mechanism of action for treatment of AD with FQD. The predicted mechanism was validated in SAMP8 mice. RESULTS With predicted putative FQD targets and a collection of AD-related genes, 245 possible regulatory targets of FQD were identified for the treatment of AD. Pathway-enrichment analysis for the possible regulatory targets indicated that vascular endothelial growth factor (VEGF) and VEGF-receptor signaling were pivotal in the treatment of AD with FQD. In vivo experiments confirmed the neuroprotective effect and the predicted mechanism of action for treatment of AD with FQD. CONCLUSION This study contributes to an understanding of the neuroprotective effect of FQD and its potential mechanism of action for the treatment of AD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Jianchao Feng
- Intensive Care Unit, Heze Hospital of Traditional Chinese Medicine, Heze, Shandong, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Jiangang Liu
- Department of Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China, ;
| |
Collapse
|
14
|
[Molecular mechanism of sarcopenia]. Nihon Ronen Igakkai Zasshi 2018; 55:13-24. [PMID: 29503355 DOI: 10.3143/geriatrics.55.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
15
|
Piao L, Zhao G, Zhu E, Inoue A, Shibata R, Lei Y, Hu L, Yu C, Yang G, Wu H, Xu W, Okumura K, Ouchi N, Murohara T, Kuzuya M, Cheng XW. Chronic Psychological Stress Accelerates Vascular Senescence and Impairs Ischemia-Induced Neovascularization: The Role of Dipeptidyl Peptidase-4/Glucagon-Like Peptide-1-Adiponectin Axis. J Am Heart Assoc 2017; 6:e006421. [PMID: 28963101 PMCID: PMC5721852 DOI: 10.1161/jaha.117.006421] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to psychosocial stress is a risk factor for cardiovascular disease, including vascular aging and regeneration. Given that dipeptidyl peptidase-4 (DPP4) regulates several intracellular signaling pathways associated with the glucagon-like peptide-1 (GLP-1) metabolism, we investigated the role of DPP4/GLP-1 axis in vascular senescence and ischemia-induced neovascularization in mice under chronic stress, with a special focus on adiponectin -mediated peroxisome proliferator activated receptor-γ/its co-activator 1α (PGC-1α) activation. METHODS AND RESULTS Seven-week-old mice subjected to restraint stress for 4 weeks underwent ischemic surgery and were kept under immobilization stress conditions. Mice that underwent ischemic surgery alone served as controls. We demonstrated that stress impaired the recovery of the ischemic/normal blood-flow ratio throughout the follow-up period and capillary formation. On postoperative day 4, stressed mice showed the following: increased levels of plasma and ischemic muscle DPP4 and decreased levels of GLP-1 and adiponectin in plasma and phospho-AMP-activated protein kinase α (p-AMPKα), vascular endothelial growth factor, peroxisome proliferator activated receptor-γ, PGC-1α, and Sirt1 proteins and insulin receptor 1 and glucose transporter 4 genes in the ischemic tissues, vessels, and/or adipose tissues and numbers of circulating endothelial CD31+/c-Kit+ progenitor cells. Chronic stress accelerated aortic senescence and impaired aortic endothelial sprouting. DPP4 inhibition and GLP-1 receptor activation improved these changes; these benefits were abrogated by adiponectin blocking and genetic depletion. CONCLUSIONS These results indicate that the DPP4/GLP-1-adiponectin axis is a novel therapeutic target for the treatment of vascular aging and cardiovascular disease under chronic stress conditions.
Collapse
MESH Headings
- Adiponectin/metabolism
- Animals
- Cells, Cultured
- Cellular Senescence
- Chronic Disease
- Dipeptidyl Peptidase 4/deficiency
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl Peptidase 4/metabolism
- Disease Models, Animal
- Endothelial Progenitor Cells/enzymology
- Endothelial Progenitor Cells/pathology
- Glucagon-Like Peptide 1/metabolism
- Ischemia/enzymology
- Ischemia/genetics
- Ischemia/pathology
- Ischemia/physiopathology
- Male
- Mice, Inbred C57BL
- Neovascularization, Physiologic
- PPAR gamma/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Proteolysis
- Rats, Inbred F344
- Rats, Transgenic
- Receptors, Adiponectin/metabolism
- Signal Transduction
- Stress, Psychological/enzymology
- Stress, Psychological/genetics
- Stress, Psychological/pathology
- Stress, Psychological/physiopathology
- Time Factors
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Limei Piao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Guangxian Zhao
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Enbo Zhu
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yanna Lei
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Public Health, Guilin Medical College, Guilin, Guangxi Province, China
| | - Chenglin Yu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Guang Yang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Hongxian Wu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cardiology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhu Xu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Kenji Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Cardiology and ICU, Yanbian University Hospital, Yanji, Jilin Province, China
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
16
|
Inoue A, Cheng XW, Huang Z, Hu L, Kikuchi R, Jiang H, Piao L, Sasaki T, Itakura K, Wu H, Zhao G, Lei Y, Yang G, Zhu E, Li X, Sato K, Koike T, Kuzuya M. Exercise restores muscle stem cell mobilization, regenerative capacity and muscle metabolic alterations via adiponectin/AdipoR1 activation in SAMP10 mice. J Cachexia Sarcopenia Muscle 2017; 8:370-385. [PMID: 27897419 PMCID: PMC5476856 DOI: 10.1002/jcsm.12166] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/08/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Exercise train (ET) stimulates muscle response in pathological conditions, including aging. The molecular mechanisms by which exercise improves impaired adiponectin/adiponectin receptor 1 (AdipoR1)-related muscle actions associated with aging are poorly understood. Here we observed that in a senescence-accelerated mouse prone 10 (SAMP10) model, long-term ET modulated muscle-regenerative actions. METHODS 25-week-old male SAMP10 mice were randomly assigned to the control and the ET (45 min/time, 3/week) groups for 4 months. Mice that were maintained in a sedentary condition served controls. RESULTS ET ameliorated aging-related muscle changes in microstructure, mitochondria, and performance. The amounts of proteins or mRNAs for p-AMPKα, p-Akt, p-ERK1/2, p-mTOR, Bcl-XL, p-FoxO3, peroxisome proliferators-activated receptor-γ coactivator, adiponectin receptor1 (adpoR1), and cytochrome c oxidase-IV, and the numbers of CD34+ /integrin-α7+ muscle stem cells (MuSCs) and proliferating cells in the muscles and bone-marrow were enhanced by ET, whereas the levels of p-GSK-3α and gp91phox proteins and apoptotic cells were reduced by ET. The ET also resulted in increased levels of plasma adiponectin and the numbers of bone-marrow (BM)-derived circulating CD34+ /integrin-α7+ MuSCs and their functions. Integrin-α7+ MuSCs of exercised mice had improved changes of those beneficial molecules. These ET-mediated aged muscle benefits were diminished by adiponectin and AdipoR1 blocking as well as AMPK inhibition. Finally, recombinant mouse adiponectin enhanced AMPK and mTOR phosphorylations in BM-derived integrin-α7+ cells. CONCLUSIONS These findings suggest that ET can improve aging-related impairments of BM-derived MuSC regenerative capacity and muscle metabolic alterations via an AMPK-dependent mechanism that is mediated by an adiponectin/AdipoR1 axis in SAMP10 mice.
Collapse
Affiliation(s)
- Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China.,Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Fukuoka, Japan
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital, Nagoya, 466-8550, Aichiken, Japan
| | - Haiying Jiang
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji, 133000, Jilin PR., China
| | - Limei Piao
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Shizuokaken, Japan
| | - Kohji Itakura
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Hongxian Wu
- Department of Sport Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Guangxian Zhao
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Yanna Lei
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Guang Yang
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Enbo Zhu
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Xiang Li
- Department of Cardiology and ICU, Yanbian University Hospital, Yanjin, 133000, Jilin PR., China
| | - Kohji Sato
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Shizuokaken, Japan
| | - Teruhiko Koike
- Department of Sport Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan.,Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Aichiken, Japan
| |
Collapse
|
17
|
Zeng YC, Peng LS, Zou L, Huang SF, Xie Y, Mu GP, Zeng XH, Zhou XL, Zeng YC. Protective effect and mechanism of lycopene on endothelial progenitor cells (EPCs) from type 2 diabetes mellitus rats. Biomed Pharmacother 2017; 92:86-94. [PMID: 28531804 DOI: 10.1016/j.biopha.2017.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
Endothelial progenitor cells (EPCs), widely existing in bone marrow and peripheral blood, are involved in the repair of injured vascular endothelium and angiogenesis which are important to diabetic mellitus (DM) patients with vascular complications. The number and the function of EPCs are related to the advanced glycation end products (AGEs) generated in DM patients. Lycopene (Lyc) is an identified natural antioxidant that protects EPCs under the microenvironment of AGEs from damage. However, the underlying mechanism remains unclear. To investigate the effect of Lyc on EPCs, we isolated EPCs from DM rat bone marrow and determined cell proliferation, cell cycle,apoptosis and autophagy of EPCs. The present study showed that 10μg/mL Lyc improved cell proliferation and had low cytotoxicity in the presence of AGEs. In addition, Lyc rescued S phase of the cell cycle arrest, reduced apoptosis rate and decreased autophagic reaction including ROS and mitochondrial membrane potential (MMP) of EPCs. Moreover, Lyc combined use of autophagy inhibitors, 3-MA, had better protective effects. Taken together, our data suggests that Lyc promotes EPCs survival and protect EPCs from apoptosis and oxidative autophagy induced by AGEs, further remaining the number and function of EPCs. This study provides new insights into Lyc protective mechanism of AGEs-induced oxidative autophagy in EPCs from DM patients and offers a new therapy for DM vascular complications.
Collapse
Affiliation(s)
- Yao-Chi Zeng
- Department of Clinical Nutrition, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Li-Sheng Peng
- Department of Science and education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Liyuan Zou
- Prevention and Health Care Department, The Third Affiliated Hospital, Sun Yat-sen University,Tian-he Road, Guangzhou 510630, China
| | - Shu-Fen Huang
- Department of Health Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Yi Xie
- Department of Medical Quality Management, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Gui-Ping Mu
- Department of Central Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xue-Hui Zeng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xi-Lin Zhou
- Department of Clinical Nutrition, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Ya-Chi Zeng
- Department of Clinical Nutrition, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| |
Collapse
|
18
|
Abdelsaid M, Coucha M, Hafez S, Yasir A, Johnson MH, Ergul A. Enhanced VEGF signalling mediates cerebral neovascularisation via downregulation of guidance protein ROBO4 in a rat model of diabetes. Diabetologia 2017; 60:740-750. [PMID: 28116460 PMCID: PMC5342922 DOI: 10.1007/s00125-017-4214-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/31/2016] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Diabetes promotes cerebral neovascularisation via increased vascular endothelial growth factor (VEGF) angiogenic signalling. Roundabout-4 (ROBO4) protein is an endogenous inhibitor of VEGF signalling that stabilises the vasculature. Yet, how diabetes affects ROBO4 function remains unknown. We hypothesised that increased VEGF signalling in diabetes decreases ROBO4 expression and function via binding of ROBO4 with VEGF-activated β3 integrin and that restoration of ROBO4 expression prevents/repairs cerebral neovascularisation in diabetes. METHODS ROBO4 protein expression in a rat model of type 2 diabetes (Goto-Kakizaki [GK] rats) was examined by western blotting and immunohistochemistry. ROBO4 was locally overexpressed in the brain and in primary brain microvascular endothelial cells (BMVECs). GK rats were treated with SKLB1002, a selective VEGF receptor-2 (VEGFR-2) antagonist. Cerebrovascular neovascularisation indices were determined using a FITC vascular space-filling model. Immunoprecipitation was used to determine ROBO4-β3 integrin interaction. RESULTS ROBO4 expression was significantly decreased in the cerebral vasculature as well as in BMVECs in diabetes (p < 0.05). Silencing Robo4 increased the angiogenic properties of control BMVECs (p < 0.05). In vivo and in vitro overexpression of ROBO4 inhibited VEGF-induced angiogenic signalling and increased vessel maturation. Inhibition of VEGF signalling using SKLB1002 increased ROBO4 expression (p < 0.05) and reduced neovascularisation indices (p < 0.05). Furthermore, SKLB1002 significantly decreased ROBO4-β3 integrin interaction in diabetes (p < 0.05). CONCLUSIONS/INTERPRETATION Our study identifies the restoration of ROBO4 and inhibition of VEGF signalling as treatment strategies for diabetes-induced cerebral neovascularisation.
Collapse
Affiliation(s)
- Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA.
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA.
| | - Maha Coucha
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| | - Sherif Hafez
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| | - Abdul Yasir
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| | | | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA, USA
- Department of Physiology, Augusta University, 1120 15th Street CA-3135, Augusta, GA, 30912, USA
| |
Collapse
|
19
|
Amano H, Kato S, Ito Y, Eshima K, Ogawa F, Takahashi R, Sekiguchi K, Tamaki H, Sakagami H, Shibuya M, Majima M. The Role of Vascular Endothelial Growth Factor Receptor-1 Signaling in the Recovery from Ischemia. PLoS One 2015; 10:e0131445. [PMID: 26133989 PMCID: PMC4489890 DOI: 10.1371/journal.pone.0131445] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/02/2015] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is one of the most potent angiogenesis stimulators. VEGF binds to VEGF receptor 1 (VEGFR1), inducing angiogenesis through the receptor's tyrosine kinase domain (TK), but the mechanism is not well understood. We investigated the role of VEGFR1 tyrosine kinase signaling in angiogenesis using the ischemic hind limb model. Relative to control mice, blood flow recovery was significantly impaired in mice treated with VEGFA-neutralizing antibody. VEGFR1 tyrosine kinase knockout mice (TK-/-) had delayed blood flow recovery from ischemia and impaired angiogenesis, and this phenotype was unaffected by treatment with a VEGFR2 inhibitor. Compared to wild type mice (WT), TK-/- mice had no change in the plasma level of VEGF, but the plasma levels of stromal-derived cell factor 1 (SDF-1) and stem cell factor, as well as the bone marrow (BM) level of pro-matrix metalloproteinase-9 (pro-MMP-9), were significantly reduced. The recruitment of cells expressing VEGFR1 and C-X-C chemokine receptor type 4 (CXCR4) into peripheral blood and ischemic muscles was also suppressed. Furthermore, WT transplanted with TK-/- BM significantly impaired blood flow recovery more than WT transplanted with WT BM. These results suggest that VEGFR1-TK signaling facilitates angiogenesis by recruiting CXCR4+VEGFR1+ cells from BM.
Collapse
Affiliation(s)
- Hideki Amano
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Shintaro Kato
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshiya Ito
- Departments of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Koji Eshima
- Departments of Immunology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Fumihiro Ogawa
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ryo Takahashi
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kazuki Sekiguchi
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hideaki Tamaki
- Departments of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Sakagami
- Departments of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Masabumi Shibuya
- Gakubunkan Institute of Physiology and Medicine, Jobu University, Gunma, Japan
| | - Masataka Majima
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
20
|
Glycation of vitronectin inhibits VEGF-induced angiogenesis by uncoupling VEGF receptor-2-αvβ3 integrin cross-talk. Cell Death Dis 2015; 6:e1796. [PMID: 26111058 PMCID: PMC4669844 DOI: 10.1038/cddis.2015.174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 12/17/2022]
Abstract
Glycation of vessel wall proteins is thought to have an important role in the pathogenesis of vascular complications in diabetes mellitus. However, no previous study has implicated glycated vitronectin (VN) in the control of vascular endothelial growth factor (VEGF) signaling. To explore whether the glycation of VN affects angiogenic signaling and to understand the molecular mechanisms involved, we synthesized glycated VN by incubating VN with methylglyoxal (MGO) in vitro and identified the formation of glycated VN by an LC–ESI–MS/MS-based method. We tested the hypothesis that glycation of VN downregulates VEGF receptor-2 (VEGFR-2) activation by uncoupling the interaction between VEGFR-2 and αvβ3. Unmodified and MGO-glycated VN were used as substrates for human umbilical vein endothelial cells (HUVECs). The effects of glycated VN on VEGF signaling in HUVECs were investigated. The glycation of VN inhibited VEGF-induced phosphorylation of VEGFR-2 and the intracellular signaling pathway downstream of VEGFR-2. Glycated VN inhibited the binding of VEGFR-2 to β3 integrin and inhibited the phosphorylation of β3 integrin. Furthermore, glycation of VN significantly decreased VEGF-induced migration of HUVECs in vitro and vessel outgrowth in an ex vivo angiogenesis model. Collectively, these data indicate that the glycation of VN inhibits VEGF-induced VEGFR-2 activation by uncoupling VEGFR-2–αvβ3 integrin cross-talk. The glycation of VN causes a reduction in the migration of endothelial cells and vessel outgrowth. This may provide a mechanism for the failure of collateral sprouting in diabetic microangiopathy.
Collapse
|
21
|
Yougbaré I, Lang S, Yang H, Chen P, Zhao X, Tai WS, Zdravic D, Vadasz B, Li C, Piran S, Marshall A, Zhu G, Tiller H, Killie MK, Boyd S, Leong-Poi H, Wen XY, Skogen B, Adamson SL, Freedman J, Ni H. Maternal anti-platelet β3 integrins impair angiogenesis and cause intracranial hemorrhage. J Clin Invest 2015; 125:1545-56. [PMID: 25774504 DOI: 10.1172/jci77820] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/05/2015] [Indexed: 01/09/2023] Open
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a life-threatening disease in which intracranial hemorrhage (ICH) is the major risk. Although thrombocytopenia, which is caused by maternal antibodies against β3 integrin and occasionally by maternal antibodies against other platelet antigens, such as glycoprotein GPIbα, has long been assumed to be the cause of bleeding, the mechanism of ICH has not been adequately explored. Utilizing murine models of FNAIT and a high-frequency ultrasound imaging system, we found that ICH only occurred in fetuses and neonates with anti-β3 integrin-mediated, but not anti-GPIbα-mediated, FNAIT, despite similar thrombocytopenia in both groups. Only anti-β3 integrin-mediated FNAIT reduced brain and retina vessel density, impaired angiogenic signaling, and increased endothelial cell apoptosis, all of which were abrogated by maternal administration of intravenous immunoglobulin (IVIG). ICH and impairment of retinal angiogenesis were further reproduced in neonates by injection of anti-β3 integrin, but not anti-GPIbα antisera. Utilizing cultured human endothelial cells, we found that cell proliferation, network formation, and AKT phosphorylation were inhibited only by murine anti-β3 integrin antisera and human anti-HPA-1a IgG purified from mothers with FNAIT children. Our data suggest that fetal hemostasis is distinct and that impairment of angiogenesis rather than thrombocytopenia likely causes FNAIT-associated ICH. Additionally, our results indicate that maternal IVIG therapy can effectively prevent this devastating disorder.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Antigens, Human Platelet/immunology
- Apoptosis
- Autoantigens/immunology
- Blood Platelets/immunology
- Brain/blood supply
- Brain/embryology
- Disease Models, Animal
- Female
- Fetal Blood/immunology
- Human Umbilical Vein Endothelial Cells
- Humans
- Immune Sera/toxicity
- Immunity, Maternally-Acquired
- Immunoglobulin G/immunology
- Immunoglobulins, Intravenous/therapeutic use
- Integrin beta3/genetics
- Integrin beta3/immunology
- Intracranial Hemorrhages/embryology
- Intracranial Hemorrhages/etiology
- Intracranial Hemorrhages/immunology
- Intracranial Hemorrhages/physiopathology
- Male
- Maternal-Fetal Exchange
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/etiology
- Neovascularization, Physiologic/immunology
- Platelet Glycoprotein GPIb-IX Complex/genetics
- Platelet Glycoprotein GPIb-IX Complex/immunology
- Pregnancy
- Proto-Oncogene Proteins c-akt/physiology
- Retinal Vessels/embryology
- Retinal Vessels/pathology
- Thrombocytopenia, Neonatal Alloimmune/embryology
- Thrombocytopenia, Neonatal Alloimmune/immunology
- Thrombocytopenia, Neonatal Alloimmune/prevention & control
Collapse
|
22
|
El Assar M, Sánchez-Puelles JM, Royo I, López-Hernández E, Sánchez-Ferrer A, Aceña JL, Rodríguez-Mañas L, Angulo J. FM19G11 reverses endothelial dysfunction in rat and human arteries through stimulation of the PI3K/Akt/eNOS pathway, independently of mTOR/HIF-1α activation. Br J Pharmacol 2015; 172:1277-91. [PMID: 25363469 PMCID: PMC4337701 DOI: 10.1111/bph.12993] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE FM19G11 up-regulates mammalian target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) and PI3K/Akt pathways, which are involved in endothelial function. We evaluated the effects of FM19G11 on defective endothelial vasodilatation in arteries from rats and humans and investigated the mechanisms involved. EXPERIMENTAL APPROACH Effects of chronic in vivo administration of FM19G11 on aortic endothelial vasodilatation were evaluated together with ex vivo treatment in aortic and mesenteric arteries from control and insulin-resistant rats (IRR). Its effects on vasodilator responses of penile arteries (HPRAs) and corpus cavernosum (HCC) from men with vasculogenic erectile dysfunction (ED) (model of human endothelial dysfunction) were also evaluated. Vascular expression of phosphorylated-endothelial NOS (p-eNOS), phosphorylated-Akt (p-Akt) and HIF-1α was determined by immunodetection and cGMP by elisa. KEY RESULTS Chronic administration of FM19G11 reversed the impaired endothelial vasodilatation in IRR. Ex vivo treatment with FM19G11 also significantly improved endothelium-dependent vasodilatation in aorta and mesenteric arteries from IRR. These effects were accompanied by the restoration of p-eNOS and cGMP levels in IRR aorta and were prevented by either NOS or PI3K inhibition. p-Akt and p-eNOS contents were increased by FM19G11 in aortic endothelium of IRR. FM19G11-induced restoration of endothelial vasodilatation was unaffected by mTOR/HIF-1α inhibitors. FM19G11 also restored endothelial vasodilatation in HPRA and HCC from ED patients. CONCLUSIONS AND IMPLICATIONS Stimulation of the PI3K/Akt/eNOS pathway by FM19G11 alleviates impaired NO-mediated endothelial vasodilatation in rat and human arteries independently of mTOR/HIF-1α activation. This pharmacological strategy could be beneficial for managing pathological conditions associated with endothelial dysfunction, such as ED.
Collapse
Affiliation(s)
- M El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de GetafeGetafe, Madrid, Spain
| | - J M Sánchez-Puelles
- Fundación para la Investigación Biomédica del Hospital Universitario de GetafeGetafe, Madrid, Spain
- Molecular Pharmacology Group, Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - I Royo
- Molecular Pharmacology Group, Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - E López-Hernández
- Molecular Pharmacology Group, Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - A Sánchez-Ferrer
- Fundación para la Investigación Biomédica del Hospital Universitario de GetafeGetafe, Madrid, Spain
| | - J L Aceña
- Departamento de Química Orgánica Facultad de Química, Universidad del País Vasco UPV/EHUSan Sebastián, Spain
| | - L Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de GetafeGetafe, Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de GetafeGetafe, Madrid, Spain
| | - J Angulo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y CajalMadrid, Spain
| |
Collapse
|
23
|
Liang M, Wang Y, Liang A, Dong JF, Du J, Cheng J. Impaired integrin β3 delays endothelial cell regeneration and contributes to arteriovenous graft failure in mice. Arterioscler Thromb Vasc Biol 2015; 35:607-15. [PMID: 25614287 DOI: 10.1161/atvbaha.114.305089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Neointima formation is associated with stenosis and subsequent thrombosis in arteriovenous grafts (AVGs). A role of integrin β3 in the neointima formation of AVGs remains poorly understood. APPROACH AND RESULTS In integrin β3(-/-) mice, we found significantly accelerated occlusion of AVGs compared with the wild-type mice. This is caused by the development of neointima and lack of endothelial regeneration. The latter is a direct consequence of impaired functions of circulating angiogenic cells (CACs) and platelets in integrin β3(-/-) mice. Evidence suggests the involvement of platelet regulating CAC homing to and differentiation at graft sites via transforming growth factor-β1 and Notch signaling pathway. First, CACs deficient of integrin β3 impaired adhesion activity toward exposed subendothelium. Second, platelets from integrin β3(-/-) mice failed to sufficiently stimulate CACs to differentiate into mature endothelial cells. Finally, we found that transforming growth factor-β1 level was increased in platelets from integrin β3(-/-) mice and resulted in enhanced Notch1 activation in CACs in AVGs. These results demonstrate that integrin β3 is critical for endothelial cell homing and differentiation. The increased transforming growth factor-β1 and Notch1 signaling mediates integrin β3(-/-)-induced AVG occlusion. This accelerated occlusion of AVGs was reversed in integrin β3(-/-) mice transplanted with the bone marrow from wild-type mice. CONCLUSIONS Our results suggest that boosting integrin β3 function in the endothelial cells and platelets could prevent neointima and thrombosis in AVGs.
Collapse
Affiliation(s)
- Ming Liang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Yun Wang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Anlin Liang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jin-Fei Dong
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jie Du
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jizhong Cheng
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.).
| |
Collapse
|
24
|
Redha NA, Mahdi N, Al-Habboubi HH, Almawi WY. Impact of VEGFA -583C > T polymorphism on serum VEGF levels and the susceptibility to acute chest syndrome in pediatric patients with sickle cell disease. Pediatr Blood Cancer 2014; 61:2310-2. [PMID: 25130874 DOI: 10.1002/pbc.25158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/29/2014] [Indexed: 11/12/2022]
Abstract
We investigated the association of VEGFA -583C > T on VEGF serum levels and acute chest syndrome (ACS) in 351 pediatric patients with sickle cell disease (SCD), of whom 90 had ACS, and 261 were ACS-free controls. Significant differences in -583C > T minor allele and genotype frequencies were seen between ACS cases and controls, evidenced by enrichment of -583T/T genotypes in patients with ACS, which were linked with reduction in VEGF serum levels. VEGFA -583C > T and reduced VEGF serum levels may influence ACS risk in patients with SCD, which will aid in identifying patients with SCD who are at high risk of ACS.
Collapse
Affiliation(s)
- Noor A Redha
- Department of Medical Biochemistry, Arabian Gulf University, Manama, Bahrain
| | | | | | | |
Collapse
|
25
|
Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics 2014; 41:485-95. [PMID: 25269674 DOI: 10.1016/j.jgg.2014.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Advanced age is an independent risk factor for ageing-related complex diseases, such as coronary artery disease, stroke, and hypertension, which are common but life threatening and related to the ageing-associated vascular dysfunction. On the other hand, patients with progeria syndromes suffer from serious atherosclerosis, suggesting that the impaired vascular functions may be critical to organismal ageing, or vice versa. However, it remains largely unknown how vascular cells, particularly endothelial cell, become senescent and how the senescence impairs the vascular functions and contributes to the age-related vascular diseases over time. Here, we review the recent progress on the characteristics of vascular ageing and endothelial cell senescence in vitro and in vivo, evaluate how genetic and environmental factors as well as autophagy and stem cell influence endothelial cell senescence and how the senescence contributes to the age-related vascular phenotypes, such as atherosclerosis and increased vascular stiffness, and explore the possibility whether we can delay the age-related vascular diseases through the control of vascular ageing.
Collapse
Affiliation(s)
- Xiao-Li Tian
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China.
| | - Yang Li
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Jiang H, Cheng XW, Shi GP, Hu L, Inoue A, Yamamura Y, Wu H, Takeshita K, Li X, Huang Z, Song H, Asai M, Hao CN, Unno K, Koike T, Oshida Y, Okumura K, Murohara T, Kuzuya M. Cathepsin K-mediated Notch1 activation contributes to neovascularization in response to hypoxia. Nat Commun 2014; 5:3838. [PMID: 24894568 DOI: 10.1038/ncomms4838] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/09/2014] [Indexed: 01/27/2023] Open
Abstract
Cysteine proteases play important roles in pathobiology. Here we reveal that cathepsin K (CatK) has a role in ischaemia-induced neovascularization. Femoral artery ligation-induced ischaemia in mice increases CatK expression and activity, and CatK-deficient mice show impaired functional recovery following hindlimb ischaemia. CatK deficiency reduces the levels of cleaved Notch1 (c-Notch1), Hes1 Hey1, Hey2, vascular endothelial growth factor, Flt-1 and phospho-Akt proteins of the ischaemic muscles. In endothelial cells, silencing of CatK mimicked, whereas CatK overexpression enhanced, the levels of c-Notch1 and the expression of Notch downstream signalling molecules, suggesting CatK contributes to Notch1 processing and activates downstream signalling. Moreover, CatK knockdown leads to defective endothelial cell invasion, proliferation and tube formation, and CatK deficiency is associated with decreased circulating endothelial progenitor cells-like CD31(+)/c-Kit(+) cells in mice following hindlimb ischaemia. Transplantation of bone marrow-derived mononuclear cells from CatK(+/+) mice restores the impairment of neovascularization in CatK(-/-) mice. We conclude that CatK may be a potential therapeutic target for ischaemic disease.
Collapse
Affiliation(s)
- Haiying Jiang
- 1] Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan [2] Department of Sport Medicine, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichiken, Japan [3] Department of Physiology and Pathophysiology, Yanbian University School of Medicine, Jilin 133000, Yanji, China [4]
| | - Xian Wu Cheng
- 1] Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan [2] Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 4668550, Aichiken, Japan [3] Department of Cardiology, Yanbian University Hospital, Jilin 133000, Yanji, China [4] Department of Internal Medicine, Kyung Hee University Hospital, Seoul1 30-702, Korea [5]
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lina Hu
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan
| | - Aiko Inoue
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan
| | - Yumiko Yamamura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 4668550, Aichiken, Japan
| | - Hongxian Wu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 4668550, Aichiken, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 4668550, Aichiken, Japan
| | - Xiang Li
- 1] Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan [2] Department of Cardiology, Yanbian University Hospital, Jilin 133000, Yanji, China
| | - Zhe Huang
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan
| | - Haizhen Song
- 1] Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan [2] Department of Dermatology, No.3 People Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Masashi Asai
- Department of Molecular Medicinal Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Nagasaki-ken, Japan
| | - Chang-Ning Hao
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 4668550, Aichiken, Japan
| | - Kazumasa Unno
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 4668550, Aichiken, Japan
| | - Teruhiro Koike
- Department of Sport Medicine, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichiken, Japan
| | - Yoshiharu Oshida
- Department of Sport Medicine, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Aichiken, Japan
| | - Kenji Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 4668550, Aichiken, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 4668550, Aichiken, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare & Geriatrics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichiken, Japan
| |
Collapse
|
27
|
Li R, Luo M, Ren M, Chen N, Xia J, Deng X, Zeng M, Yan K, Luo T, Wu J. Vitronectin regulation of vascular endothelial growth factor-mediated angiogenesis. J Vasc Res 2014; 51:110-7. [PMID: 24603119 DOI: 10.1159/000360085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) plays a key role in regulating angiogenesis, and this process is largely dependent on the newly formed extracellular matrix (ECM). The levels of vitronectin (VN) are increased in patients with various cardiovascular diseases. A role for VN in regulating VEGF-induced angiogenesis has not been previously reported. We tested the hypothesis that VN regulates VEGFR-2 activation via effects on αvβ3, thus contributing to angiogenesis. METHODS We used a 3-dimensional angiogenesis assay, and examined the effects of VN on VEGF-mediated angiogenesis in aortic endothelial cells (ECs) isolated from wild-type and VN-deficient mice. RESULTS The addition of multimeric VN significantly enhanced VEGF-induced increases in EC migration and capillary formation. In vitro, Vn(-/-) ECs migrated significantly slower than wild-type ECs. The addition of VN to Vn(-/-) ECs increased EC migration and augmented the promigratory effect of VEGF in a manner that involved VEGFR-2 and Src signaling. Analysis of the mechanisms involved revealed that multimeric VN, but not monomeric VN, binds VEGF and enhances VEGF-induced VEGFR-2/Src activation in ECs. CONCLUSION These results underscore the importance of VN in the regulation of angiogenesis induced by VEGF.
Collapse
Affiliation(s)
- Rong Li
- Drug Discovery Research Center, Luzhou Medical College, Luzhou, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chaturvedi P, Tyagi SC. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 2014; 173:1-11. [PMID: 24636549 DOI: 10.1016/j.ijcard.2014.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/29/2013] [Accepted: 02/08/2014] [Indexed: 01/08/2023]
Abstract
Epigenetic modifications which are defined by DNA methylation, histone modifications and microRNA mediated gene regulation, have been found to be associated with cardiac dysfunction and cardiac regeneration but the mechanisms are unclear. MicroRNA therapies have been proposed for cardiac regeneration and proliferation of stem cells into cardiomyocytes. Cardiovascular disorders are represented by abnormal methylation of CpG islands and drugs that inhibit DNA methyltransferases such as 5-methyl Aza cytidine are under trials. Histone modifications which include acetylation, methylation, phosphorylation, ADP ribosylation, sumoylation and biotinylation are represented within abnormal phenotypes of cardiac hypertrophy, cardiac development and contractility. MicroRNAs have been used efficiently to epigenetically reprogram fibroblasts into cardiomyocytes. MicroRNAs represent themselves as potential biomarkers for early detection of cardiac disorders which are difficult to diagnose and are captured at later stages. Because microRNAs regulate circadian genes, for example a nocturnin gene of circadian clockwork is regulated by miR122, they have a profound role in regulating biological clock and this may explain the high cardiovascular risk during the morning time. This review highlights the role of epigenetics which can be helpful in disease management strategies.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
29
|
El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med 2013; 65:380-401. [PMID: 23851032 DOI: 10.1016/j.freeradbiomed.2013.07.003] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 12/13/2022]
Abstract
Vascular aging, a determinant factor for cardiovascular disease and health status in the elderly, is now viewed as a modifiable risk factor. Impaired endothelial vasodilation is a early hallmark of arterial aging that precedes the clinical manifestations of vascular dysfunction, the first step to cardiovascular disease and influencing vascular outcomes in the elderly. Accordingly, the preservation of endothelial function is thought to be an essential determinant of healthy aging. With special attention on the effects of aging on the endothelial function, this review is focused on the two main mechanisms of aging-related endothelial dysfunction: oxidative stress and inflammation. Aging vasculature generates an excess of the reactive oxygen species (ROS), superoxide and hydrogen peroxide, that compromise the vasodilatory activity of nitric oxide (NO) and facilitate the formation of the deleterious radical, peroxynitrite. Main sources of ROS are mitochondrial respiratory chain and NADPH oxidases, although NOS uncoupling could also account for ROS generation. In addition, reduced antioxidant response mediated by erythroid-2-related factor-2 (Nrf2) and downregulation of mitochondrial manganese superoxide dismutase (SOD2) contributes to the establishment of chronic oxidative stress in aged vessels. This is accompanied by a chronic low-grade inflammatory phenotype that participates in defective endothelial vasodilation. The redox-sensitive transcription factor, nuclear factor-κB (NF-κB), is upregulated in vascular cells from old subjects and drives a proinflammatory shift that feedbacks oxidative stress. This chronic NF-κB activation is contributed by increased angiotensin-II signaling and downregulated sirtuins and precludes adequate cellular response to acute ROS generation. Interventions targeted to recover endogenous antioxidant capacity and cellular stress response rather than exogenous antioxidants could reverse oxidative stress-inflammation vicious cycle in vascular aging. Lifestyle attitudes such as caloric restriction and exercise training appear as effective ways to overcome defective antioxidant response and inflammation, favoring successful vascular aging and decreasing the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Spain
| | - Javier Angulo
- Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain.
| |
Collapse
|