1
|
Zeng X, Wang W, Zhang D, Li X, Zhang Y, Zhao Y, Zhao L, Wang J, Xu D, Cheng J, Li W, Zhou B, Lin C, Yang X, Zhai R, Ma Z, Liu J, Cui P, Weng X, Wu W, Zhang X, Zheng W. Polymorphism and expression level of the FADS3 gene and associated with the growth traits in Hu sheep. Anim Biotechnol 2023; 34:4793-4802. [PMID: 37040177 DOI: 10.1080/10495398.2023.2196313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Growth traits are the economically important traits of sheep, and screening for genes related to growth and development is helpful for the genetic improvement of ovine growth traits. The fatty acid desaturase 3 (FADS3) is one of the important genes affecting the synthesis and accumulation of polyunsaturated fatty acids in animals. In this study, the expression levels of the FADS3 gene and polymorphism of the FADS3 gene associated with growth traits in Hu sheep were detected using quantitative real-time PCR (qRT-PCR), Sanger sequencing, and KAspar assay. The result showed that the expression levels of the FADS3 gene were widely expressed in all tissues, and the expression level of FADS3 in the lung was significantly higher than in other tissues (p < .05). Then, the polymorphism locus g. 2918 A > C was detected in intron 2 of the FADS3 gene, and associated analysis showed that the mutation in the FADS3 gene was associated significantly with growth traits (including body weight, body height, body length, and chest circumference, p < .05). Therefore, individuals with AA genotype showed significantly better growth traits than those with CC genotype, and FADS3 gene could be a candidate gene for improving growth traits in Hu sheep.
Collapse
Affiliation(s)
- Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiuxiu Weng
- The State Key Laboratory of Grassland Agroecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Zheng
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Gorica E, Mohammed SA, Ambrosini S, Calderone V, Costantino S, Paneni F. Epi-Drugs in Heart Failure. Front Cardiovasc Med 2022; 9:923014. [PMID: 35911511 PMCID: PMC9326055 DOI: 10.3389/fcvm.2022.923014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Unveiling the secrets of genome's flexibility does not only foster new research in the field, but also gives rise to the exploration and development of novel epigenetic-based therapies as an approach to alleviate disease phenotypes. A better understanding of chromatin biology (DNA/histone complexes) and non-coding RNAs (ncRNAs) has enabled the development of epigenetic drugs able to modulate transcriptional programs implicated in cardiovascular diseases. This particularly applies to heart failure, where epigenetic networks have shown to underpin several pathological features, such as left ventricular hypertrophy, fibrosis, cardiomyocyte apoptosis and microvascular dysfunction. Targeting epigenetic signals might represent a promising approach, especially in patients with heart failure with preserved ejection fraction (HFpEF), where prognosis remains poor and breakthrough therapies have yet to be approved. In this setting, epigenetics can be employed for the development of customized therapeutic approaches thus paving the way for personalized medicine. Even though the beneficial effects of epi-drugs are gaining attention, the number of epigenetic compounds used in the clinical practice remains low suggesting that more selective epi-drugs are needed. From DNA-methylation changes to non-coding RNAs, we can establish brand-new regulations for drug targets with the aim of restoring healthy epigenomes and transcriptional programs in the failing heart. In the present review, we bring the timeline of epi-drug discovery and development, thus highlighting the emerging role of epigenetic therapies in heart failure.
Collapse
Affiliation(s)
- Era Gorica
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Shafeeq A. Mohammed
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
4
|
Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders-A Review. Nutrients 2018; 10:nu10101561. [PMID: 30347877 PMCID: PMC6213446 DOI: 10.3390/nu10101561] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are described as the leading cause of morbidity and mortality in modern societies. Therefore, the importance of cardiovascular diseases prevention is widely reflected in the increasing number of reports on the topic among the key scientific research efforts of the recent period. The importance of essential fatty acids (EFAs) has been recognized in the fields of cardiac science and cardiac medicine, with the significant effects of various fatty acids having been confirmed by experimental studies. Polyunsaturated fatty acids are considered to be important versatile mediators for improving and maintaining human health over the entire lifespan, however, only the cardiac effect has been extensively documented. Recently, it has been shown that omega-3 fatty acids may play a beneficial role in several human pathologies, such as obesity and diabetes mellitus type 2, and are also associated with a reduced incidence of stroke and atherosclerosis, and decreased incidence of cardiovascular diseases. A reasonable diet and wise supplementation of omega-3 EFAs are essential in the prevention and treatment of cardiovascular diseases prevention and treatment.
Collapse
|
5
|
Chrysohoou C, Metallinos G, Georgiopoulos G, Mendrinos D, Papanikolaou A, Magkas N, Pitsavos C, Vyssoulis G, Stefanadis C, Tousoulis D. Short term omega-3 polyunsaturated fatty acid supplementation induces favorable changes in right ventricle function and diastolic filling pressure in patients with chronic heart failure; A randomized clinical trial. Vascul Pharmacol 2016; 79:43-50. [PMID: 26807502 DOI: 10.1016/j.vph.2016.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/21/2015] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
|
6
|
Jacobson TA, Maki KC, Orringer CE, Jones PH, Kris-Etherton P, Sikand G, La Forge R, Daniels SR, Wilson DP, Morris PB, Wild RA, Grundy SM, Daviglus M, Ferdinand KC, Vijayaraghavan K, Deedwania PC, Aberg JA, Liao KP, McKenney JM, Ross JL, Braun LT, Ito MK, Bays HE, Brown WV. National Lipid Association Recommendations for Patient-Centered Management of Dyslipidemia: Part 2. J Clin Lipidol 2015; 9:S1-122.e1. [DOI: 10.1016/j.jacl.2015.09.002] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Alter P, Glück T, Figiel JH, Koczulla AR, Vogelmeier CF, Rupp H. From Heart Failure to Highly Unsaturated Fatty Acid Deficiency and Vice Versa: Bidirectional Heart and Liver Interactions. Can J Cardiol 2015; 32:217-25. [PMID: 26277086 DOI: 10.1016/j.cjca.2015.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In several trials, beneficial prognostic effects of highly unsaturated fatty acids (HUFAs) in heart failure were shown. Because other studies showed no incremental benefit in nearly preserved cardiac function, the question arises, whether the degree of cardiac dysfunction is involved. It is hypothesized that increased left ventricular (LV) wall stress affects the endogenous hepatic HUFA metabolism, which in turn exhibits adverse cardiac consequences. METHODS Cardiac magnetic resonance imaging was performed in 30 patients with suspected cardiomyopathy. The serum fatty acid profile was assessed using gas chromatography/mass spectrometry. RESULTS Docosahexaenoic acid (DHA; P = 0.002) and eicosapentaenoic acid (EPA; by trend) levels were decreased in patients with reduced LV ejection fraction (≤ 50%) or LV dilatation (≥ 90 mL/m(2)). Decreased DHA (P = 0.003) and EPA (P = 0.022) levels were associated with a reduced LV ejection fraction. Decreased DHA level was correlated with increased end-diastolic (P = 0.047) and end-systolic LV wall stress (P = 0.001). Pseudocholinesterase activity was inversely correlated with end-diastolic (P = 0.020) and end-systolic LV wall stress (P = 0.025). CONCLUSIONS DHA level was significantly reduced in heart failure. Similar, but less pronounced effects were found for EPA and arachidonic acid by trend. Increased LV wall stress was correlated with a reduced DHA level. Increased LV wall stress exhibits various adverse consequences (eg, increased oxygen consumption, favouring of arrhythmias, and an unfavourable remodelling). The increase of wall stress was paralleled by reduced HUFA level. Increased LV wall stress was correlated with reduced pseudocholinesterase, which is suggestive of hepatic congestion (ie, a cardiohepatic syndrome, involved in the altered fatty acid profile in heart failure) and has major consequences regarding the dose-efficacy of HUFA treatment.
Collapse
Affiliation(s)
- Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Marburg, Germany.
| | - Tobias Glück
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Marburg, Germany
| | - Jens H Figiel
- Department of Radiology, University of Marburg, Marburg, Germany
| | - A Rembert Koczulla
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Marburg, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Marburg, Germany
| | - Heinz Rupp
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, Marburg, Germany
| |
Collapse
|
8
|
Shabani P, Ghazizadeh Z, Pahlavan S, Hashemizadeh S, Baharvand H, Aghdami N, Doosti M. Exogenous treatment with eicosapentaenoic acid supports maturation of cardiomyocytes derived from embryonic stem cells. Biochem Biophys Res Commun 2015; 461:281-6. [PMID: 25871791 DOI: 10.1016/j.bbrc.2015.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 11/29/2022]
Abstract
Embryonic stem cells offer multiple advantages over adult stem cells in terms of achieving acceptable number of functional cardiomyocytes to be exploited in cell therapy. However, differentiation efficacy is still a major issue to be solved before moving to regenerative medicine. Although a vast number of chemical compounds have been tested on efficiency of cardiac differentiation, the effect of fish oil components, such as eicosapentaenoic acid (EPA) on developmental bioenergetics, and hence cardiac differentiation, remained unstudied. EPA has been reported to have several cardioprotective effects, but there is no study addressing its role in cardiac differentiation. After mesoderm induction of embryoid bodies (EBs) derived from mouse embryonic stem cells (mESCs) in hanging drops initiated by ascorbic acid, they were treated with various concentrations of EPA. Gene and protein expression and functional properties of cardiomyocytes derived from ESCs were evaluated following treatment with various concentrations of EPA. Exposure to low concentrations of EPA (10 μM) increased percentage of beating colonies and beating area. This treatment also resulted in up to 3 fold increase in expression of NKX2-5, MEF2C, MYH6, TNNT2 and CX43. FACS analysis confirmed gene expression analysis with increased percentage of MYH6 positive cells in EPA-treated group compared to the control group. In contrast, the expression of genes coding for cardiac differentiation, remained constant or even declined with higher concentrations of EPA. In conclusion, we have demonstrated that treatment of mESCs undergoing cardiac differentiation with low concentration, but not high concentration of EPA up-regulate transcription of genes associated with cardiac development.
Collapse
Affiliation(s)
- Parisa Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zaniar Ghazizadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shiva Hashemizadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mahmood Doosti
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|