1
|
Yan R, Gao W, Chen W, Liu Y, Shen L, Dai Y, Xu R, Chang Q, Fu Y, Zhao Y. rTFPI Protects Cardiomyocytes from Hypoxia/Reoxygenation Injury through Inhibiting Autophagy and the Class III PI3K/Beclin-1 Pathway. Cell Biochem Biophys 2023; 81:97-104. [PMID: 36309623 DOI: 10.1007/s12013-022-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/15/2022] [Indexed: 11/25/2022]
Abstract
Autophagy plays various roles at different stages of ischemia reperfusion (I/R) injury in cardiomyocytes. It has been reported that tissue factor pathway inhibitor (TFPI) has a protective effect on I/R injury. This study aimed to determine the roles of TFPI in autophagy during the I/R injury process in cardiomyocytes and the possible mechanisms. An isolated hypoxia/reoxygenation (H/R) pattern of cardiomyocytes was established by the MIC101 system. The cell viability and oxidative stress of cardiomyocytes were detected by an MTT assay and ROS assay, respectively. The autophagy level was measured by Ad-mCherry-GFP-LC3B and MDC. We detected the expression levels of autophagy-related proteins by western blotting. After 2 h of hypoxia and 12 h of reoxygenation, the cardiomyocyte viability in the H/R group was significantly lower than that in the control group (p < 0.05) than in the H/R group. According to intracellular ROS production, the fluorescence intensity in the H/R group was enhanced compared with that in the negative control group, and it was weaker in the H/R + rTFPI group compared with the H/R group. The level of autophagy and the expression levels of autophagy-related proteins (LC3-II/LC3-I, Beclin-1 and PI3K) were markedly increased in the H/R group compared to the control group (p < 0.05) whereas the levels were markedly decreased in the H/R + rTFPI group compared to the H/R group (p < 0.05). TFPI could relieve cardiomyocyte injury by inhibiting the Class III PI3K/Beclin-1 pathway and oxidative stress; thus, TFPI decreased autophagy and protected cardiomyocytes induced by H/R injury. In conclusion, TFPI may be a new direction for the prevention of myocardial I/R injury.
Collapse
Affiliation(s)
- Runan Yan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjia Chen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Shen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Dai
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Xu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Chang
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, China
| | - Yu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Zhao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Aslan M, Oksen D, Kaynak C, Ozudogru O. Impact of empagliflozin on left atrial mechanical and conduction functions in patients with type 2 diabetes mellitus. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:398-404. [PMID: 36308321 DOI: 10.1002/jcu.23384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Empagliflozin, an oral anti-diabetic drug that inhibits the sodium-dependent glucose co-transporter 2 (SGLT2), has pleiotropic effects on the myocardium. The aim of the study is to investigate the effect of empagliflozin on atrial electromechanical delay (AEMD) and the left atrial (LA) mechanical functions in patients with type 2 diabetes mellitus (DM). METHOD In total 62 patients (40.3% female, mean age 50.5 ± 8.6 years old) with type 2 DM were enrolled to the study. Participants were used a SGLT2 inhibitor (empagliflozin 10-25 mg/daily) for 6 months. Patients were examined initially and after 6 months with echocardiography. LA volume was recorded, atrial conduction times were measured using tissue Doppler imaging (TDI). RESULTS No significant change was observed in LA volumes (maximal, minimal, and presystolic), total emptying and passive emptying volume at the end of 6 months; however, there was a significant decrease in active emptying volume (8.3 ± 2.9 ml/m2 vs. 7.9 ± 2.9 ml/m2 , p = 0.04). The posteroanterior lateral, septal, and tricuspid conduction times significantly decreased after the empagliflozin treatment. The decrease in right inter-AEMD was statistically significant (13.25 ± 10.21 ms vs. 10.85 ± 9.14 ms, p = 0.011). The changes in inter-AEMD were found to be correlated with the changes in LA active emptying volume (r = 0.408). CONCLUSION Empagliflozin may enhance the structure and electrical conductions of the atrium and may prevent DM patients from DM-2-related functional disorder and arrhythmia.
Collapse
Affiliation(s)
- Muzaffer Aslan
- Faculty of Medicine, Department of Cardiology, Siirt University, Siirt, Turkey
| | - Dogac Oksen
- Faculty of Medicine, Department of Cardiology, Altinbas University, Istanbul, Turkey
| | - Cagdas Kaynak
- Faculty of Medicine, Department of Cardiology, Siirt University, Siirt, Turkey
| | - Osman Ozudogru
- Faculty of Medicine, Department of Internal Medicine, Siirt University, Siirt, Turkey
| |
Collapse
|
3
|
Coats AJS. Figures of the Heart Failure Association (HFA): Dr. Rudolf de Boer, HFA Board Member (2014-2020), Chair of the Basic Science Section (2016-2018), coordinator of the Study Group on Heart Failure with Preserved Ejection Fraction, and member of the HFA study groups of Translational Research and Cardio-oncology. Eur J Heart Fail 2020; 22:572-575. [PMID: 32128968 DOI: 10.1002/ejhf.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 11/09/2022] Open
|
4
|
Lambadiari V, Dimitriadis G, Kadoglou NPE. The impact of oral anti-diabetic medications on heart failure: lessons learned from preclinical studies. Heart Fail Rev 2019. [PMID: 29524067 DOI: 10.1007/s10741-018-9690-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The prevalence of heart failure (HF) in the diabetic population has rapidly increased over the past 2 decades, triggering research about the impact of oral anti-diabetic medications on it. Unfortunately, not all success at the bench in preclinical experiments has translated to success at the bedside. On the other hand, recent promising clinical data from oral SGLT2 inhibitors mainly lack mechanistic explanation from experimental studies. Hence, it is critical to understand the lessons learned from prior translational studies to gain a better knowledge of the mechanisms of oral anti-diabetic drugs in HF. This review aims to summarize the results from preclinical studies regarding the interaction between oral anti-diabetic medications and heart failure development and/or exacerbation. Although there is a wide spectrum of controversial results, the underlying hope is that the clinical success rate will improve and the adverse events during ineffective targeted therapy will be limited.
Collapse
Affiliation(s)
- Vaia Lambadiari
- 2nd Department of Internal Medicine-Propaedeutic, Research Unit and Diabetes Center, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal Medicine-Propaedeutic, Research Unit and Diabetes Center, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos P E Kadoglou
- Centre for Statistics in Medicine - Βotnar Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Ikeda J, Kimoto N, Kitayama T, Kunori S. Cardiac DPP-4 inhibition by saxagliptin ameliorates isoproterenol-induced myocardial remodeling and cardiac diastolic dysfunction in rats. J Pharmacol Sci 2016; 132:65-70. [PMID: 27666017 DOI: 10.1016/j.jphs.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/25/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022] Open
Abstract
Saxagliptin, a potent and selective DPP-4 inhibitor, is characterized by its slow dissociation from DPP-4 and its long half-life and is expected to have a potent tissue membrane-bound DPP-4-inhibitory effect in various tissues. In the present study, we examined the effects of saxagliptin on in situ cardiac DPP-4 activity. We also examined the effects of saxagliptin on isoproterenol-induced the changes in the early stage such as, myocardial remodeling and cardiac diastolic dysfunction. Male SD rats treated with isoproterenol (1 mg/kg/day via osmotic pump) received vehicle or saxagliptin (17.5 mg/kg via drinking water) for 2 weeks. In situ cardiac DPP-4 activity was measured by a colorimetric assay. Cardiac gene expressions were examined and an echocardiographic analysis was performed. Saxagliptin treatment significantly inhibited in situ cardiac DPP-4 activity and suppressed isoproterenol-induced myocardial remodeling and the expression of related genes without altering the blood glucose levels. Saxagliptin also significantly ameliorated cardiac diastolic dysfunction in isoproterenol-treated rats. In conclusion, the inhibition of DPP-4 activity in cardiac tissue by saxagliptin was associated with suppression of myocardial remodeling and cardiac diastolic dysfunction independently of its glucose-lowering action in isoproterenol-treated rats. Cardiac DPP-4 activity may contribute to myocardial remodeling in the development of heart failure.
Collapse
Affiliation(s)
- Junichi Ikeda
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Naoya Kimoto
- Research Core Function Laboratories, Research Function Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Tetsuya Kitayama
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Shunji Kunori
- Nephrology Research Laboratories, Nephrology R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan.
| |
Collapse
|
6
|
van Dijk PR, Mouden M, Hermanides R. Directions for future trials on blood glucose-lowering drugs to improve left ventricular function post-ST-segment elevation myocardial infarction. Am Heart J 2016; 175:e1. [PMID: 27179742 DOI: 10.1016/j.ahj.2016.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Peter Ruben van Dijk
- Department of Internal Medicine, Isala, Zwolle, the Netherlands; Diabetes Center, Isala, Zwolle, the Netherlands.
| | - Mohamed Mouden
- Department of Internal Medicine, Isala, Zwolle, the Netherlands; Department of Cardiology, Isala, Zwolle, the Netherlands
| | - Renicus Hermanides
- Department of Internal Medicine, Isala, Zwolle, the Netherlands; Department of Cardiology, Isala, Zwolle, the Netherlands
| |
Collapse
|
7
|
de Leeuw AE, de Boer RA. Sodium-glucose cotransporter 2 inhibition: cardioprotection by treating diabetes-a translational viewpoint explaining its potential salutary effects. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2016; 2:244-55. [PMID: 27533948 DOI: 10.1093/ehjcvp/pvw009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022]
Abstract
Diabetes is a growing epidemic worldwide characterized by an elevated concentration of blood glucose, associated with a high incidence of cardiovascular disease and mortality. Although in general reduction of hyperglycaemia is considered a therapeutic goal, hypoglycaemic therapies do not necessarily reduce cardiovascular mortality and may even aggravate cardiovascular risk factors, such as body weight. A new class of antidiabetic drugs acts by inhibition of the sodium-glucose cotransporter 2 (SGLT2), which (partially) prevents reabsorption of glucose from the renal filtrate. The induction of glucose excretion via the urine (glycosuria) was turned into an effective strategy to reduce blood glucose. Ancillary advantages are the caloric and volumetric loss and thereby the reduction of body weight and blood pressure. Additionally, SGLT2 inhibition has been suggested to exert direct cardioprotective effects by the reduction of cardiac fibrosis, inflammation, and oxidative stress. This article summarizes the functional consequences of SGLT2 inhibition on the diabetic and hyperglycaemic organism. We especially focused on the effects on the kidney and the cardiovascular system as described in experimental studies. The interesting observations in experimental studies may extend to clinical medicine, as a recent trial reported a decrease in heart failure outcomes in patients at high cardiovascular risk. In conclusion, SGLT2 inhibition represents a novel treatment, which might be a promising target not only to (further) reduce blood glucose but also to target other cardiovascular risk factors. More research and long-term follow-ups will reveal the specific influence of SGLT2 inhibition on the circulatory system and cardiovascular outcomes.
Collapse
Affiliation(s)
- Anne E de Leeuw
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), AB43, Antonius Deusinglaan 1, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen (UMCG), AB43, Antonius Deusinglaan 1, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| |
Collapse
|
8
|
Poudyal H. Mechanisms for the cardiovascular effects of glucagon-like peptide-1. Acta Physiol (Oxf) 2016; 216:277-313. [PMID: 26384481 DOI: 10.1111/apha.12604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022]
Abstract
Over the past three decades, at least 10 hormones secreted by the enteroendocrine cells have been discovered, which directly affect the cardiovascular system through their innate receptors expressed in the heart and blood vessels or through a neural mechanism. Glucagon-like peptide-1 (GLP-1), an important incretin, is perhaps best studied of these gut-derived hormones with important cardiovascular effects. In this review, I have discussed the mechanism of GLP-1 release from the enteroendocrine L-cells and its physiological effects on the cardiovascular system. Current evidence suggests that GLP-1 has positive inotropic and chronotropic effects on the heart and may be important in preserving left ventricular structure and function by direct and indirect mechanisms. The direct effects of GLP-1 in the heart may be mediated through GLP-1R expressed in atria as well as arteries and arterioles in the left ventricle and mainly involve in the activation of multiple pro-survival kinases and enhanced energy utilization. There is also good evidence to support the involvement of a second, yet to be identified, GLP-1 receptor. Further, GLP-1(9-36)amide, which was previously thought to be the inactive metabolite of the active GLP-1(7-36)amide, may also have direct cardioprotective effects. GLP-1's action on GLP-1R expressed in the central nervous system, kidney, vasculature and the pancreas may indirectly contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- H. Poudyal
- Department of Diabetes, Endocrinology and Nutrition; Graduate School of Medicine and Hakubi Centre for Advanced Research; Kyoto University; Kyoto Japan
| |
Collapse
|
9
|
The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes. Eur J Pharmacol 2016; 774:71-9. [PMID: 26845695 DOI: 10.1016/j.ejphar.2016.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 01/10/2023]
Abstract
Nowadays, drugs protecting ischemia/reperfusion (I/R) myocardium become more suitable for clinic. It has been confirmed lycopene has various protections, but lacking the observation of its effect on endoplasmic reticulum stress (ERS)-mediated apoptosis caused by hypoxia/reoxygenation (H/R). This study aims to clarify the protective effect of lycopene on ERS induced by H/R in H9C2 cardiomyocytes. Detect the survival rate, lactic dehydrogenase (LDH) activity, apoptosis ratio, glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP), c-Jun-N-terminal protein Kinase (JNK) and Caspase-12 mRNA and protein expression and phosphorylation of JNK (p-JNK) protein expression. LDH activity, apoptosis ratio and GRP78 protein expression increase in the H/R group, reduced by lycopene. The survival rate reduces in the H/R and thapsigargin (TG) groups; lycopene and 4-phenyl butyric acid (4-PBA) can improve it caused by H/R, lycopene also can improve it caused by TG. The apoptosis ratio, the expression of GRP78, CHOP and Caspase-12 mRNA and protein and p-JNK protein increase in the H/R and TG groups, weaken in the lycopene+H/R, 4-PBA+H/R and lycopene+TG groups. There is no obvious change in the expression of JNK mRNA or protein. Hence, our results provide the evidence that 10 μM lycopene plays an obviously protective effect on H/R H9C2 cardiomyocytes, realized through reducing ERS and apoptosis. The possible mechanism may be related to CHOP, p-JNK and Caspase-12 pathways.
Collapse
|
10
|
A hypothesis: Glucagon-like peptide-1 may play a protective role in diabetic cardiomyopathy. Int J Cardiol 2015; 197:294-5. [PMID: 26142979 DOI: 10.1016/j.ijcard.2015.06.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/26/2015] [Indexed: 01/17/2023]
|
11
|
Dipeptidyl peptidase-4 inhibitors and the ischemic heart: Additional benefits beyond glycemic control. Int J Cardiol 2015; 202:415-6. [PMID: 26432493 DOI: 10.1016/j.ijcard.2015.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/19/2015] [Indexed: 12/21/2022]
Abstract
Obese-insulin resistance and type 2 diabetes mellitus (T2DM) have become global health problems, and they are both associated with a higher risk of ischemic heart disease. Although reperfusion therapy is the treatment to increase blood supply to the ischemic myocardium, this intervention potentially causes cardiac tissue damage and instigates arrhythmias, processes known as reperfusion injury. Dipeptidyl peptidase 4 (DPP-4) inhibitors are glycemic control drugs commonly used in T2DM patients. Growing evidence from basic and clinical studies demonstrates that a DPP-4 inhibitor could exert cardioprotection and improve left ventricular function by reducing oxidative stress, apoptosis, and increasing reperfusion injury salvage kinase (RISK) activity. However, recent reports also showed potentially adverse cardiac events due to the use of a DPP-4 inhibitor. To investigate this disparity, future large clinical trials are essential in verifying whether DPP-4 inhibitors are beneficial beyond their glycemic control particularly for the ischemic heart in obese-insulin resistant subjects and T2DM patients.
Collapse
|
12
|
Dai P, Wang J, Lin L, Zhang Y, Wang Z. Renoprotective effects of berberine as adjuvant therapy for hypertensive patients with type 2 diabetes mellitus: Evaluation via biochemical markers and color Doppler ultrasonography. Exp Ther Med 2015; 10:869-876. [PMID: 26622407 DOI: 10.3892/etm.2015.2585] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 05/13/2015] [Indexed: 01/26/2023] Open
Abstract
Diabetes and hypertension are complex and serious diseases that may ultimately lead to renal complications. Adequate control of blood glucose and blood pressure contributes to decreased renal risks, but may not be sufficient for certain patients. The current study was undertaken to investigate the renoprotective effects of berberine as an adjuvant therapy to standard hypotensive and hypoglycemic treatment in hypertensive patients with type 2 diabetes mellitus (T2DM). In this 2-year clinical study, 69 hypertensive patients with T2DM, whose blood pressure and fasting plasma glucose (FPG) were adequately controlled by hypotensive and oral hypoglycemic agents prior to the study, were enrolled and randomly assigned into control (33 cases) and add-on (36 cases) groups. Berberine was orally administrated to the patients in the add-on group concomitantly with standard hypotensive and hypoglycemic treatment. Baseline characteristics, including the levels of FPG, glycated hemoglobin, systolic blood pressure, diastolic blood pressure, serum creatinine, urinary albumin-to-creatine ratio (UACR), urinary osteopontin and kidney injury molecule-1 (KIM-1) were determined. Furthermore, the oxidative stress markers malondialdehyde, urinary 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, glutathione peroxidase and total-antioxidant capacity, and the inflammatory parameters vascular adhesion molecule-1, C-reactive protein and high molecular weight-adiponectin were evaluated. In addition, ultrasonographic parameters, including peak systolic velocity, end diastolic velocity and renal arterial resistance index were determined. After treatment, it was observed that the control and add-on treatments were able to adequately control blood pressure and blood glucose. Patients in the add-on group exhibited significant reductions in renal damage biochemical markers (UACR, urinary osteopontin and KIM-1) and improved renal hemodynamics, in addition to reduced inflammation and oxidative stress. The present results suggest that berberine is beneficial for hypertensive patients with T2DM as add-on therapy to standard hypotensive and hypoglycemic agents.
Collapse
Affiliation(s)
- Peifeng Dai
- Department of Ultrasound, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Junhua Wang
- Department of Ultrasound, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Lin Lin
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yanyan Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Zhengping Wang
- Department of Ultrasound, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
13
|
Mourouzis I, Mantzouratou P, Galanopoulos G, Kostakou E, Dhalla AK, Belardinelli L, Pantos C. The beneficial effects of ranolazine on cardiac function after myocardial infarction are greater in diabetic than in nondiabetic rats. J Cardiovasc Pharmacol Ther 2014; 19:457-69. [PMID: 24651516 DOI: 10.1177/1074248414524481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ranolazine (RAN) is known to exert both anti-ischemic and antidiabetic actions. Thus, this study has explored the hypothesis that RAN would have greater effect on the recovery of cardiac function in diabetic mellitus (DM) rat hearts following myocardial infarction (MI). Myocardial infarction was induced in nondiabetic (MI, n = 14) and diabetic (streptozotocin induced; DM-MI, n = 13) Wistar rats by permanent ligation of the left coronary artery. Cardiac function was evaluated using echocardiography (left ventricular ejection fraction %) and in isolated heart preparations by measuring left ventricular developed pressure (LVDP), and the positive and negative first derivative of LVDP (± dp/dt). Ranolazine (20 mg/kg, ip once a day) was administered 24 hours after surgical procedure for 4 weeks to nondiabetic (MI + RAN, n = 17) and diabetic rats (DM-MI + RAN, n = 15). The RAN improved the recovery of function in both the nondiabetic and the diabetic postinfarcted hearts but this effect was greater and achieved statistical significance only in the diabetic group. The RAN resulted in increased levels of phosphorylated protein kinase B (Akt) and mammalian target of rapamycin (mTOR, a component of Akt signaling) in both nondiabetic and diabetic infarcted hearts without changes in the activation of mitogen-activated protein kinases (MAPKs; p38 MAPK, c-Jun N-terminal kinase, and extracellular signal-regulated kinase). In addition, in diabetic hearts, RAN resulted in a significant increase in the ratio of sarcoplasmic Ca(2+)-ATPase/phospholamban (a target of Akt signaling, 2.0-fold increase) and increased levels of phosphorylated calcium-regulated adenosine monophosphate-activated protein kinase (AMPK; 2.0-fold increase). In diabetic animals, RAN increased insulin and lowered glucose levels in serum. In conclusion, the beneficial effect of RAN on the recovery of cardiac function after MI was greater in DM rats. This response was associated with activation of Akt/mTOR and AMPK. These findings provide a plausible explanation for the results of the Type 2 Diabetes Evaluation of Ranolazine in Subjects With Chronic Stable Angina (TERISA) trial, which showed a greater antianginal effect of RAN in patients with coronary artery disease and diabetes.
Collapse
Affiliation(s)
| | | | | | - Erietta Kostakou
- Department of Pharmacology, University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
14
|
Yoon AH, Ye Y, Birnbaum Y. Dipeptidyl peptidase IV inhibitors and ischemic myocardial injury. J Cardiovasc Pharmacol Ther 2014; 19:417-25. [PMID: 24607763 DOI: 10.1177/1074248414524482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diabetes mellitus is a major risk factor for cardiovascular events and patient death. Many animal and clinical studies are now being conducted exploring the potential of antidiabetic drugs such as glucagon-like peptide 1 (GLP-1) agonists and dipeptidyl peptidase IV (DPP-IV) inhibitors to improve cardiovascular outcomes. This review summarizes the effect of DPP-IV inhibitors on myocardial ischemia-reperfusion injury in animal models. The DPP-IV inhibitors prevent the rapid degradation and inactivation of incretins and lead to the accumulation of GLP-1 and other chemokines and cytokines, which appear to have both GLP-1 receptor-dependent and -independent cardioprotective, antiapoptotic, and anti-inflammatory effects. Conflicting results, however, have been reported regarding the effect of DPP-IV inhibitors on infarct size in nondiabetic and diabetic animal models. Some studies suggest that DPP-IV inhibitors given as part of preconditioning can decrease infarct size while others found no difference in infarct size compared to placebo. As postconditioning, one study suggested it does provide cardioprotection. No clinical trials have yet been conducted addressing the effect of DPP-IV inhibitors on infarct size. Thus far, clinical trials have not demonstrated improvement in cardiovascular events or mortality from any cause in high cardiovascular risk, type 2 diabetic patients with the use of DPP-IV inhibitors. Although further experiments and clinical trials will be warranted to confirm the results of these studies, the myocardial protection afforded by DPP-IV inhibitors in preclinical animal studies poses a potential breakthrough role for antidiabetic medications in attenuation of ischemia-reperfusion injury that occurs with cardiovascular disease.
Collapse
Affiliation(s)
- Alyssa H Yoon
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yochai Birnbaum
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA Department of Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|