1
|
Seyihoglu B, Orhan I, Okudur N, Aygun HK, Bhupal M, Yavuz Y, Can A. 20 years of treating ischemic cardiomyopathy with mesenchymal stromal cells: a meta-analysis and systematic review. Cytotherapy 2024; 26:1443-1457. [PMID: 39078351 DOI: 10.1016/j.jcyt.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024]
Abstract
This meta-analysis and systematic review compiles comparative data from 2004 to 2024, investigating the safety and efficacy of mesenchymal stem/stromal cells (MSCs) derived from various tissues for the treatment of ischemic cardiomyopathy (ICM) and associated heart failure. In addition, this review highlights the limitations of these interventions and provides valuable insights for future therapeutic approaches. Relevant articles were retrieved from the PubMed® database using targeted keywords. Our inclusion criteria included clinical trials with patients over 18 years of age, case reports and pilot studies. Animal experiments, in vitro studies, correlational and longitudinal studies, and study designs and protocols were excluded. Forty-nine original articles resulted in follow-up reports of 45 trials. MSCs from bone marrow, umbilical cord and adipose tissue were moderately well tolerated. Of the 1408 participants who received MSCs, 33 trials (67.3%) reported the occurrence of death or serious adverse events. These events resulted in 80 deaths (52% of reported cases) following MSC administration. Importantly, 41.3% of these deaths (n = 33) were not considered to be related to the intervention itself, while 40% of these deaths had no reported cause. As the primary outcome, the mean increase in left ventricular ejection fraction (LVEF) from baseline was 5.75% (95% CI: 3.38% -8.11%, p < 0.0001, I2 = 90,9%) in the randomized controlled trials only (n = 24) within the treatment groups and 3.19% (95% CI: 1.63% to 4.75%, p < 0.0001, I2 = 74,17%) in the control groups after the intervention. When the above results were compared using the standardized mean difference (SDM), a significance in favor of the treatment group was also found (SDM = 0.41; 95% CI: 0.19-0.64, p < 0.001, I2 = 71%). Although improvements were also seen in the control groups, 33.3% (n = 15) of the studies showed no significant difference between the control and treatment groups. The 6-minute walking test (6MWT) and New York Heart Association (NYHA) class scores, used for assessing exercise tolerance and quality of life (QoL), respectively, further supported the improvements in the treatment group. These improvements were noted as 62.5% (n = 10) for the 6MWT and 54.5% (n = 12) for the NYHA class scores. According to the risk of bias analysis, 4 trials were of good quality (11.8%), 15 were of fair quality (44.1%), and 15 were of poor quality (44.1%). Major limitations of these studies included small sample size, diagnostic challenges/lack, uncertain cell dosage and potential bias in patient selection. Despite the ongoing debate surrounding cell administration for ICM, there are supporting signs of improved clinical and laboratory outcomes, as well as improved QoL in the MSC-treated groups. However, it is important to recognize the limitations of each study, highlighting the need for larger, controlled trials to validate these findings.
Collapse
Affiliation(s)
| | - Inci Orhan
- Ankara University School of Medicine, Sihhiye, Ankara, Türkiye
| | - Nil Okudur
- Ankara University School of Medicine, Sihhiye, Ankara, Türkiye
| | | | - Melissa Bhupal
- Ankara University School of Medicine, Sihhiye, Ankara, Türkiye
| | - Yasemin Yavuz
- Department of Biostatistics, Ankara University School of Medicine, Sihhiye, Ankara 06410, Türkiye
| | - Alp Can
- Department of Histology and Embryology Laboratory for Stem Cells and Reproductive Cell Biology, Ankara University School of Medicine, Sihhiye, Ankara 06410, Türkiye.
| |
Collapse
|
2
|
Ramaseshan R, Perera D, Reid A, Andiapen M, Ariti C, Kelham M, Jones DA, Mathur A. REGENERATE-COBRA: A phase II randomized sham-controlled trial assessing the safety and efficacy of intracoronary administration of autologous bone marrow-derived cells in patients with refractory angina. Am Heart J 2024; 275:96-104. [PMID: 38862073 DOI: 10.1016/j.ahj.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
AIMS The REGENERATE-COBRA trial (NCT05711849) will assess the safety and efficacy of an intracoronary infusion of autologous bone marrow-derived mononuclear cells in refractory angina patients with no revascularization options who are symptomatic despite optimal medical and device therapy. METHODS REGENERATE-COBRA is a single site, blinded, randomized, sham-controlled, Phase II clinical trial enrolling 110 refractory angina patients with no revascularization options who are symptomatic despite optimal medical and device therapy. Patients will be randomized to either autologous bone marrow derived-mononuclear cells or a sham procedure. Patients in the cell-treated arm will undergo a bone marrow aspiration and an intracoronary infusion of autologous bone marrow derived-mononuclear cells. Patients in the control arm will undergo a sham bone marrow aspiration and a sham intracoronary infusion. The trial's primary endpoint is an improvement in Canadian Cardiovascular Society (CCS) angina class by 2 classes between baseline and 6 months. Secondary endpoints include change in: CCS class at 12 months, myocardial ischemic burden (as measured by perfusion imaging) at 6 months, quality of life at 6 and 12 months (as measured by EQ-5D-5L, EQ-5D-VAS and Seattle Angina Questionnaire), angina frequency at 6 and 12 months, total exercise time (as measured by a modified Bruce protocol) and major adverse cardiovascular events at 6 and 12 months. CONCLUSIONS This is the first trial to assess the safety and efficacy of an intracoronary infusion of autologous bone marrow-derived unfractionated mononuclear cells in symptomatic refractory angina patients who have exhausted conventional therapeutic options.
Collapse
Affiliation(s)
- Rohini Ramaseshan
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Dhanuka Perera
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alice Reid
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London
| | | | - Cono Ariti
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; Oxon Epidemiology, Madrid, Spain
| | - Matthew Kelham
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Daniel A Jones
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anthony Mathur
- Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London.
| |
Collapse
|
3
|
Paz Y, Levy Y, Grosman-Rimon L, Shinfeld A. Nonpharmacological interventions for 'no-option' refractory angina patients. J Cardiovasc Med (Hagerstown) 2024; 25:13-22. [PMID: 37942734 DOI: 10.2459/jcm.0000000000001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Refractory angina pectoris (RAP) defined as chronic anginal chest pain because of coronary artery disease (CAD) is a major problem. The increase in the number of patients with RAP in recent years is because of the increasing aging population and improved survival rates among patients with CAD. Management of patients with RAP is often extremely challenging. In this review, we present several interventional approaches for RAP, including device therapies, lifestyle intervention, and cell therapies. Some of these treatments are currently used in the management of RAP, whereas other treatments are under investigation.
Collapse
Affiliation(s)
- Yoav Paz
- General Intensive Care Unit, Sourasky Medical Center, Tel Aviv, Israel, affiliated with Sackler Faculty of Medicine, Tel Aviv University
| | - Yair Levy
- Department of Medicine, Meir Hospital, Kfar-Saba, Israel
| | - Liza Grosman-Rimon
- School of Graduate Studies, Levinsky-Wingate Academic College, Wingate Institute, Netanya, Israel
| | - Amihay Shinfeld
- Department of Cardiac Surgery, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| |
Collapse
|
4
|
Qayyum AA, Mouridsen M, Nilsson B, Gustafsson I, Schou M, Nielsen OW, Hove JD, Mathiasen AB, Jørgensen E, Helqvist S, Joshi FR, Johansen EM, Follin B, Juhl M, Højgaard LD, Haack-Sørensen M, Ekblond A, Kastrup J. Danish phase II trial using adipose tissue derived mesenchymal stromal cells for patients with ischaemic heart failure. ESC Heart Fail 2023; 10:1170-1183. [PMID: 36638837 PMCID: PMC10053281 DOI: 10.1002/ehf2.14281] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
AIMS Patients suffering from chronic ischaemic heart failure with reduced left ventricular ejection fraction (HFrEF) have reduced quality-of-life, repetitive hospital admissions, and reduced life expectancy. Allogeneic cell therapy is currently investigated as a potential treatment option after initially encouraging results from clinical autologous and allogeneic trials in patients with HFrEF. We aimed to investigate the allogeneic Cardiology Stem Cell Centre Adipose tissue derived mesenchymal Stromal Cell product (CSCC_ASC) as an add-on therapy in patients with chronic HFrEF. METHODS AND RESULTS This is a Danish multi-centre double-blinded placebo-controlled phase II study with direct intra-myocardial injections of allogeneic CSCC_ASC. A total of 81 HFrEF patients were included and randomized 2:1 to CSCC_ASC or placebo injections. The inclusion criteria were reduced left ventricular ejection fraction (LVEF ≤ 45%), New York Heart Association (NYHA) class II-III despite optimal anti-congestive heart failure medication and no further revascularization options. Injections of 0.3 mL CSCC_ASC (total cell dose 100 × 106 ASCs) (n = 54) or isotonic saline (n = 27) were performed into the viable myocardium in the border zone of infarcted tissue using the NOGA Myostar® catheter (Biological Delivery System, Cordis, Johnson & Johnson, USA). The primary endpoint, left ventricular end systolic volume (LVESV), was evaluated at 6-month follow-up. The safety was measured during a 3-years follow-up period. RESULTS Mean age was 67.0 ± 9.0 years and 66.6 ± 8.1 years in the ASC and placebo groups, respectively. LVESV was unchanged from baseline to 6-month follow-up in the ASC (125.7 ± 68.8 mL and 126.3 ± 72.5 mL, P = 0.827) and placebo (134.6 ± 45.8 mL and 135.3 ± 49.6 mL, P = 0.855) group without any differences between the groups (0.0 mL (95% CI -9.1 to 9.0 mL, P = 0.992). Neither were there significant changes in left ventricular end diastolic volume or LVEF within the two groups or between groups -5.7 mL (95% CI -16.7 to 5.3 mL, P = 0.306) and -1.7% (95% CI -4.4. to 1.0, P = 0.212), respectively). NYHA classification and 6-min walk test did not alter significantly in the two groups (P > 0.05). The quality-of-life, total symptom, and overall summary score improved significantly only in the ASC group but not between groups. There were 24 serious adverse events (SAEs) in the ASC group and 11 SAEs in the placebo group without any significant differences between the two groups at 1-year follow-up. Kaplan-Meier plot using log-rank test of combined cardiac events showed an overall mean time to event of 30 ± 2 months in the ASC group and 29 ± 2 months in the placebo group without any differences between the groups during the 3 years follow-up period (P = 0.994). CONCLUSIONS Intramyocardial CSCC_ASC injections in patients with chronic HFrEF were safe but did not improve myocardial function or structure, nor clinical symptoms.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette Mouridsen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Brian Nilsson
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ida Gustafsson
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Olav Wendelboe Nielsen
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Dahlgaard Hove
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francis Richard Joshi
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Juhl
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
6
|
Sharma A, Gupta S, Archana S, Verma RS. Emerging Trends in Mesenchymal Stem Cells Applications for Cardiac Regenerative Therapy: Current Status and Advances. Stem Cell Rev Rep 2022; 18:1546-1602. [PMID: 35122226 DOI: 10.1007/s12015-021-10314-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/29/2022]
Abstract
Irreversible myocardium infarction is one of the leading causes of cardiovascular disease (CVD) related death and its quantum is expected to grow in coming years. Pharmacological intervention has been at the forefront to ameliorate injury-related morbidity and mortality. However, its outcomes are highly skewed. As an alternative, stem cell-based tissue engineering/regenerative medicine has been explored quite extensively to regenerate the damaged myocardium. The therapeutic modality that has been most widely studied both preclinically and clinically is based on adult multipotent mesenchymal stem cells (MSC) delivered to the injured heart. However, there is debate over the mechanistic therapeutic role of MSC in generating functional beating cardiomyocytes. This review intends to emphasize the role and use of MSC in cardiac regenerative therapy (CRT). We have elucidated in detail, the various aspects related to the history and progress of MSC use in cardiac tissue engineering and its multiple strategies to drive cardiomyogenesis. We have further discussed with a focus on the various therapeutic mechanism uncovered in recent times that has a significant role in ameliorating heart-related problems. We reviewed recent and advanced technologies using MSC to develop/create tissue construct for use in cardiac regenerative therapy. Finally, we have provided the latest update on the usage of MSC in clinical trials and discussed the outcome of such studies in realizing the full potential of MSC use in clinical management of cardiac injury as a cellular therapy module.
Collapse
Affiliation(s)
- Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - S Archana
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
7
|
Bassetti B, Rurali E, Gambini E, Pompilio G. Son of a Lesser God: The Case of Cell Therapy for Refractory Angina. Front Cardiovasc Med 2021; 8:709795. [PMID: 34552966 PMCID: PMC8450394 DOI: 10.3389/fcvm.2021.709795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
In the last decades, various non-pharmacological solutions have been tested on top of medical therapy for the treatment of patients affected by refractory angina (RA). Among these therapeutics, neuromodulation, external counter-pulsation and coronary sinus constriction have been recently introduced in the guidelines for the management of RA in United States and Europe. Notably and paradoxically, although a consistent body of evidence has proposed cell-based therapies (CT) as safe and salutary for RA outcome, CT has not been conversely incorporated into current international guidelines yet. As a matter of fact, published randomized controlled trials (RCT) and meta-analyses (MTA) cumulatively indicated that CT can effectively increase perfusion, physical function and well-being, thus reducing angina symptoms and drug assumption in RA patients. In this review, we (i) provide an updated overview of novel non-pharmacological therapeutics included in current guidelines for the management of patients with RA, (ii) discuss the Level of Evidence stemmed from available clinical trials for each recommended treatment, and (iii) focus on evidence-based CT application for the management of RA.
Collapse
Affiliation(s)
- Beatrice Bassetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Elisa Gambini
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Oloker Therapeutics S.r.l., Bari, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. Int J Mol Sci 2021; 22:ijms22147447. [PMID: 34299066 PMCID: PMC8307175 DOI: 10.3390/ijms22147447] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising alternative approach to heart diseases. The most prevalent source of multipotent stem cells, usually called somatic or adult stem cells (mesenchymal stromal/stem cells, MSCs) used in clinical trials is bone marrow (BM-MSCs), adipose tissue (AT-MSCs), umbilical cord (UC-MSCs) and placenta. Therapeutic use of MSCs in cardiovascular diseases is based on the benefits in reducing cardiac fibrosis and inflammation that compose the cardiac remodeling responsible for the maintenance of normal function, something which may end up causing progressive and irreversible dysfunction. Many factors lead to cardiac fibrosis and failure, and an effective therapy is lacking to reverse or attenuate this condition. Different approaches have been shown to be promising in surpassing the poor survival of transplanted cells in cardiac tissue to provide cardioprotection and prevent cardiac remodeling. This review includes the description of pre-clinical and clinical investigation of the therapeutic potential of MSCs in improving ventricular dysfunction consequent to diverse cardiac diseases.
Collapse
|
9
|
Yang VK, Meola DM, Davis A, Barton B, Hoffman AM. Intravenous administration of allogeneic Wharton jelly-derived mesenchymal stem cells for treatment of dogs with congestive heart failure secondary to myxomatous mitral valve disease. Am J Vet Res 2021; 82:487-493. [PMID: 34032485 DOI: 10.2460/ajvr.82.6.487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate whether mesenchymal stem cells (MSCs) can be safely administered IV to dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD) to improve cardiac function and prolong survival time. ANIMALS 10 client-owned dogs with CHF secondary to MMVD. PROCEDURES Dogs with an initial episode of CHF secondary to MMVD were enrolled in a double-blind, placebo-controlled clinical trial. Five dogs in the MSC group received allogeneic Wharton jelly-derived MSCs (2 × 106 cells/kg, IV), and 5 dogs in the placebo group received a 1% solution of autologous serum (IV) for 3 injections 3 weeks apart. Cell-release criteria included trilineage differentiation, expression of CD44 and CD90 and not CD34 and major histocompatability complex class II, normal karyotype, and absence of contamination by pathogenic microorganisms. Patients were followed for 6 months or until death or euthanasia. Echocardiographic data, ECG findings, serum cardiac biomarker concentrations, CBC, and serum biochemical analysis results were obtained prior to and 4 hours after the first injection and every 3 months after the final injection. RESULTS Lymphocyte and eosinophil counts decreased significantly 4 hours after injection, and monocytes decreased significantly only in dogs that received an MSC injection. No significant differences were seen in the echocardiographic variables, ECG results, serum cardiac biomarker concentrations, survival time, and time to first diuretic drug dosage escalation between the 2 groups. CONCLUSIONS AND CLINICAL RELEVANCE This study showed that MSCs can be easily collected from canine Wharton jelly as an allogeneic source of MSCs and can be safely delivered IV to dogs with CHF secondary to MMVD.
Collapse
|
10
|
Zahra Jabbarpour, Mohammad H. Ghahremani, Massoud Saidijam, Jafar Kiani, Naser Ahmadbeigi. Trends of Stem Cell-Based Clinical Trials in Gastrointestinal Tract Diseases. JOURNAL OF ANALYTICAL ONCOLOGY 2021; 9:56-62. [DOI: 10.30683/1927-7229.2020.09.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2023]
Abstract
Stem cells have great potential to be applied as a treatment for various types of disorders. These cells exert therapeutic effects by modulating the immune system with the capability to secrete cytokines and chemokines. Previous studies have indicated that stem cells could be used as a therapeutic agent for different complaints, such as gastrointestinal diseases. For a long time now, researchers have moved toward stem cells' clinical application in this context. With the increasing number of trials in stem cell therapy of gastrointestinal disease, it is now time to evaluate these clinical trials' status. This paper reviews clinical trials that have used stem cells for the treatment of gastrointestinal tract diseases.
Collapse
|
11
|
Juhl M, Christensen JP, Pedersen AE, Kastrup J, Ekblond A. Cryopreservation of peripheral blood mononuclear cells for use in proliferation assays: First step towards potency assays. J Immunol Methods 2020; 488:112897. [PMID: 33049298 DOI: 10.1016/j.jim.2020.112897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/01/2020] [Accepted: 10/06/2020] [Indexed: 11/28/2022]
Abstract
Investigational cell-based therapeutics are rapidly heading towards pivotal clinical trials. The premise is that the scientific rationale is well defined, and that product quality reflects exactly this. In vitro potency assays are necessary tools for evaluating cell products, and with potency assays comes high demands for standardization and reproducibility of the methods involved. For demonstrating principles of cell therapeutics for allogeneic use or with claimed immunosuppressive efficacies, assays involving peripheral blood mononuclear cells (PBMC) are critical. Establishment of a cryopreserved bank of PBMC favors standardization, as it allows repeated use of a single donor and simultaneous testing of several donors. The first step to fulfil such potential is to ensure optimum conditions for preservation of PBMC function, and secondly to design assays which heightens the reproducibility. Emphasis should be put on application of the assay. The objective of the present study was to establish a methodological foundation for cell therapeutics to be tested, and several aspects were factored in, including cell concentrations and partial changes of medium. PBMC were isolated and cryopreserved in six formulations of cryoprotective medium consisting of fetal bovine serum (90%, 60%, and 30%) in combination with dimethyl sulfoxide (10% or 5%). The proliferative capacity of the cryopreserved cells was assayed by labeling with carboxyfluorescein succinimidyl ester and stimulation by phytohemagglutinin or in mixed lymphocyte reactions, analyzed by flow cytometry. To counter an eventual lag phase post thaw, the assays were designed to include two durations and to explore the possibility of reducing cell numbers, two cell concentrations. Qualitative and quantitative aspects of the staining were affected by formulation as well as design, stressing the importance of basic optimization for assay development. We conclude that the established methods allow for optimized preservation of function and will serve as a platform for further development of robust functional assays.
Collapse
Affiliation(s)
- Morten Juhl
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark.
| | | | | | - Jens Kastrup
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Denmark
| |
Collapse
|
12
|
Perrotta F, Perna A, Komici K, Nigro E, Mollica M, D’Agnano V, De Luca A, Guerra G. The State of Art of Regenerative Therapy in Cardiovascular Ischemic Disease: Biology, Signaling Pathways, and Epigenetics of Endothelial Progenitor Cells. Cells 2020; 9:E1886. [PMID: 32796767 PMCID: PMC7465688 DOI: 10.3390/cells9081886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ischemic heart disease is currently a major cause of mortality and morbidity worldwide. Nevertheless, the actual therapeutic scenario does not target myocardial cell regeneration and consequently, the progression toward the late stage of chronic heart failure is common. Endothelial progenitor cells (EPCs) are bone marrow-derived stem cells that contribute to the homeostasis of the endothelial wall in acute and chronic ischemic disease. Calcium modulation and other molecular pathways (NOTCH, VEGFR, and CXCR4) contribute to EPC proliferation and differentiation. The present review provides a summary of EPC biology with a particular focus on the regulatory pathways of EPCs and describes promising applications for cardiovascular cell therapy.
Collapse
Affiliation(s)
- Fabio Perrotta
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Angelica Perna
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Klara Komici
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- CEINGE-Biotecnologie avanzate, 80145 Naples, Italy
| | - Mariano Mollica
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Vito D’Agnano
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Germano Guerra
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| |
Collapse
|
13
|
Liu Z, Mikrani R, Zubair HM, Taleb A, Naveed M, Baig MMFA, Zhang Q, Li C, Habib M, Cui X, Sembatya KR, Lei H, Zhou X. Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations. Eur J Pharmacol 2020; 876:173049. [PMID: 32142771 DOI: 10.1016/j.ejphar.2020.173049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
In the beginning stage of heart disease, the blockage of blood flow frequently occurs due to the persistent damage and even death of myocardium. Cicatricial tissue developed after the death of myocardium can affect heart function, which ultimately leads to heart failure. In recent years, several studies carried out about the use of stem cells such as embryonic, pluripotent, cardiac and bone marrow-derived stem cells as well as myoblasts to repair injured myocardium. Current studies focus more on finding appropriate measures to enhance cell homing and survival in order to increase paracrine function. Until now, there is no universal delivery route for mesenchymal stem cells (MSCs) for different diseases. In this review, we summarize the advantages and challenges of the systemic and local pathways of MSC delivery. In addition, we also describe some advanced measures of cell delivery to improve the efficiency of transplantation. The combination of cells and therapeutic substances could be the most reliable method, which allows donor cells to deliver sufficient amounts of paracrine factors and provide long-lasting effects. The cardiac support devices or tissue engineering techniques have the potential to facilitate the controlled release of stem cells on local tissue for a sustained period. A novel promising epicardial drug delivery system is highlighted here, which not only provides MSCs with a favorable environment to promote retention but also increases the contact area and a number of cells recruited in the heart muscle.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | | | - Abdoh Taleb
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Mirza Muhammad Faran Asraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Murad Habib
- Department of Surgery, Ayub Teaching Hospital, Abbottabad, Pakistan
| | - Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Kiganda Raymond Sembatya
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Han Lei
- Department of Pharmacy, Jiangsu Worker Medical University, Nanjing, Jiangsu Province, 211198, PR China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, PR China; Department of Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, 210017, PR China; Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 210017, PR China.
| |
Collapse
|
14
|
Mathiasen AB, Qayyum AA, Jørgensen E, Helqvist S, Kofoed KF, Haack-Sørensen M, Ekblond A, Kastrup J. Bone marrow-derived mesenchymal stromal cell treatment in patients with ischaemic heart failure: final 4-year follow-up of the MSC-HF trial. Eur J Heart Fail 2019; 22:884-892. [PMID: 31863561 DOI: 10.1002/ejhf.1700] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS The study assessed 4-year outcomes of intramyocardial injections of autologous bone marrow-derived mesenchymal stromal cells (MSCs) in patients with ischaemic heart failure. METHODS AND RESULTS The MSC-HF trial was a randomized, double-blind, placebo-controlled trial. Patients were randomized 2:1 to intramyocardial injections of MSCs or placebo. The primary endpoint was change in left ventricular end-systolic volume (LVESV), measured by magnetic resonance imaging or computed tomography. Sixty patients aged 30-80 years with ischaemic heart failure, New York Heart Association class II-III, left ventricular ejection fraction (LVEF) <45% and no further treatment options were randomized. Patients were followed clinically for 12 months and in addition 4-year data of hospitalizations and survival were retrieved. After 12 months, LVESV was significantly reduced in the MSC group and not in the placebo group, with difference between groups of 17.0 ± 16.2 mL (95% confidence interval 8.3-25.7, P = 0.0002). There were also significant improvements in LVEF of 6.2% (P < 0.0001), stroke volume of 16.1 mL (P < 0.0001) and myocardial mass (P = 0.009) between groups. A significant dose-response effect was also observed. Moreover, a significant reduction in the amount of scar tissue and quality of life score in the MSC group but not in the placebo group was observed. After 4 years, there were significantly fewer hospitalizations for angina in the MSC group and otherwise no differences in hospitalizations or survival. No side effects were identified. CONCLUSIONS Intramyocardial injections of autologous bone marrow-derived MSCs improved myocardial function and myocardial mass in patients with ischaemic heart failure.
Collapse
Affiliation(s)
- Anders B Mathiasen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Abbas A Qayyum
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus F Kofoed
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiac Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiac Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Qayyum AA, Mathiasen AB, Helqvist S, Jørgensen E, Haack-Sørensen M, Ekblond A, Kastrup J. Autologous adipose-derived stromal cell treatment for patients with refractory angina (MyStromalCell Trial): 3-years follow-up results. J Transl Med 2019; 17:360. [PMID: 31711513 PMCID: PMC6849216 DOI: 10.1186/s12967-019-2110-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
Background Stem cell therapy is investigated as a treatment option for patients with ischemic heart disease. In this study, long-term safety and efficacy of autologous intra-myocardial injections of adipose-derived stromal cells (ASCs) was studied in patients with refractory angina. Methods Sixty patients with coronary artery stenosis and preserved left ventricular ejection fraction were 2:1 randomised to intramyocardial injections of ASCs or saline and followed for 3 years. Results For patients in the ASC group, the bicycle exercise time and the exercise performance in watt were un-changed (383 ± 30 s to 370 ± 44 s, P = 0.052 and 81 ± 6 to 78 ± 10, P = 0.123, respectively), but the performance in METs was reduced significantly (4.2 ± 0.3 to 4.0 ± 0.4, P = 0.027) during the follow-up period. However, in the same period, there was in the placebo group a significant decline in bicycle exercise time (437 ± 53 s to 383 ± 58 s, P = 0.001), the exercise performance measured in watt (87 ± 12 W to 80 ± 12 W, P = 0.019) and in METs (4.5 ± 0.4 to 4.1 ± 0.4, P = 0.002). Moreover, angina measured as CCS class was significantly reduced in the ASC group but not in the placebo group (2.5 ± 0.9 to 1.8 ± 1.2, P = 0.002 and 2.5 ± 0.8 to 2.1 ± 1.3, P = 0.186, respectively). However, no significant change was observed between the two groups. Conclusions Patients receiving ASCs had improved cardiac symptoms and unchanged exercise capacity, in opposition to deterioration in the placebo group. Trial registration ClinicalTrials.gov Identifier: NCT01449032. Registered 7 October 2011—Retrospectively registered, https://www.clinicaltrials.gov/ct2/show/NCT01449032?term=jens+kastrup&rank=7
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark.
| | - Anders Bruun Mathiasen
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology, Gentofte University of Copenhagen, Kildegårdsvej 28, 2900, Hellerup, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology & Cardiac Catheterization Laboratory 2014, Rigshospitalet University of Copenhagen, Inge Lehmanns Vej 7, 2100, Copenhagen, Denmark.,Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100, Copenhagen, Denmark
| |
Collapse
|
16
|
Tehzeeb J, Manzoor A, Ahmed MM. Is Stem Cell Therapy an Answer to Heart Failure: A Literature Search. Cureus 2019; 11:e5959. [PMID: 31803548 PMCID: PMC6874291 DOI: 10.7759/cureus.5959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart is one of the most industrious organs in the human body. It starts beating in the first few weeks of embryonic life and keeps pumping blood till death. This organ can host a range of diseases as well. Some can hamper the vasculature, while others can affect its electrical activity, the heart valves, etc. All these conditions can lead to end-stage failure where it can no longer meet the requirements of the body’s milieu. This imbalance between supply and demand leads to an array of symptoms. Medical management can reduce these clinical effects and possibly prolong the life expectancy in such patients. However, prescription medications can also have their own adverse effects. This necessitates that each line of treatment should be assessed on a risk vs benefit basis. The conventional approach has been to try and slow down the progression of heart failure (HF). However, the inception of stem cells in the management of HF has the potential for reversal of this pathology. Keeping this in view, many studies and trials are under process. To turn the clock back on the HF, before complications set in or get out of control, is the main focus of the time. This article attempts to evaluate various studies about stem cell therapy (SCT) and highlight the important aspects of this novel modality in changing patients' lives.
Collapse
Affiliation(s)
- Javaria Tehzeeb
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Anam Manzoor
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Munis M Ahmed
- Internal Medicine, St Mary Mercy Livonia Hospital, Livonia, USA
| |
Collapse
|
17
|
Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis 2019; 285:1-9. [PMID: 30939341 DOI: 10.1016/j.atherosclerosis.2019.03.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The stem cell-based therapy has emerged as a promising therapeutic strategy for treating cardiovascular ischemic diseases (CVIDs), such as myocardial infarction (MI). However, some important functional shortcomings of stem cell transplantation, such as immune rejection, tumorigenicity and infusional toxicity, have overshadowed stem cell therapy in the setting of cardiovascular diseases (CVDs). Accumulating evidence suggests that the therapeutic effects of transplanted stem cells are predominately mediated by secreting paracrine factors, importantly, microRNAs (miRs) present in the secreted exosomes. Therefore, novel cell-free therapy based on the stem cell-secreted exosomal miRs can be considered as a safe and effective alternative tool to stem cell therapy for the treatment of CVDs. Stem cell-derived miRs have recently been found to transfer, via exosomes, from a transplanted stem cell into a recipient cardiac cell, where they regulate various cellular process, such as proliferation, apoptosis, stress responses, as well as differentiation and angiogenesis. The present review aimed to summarize cardioprotective exosomal miRs secreted by transplanted stem cells from various sources, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and cardiac stem/progenitor cells, which showed beneficial modulatory effects on the myocardial infracted heart. In summary, stem cell-exosomal miRs, including miR-19a, mirR-21, miR-21-5p, miR-21-a5p, miR-22 miR-24, miR-26a, miR-29, miR-125b-5p, miR-126, miR-201, miR-210, and miR-294, have been shown to have cardioprotective effects by enhancing cardiomyocyte survival and function and attenuating cardiac fibrosis. Additionally, MCS-exosomal miRs, including miR-126, miR-210, miR-21, miR-23a-3p and miR-130a-3p, are found to exert cardioprotective effects through induction of angiogenesis in ischemic heart after MI.
Collapse
|
18
|
Schmuck EG, Hacker TA, Schreier DA, Chesler NC, Wang Z. Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right ventricles of pulmonary arterial hypertensive rats. Am J Physiol Heart Circ Physiol 2019; 316:H1005-H1013. [PMID: 30822119 DOI: 10.1152/ajpheart.00091.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Right ventricular failure (RVF) is a common cause of death in patients suffering from pulmonary arterial hypertension (PAH). The current treatment for PAH only moderately improves symptoms, and RVF ultimately occurs. Therefore, it is necessary to develop new treatment strategies to protect against right ventricle (RV) maladaptation despite PAH progression. In this study, we hypothesize that local mesenchymal stem cell (MSC) delivery via a novel bioscaffold can improve RV function despite persistent PAH. To test our hypothesis, we induced PAH in adult rats with SU5416 and chronic hypoxia exposure; treated with rat MSCs delivered by intravenous injection, intramyocardial injection, or epicardial placement of a bioscaffold; and then examined treatment effectiveness by in vivo pressure-volume measurement, echocardiography, histology, and immunohistochemistry. Our results showed that compared with other treatment groups, only the MSC-seeded bioscaffold group resulted in RV functional improvement, including restored stroke volume, cardiac output, and improved stroke work. Diastolic function indicated by end-diastolic pressure-volume relationship was improved by the local MSC treatments or bioscaffold alone. Cardiomyocyte hypertrophy and RV fibrosis were both reduced, and von Willebrand factor expression was restored by the MSC-seeded bioscaffold treatment. Overall, our study suggests a potential new regenerative therapy to rescue the pressure-overload failing RV with persistent pulmonary vascular disease, which may improve quality of life and/or survival of PAH patients. NEW & NOTEWORTHY We explored the effects of mesenchymal stem cell-seeded bioscaffold on right ventricles (RVs) of rats with established pulmonary arterial hypertension (PAH). Some beneficial effects were observed despite persistent PAH, suggesting that this may be a new therapy for RV to improve quality of life and/or survival of PAH patients.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, University of Wisconsin , Madison, Wisconsin
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin , Madison, Wisconsin
| | - David A Schreier
- Department of Biomedical Engineering, University of Wisconsin , Madison, Wisconsin
| | - Naomi C Chesler
- Department of Medicine, University of Wisconsin , Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin , Madison, Wisconsin
| | - Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin , Madison, Wisconsin.,Department of Mechanical Engineering, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
19
|
Lalu MM, Mazzarello S, Zlepnig J, Dong YYR, Montroy J, McIntyre L, Devereaux PJ, Stewart DJ, David Mazer C, Barron CC, McIsaac DI, Fergusson DA. Safety and Efficacy of Adult Stem Cell Therapy for Acute Myocardial Infarction and Ischemic Heart Failure (SafeCell Heart): A Systematic Review and Meta-Analysis. Stem Cells Transl Med 2018; 7:857-866. [PMID: 30255989 PMCID: PMC6265630 DOI: 10.1002/sctm.18-0120] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022] Open
Abstract
Preclinical and clinical evidence suggests that mesenchymal stem cells (MSCs) may be beneficial in treating both acute myocardial infarction (AMI) and ischemic heart failure (IHF). However, the safety profile and efficacy of MSC therapy is not well‐known. We conducted a systematic review of clinical trials that evaluated the safety or efficacy of MSCs for AMI or IHF. Embase, PubMed/Medline, and Cochrane Central Register of Controlled Trials were searched from inception to September 27, 2017. Studies that examined the use of MSCs administered to adults with AMI or IHF were eligible. The Cochrane risk of bias tool was used to assess bias of included studies. The primary outcome was safety assessed by adverse events and the secondary outcome was efficacy which was assessed by mortality and left ventricular ejection fraction (LVEF). A total of 668 citations were reviewed and 23 studies met eligibility criteria. Of these, 11 studies evaluated AMI and 12 studies evaluated IHF. There was no association between MSCs and acute adverse events. There was a significant improvement in overall LVEF in patients who received MSCs (SMD 0.73, 95% CI 0.24–1.21). No significant difference in mortality was noted (Peto OR 0.68, 95% CI 0.38–1.22). Results from our systematic review suggest that MSC therapy for ischemic heart disease appears to be safe. There is a need for a well‐designed adequately powered randomized control trial (with rigorous adverse event reporting and evaluations of cardiac function) to further establish a clear risk‐benefit profile of MSCs. Stem Cells Translational Medicine2018;7:857–866
Collapse
Affiliation(s)
- Manoj M Lalu
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sasha Mazzarello
- Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jennifer Zlepnig
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Joshua Montroy
- Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Lauralyn McIntyre
- Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Division of Critical Care, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - P J Devereaux
- Population Health Research Institute, David Braley Cardiac, Vascular, and Stroke Research Institute, Departments of Medicine and Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - C David Mazer
- Department of Anesthesia, Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Department of Physiology, Toronto, Ontario, Canada
| | - Carly C Barron
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Daniel I McIsaac
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Blueprint Translational Research Group, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Kobayashi K, Suzuki K. Mesenchymal Stem/Stromal Cell-Based Therapy for Heart Failure ― What Is the Best Source? ―. Circ J 2018; 82:2222-2232. [DOI: 10.1253/circj.cj-18-0786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuya Kobayashi
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London
| |
Collapse
|
21
|
Cheng K, de Silva R. New Advances in the Management of Refractory Angina Pectoris. Eur Cardiol 2018; 13:70-79. [PMID: 30310476 PMCID: PMC6159415 DOI: 10.15420/ecr.2018:1:2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Refractory angina is a significant clinical problem and its successful management is often extremely challenging. Defined as chronic angina-type chest pain in the presence of myocardial ischaemia that persists despite optimal medical, interventional and surgical treatment, current therapies are limited and new approaches to treatment are needed. With an ageing population and increased survival from coronary artery disease, clinicians will increasingly encounter this complex condition in routine clinical practice. Novel therapies to target myocardial ischaemia in patients with refractory angina are at the forefront of research and in this review we discuss those in clinical translation and assess the evidence behind their efficacy.
Collapse
Affiliation(s)
- Kevin Cheng
- Specialist Angina Service, Royal Brompton and Harefield NHS Foundation TrustLondon, UK
- Imperial College Healthcare NHS TrustLondon, UK
| | - Ranil de Silva
- Specialist Angina Service, Royal Brompton and Harefield NHS Foundation TrustLondon, UK
- Vascular Science Department, National Heart and Lung InstituteLondon, UK
| |
Collapse
|
22
|
Grimaldi V, Zullo A, Donatelli F, Mancini FP, Cacciatore F, Napoli C. Potential clinical benefits of cell therapy in coronary heart disease: an update. J Thorac Dis 2018; 10:S2412-S2422. [PMID: 30123579 DOI: 10.21037/jtd.2018.04.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell therapy is a central issue of regenerative medicine and is raising a growing interest in the scientific community, but its full therapeutic potential in coronary heart disease (CHD) has not been reached yet. Several different methods, cell types, delivery routes, and supporting techniques have been attempted and improved to elicit cardiac regeneration in CHD, but only some of them showed a really convincing potential for the use in clinical practice. Here we provide an update on approaches and clinical trials of cell therapy applied to CHD, which are ongoing or that have been realized in the last 5 years. Moreover, we discuss the evidence collected so far in favor or against the validity of stem cell therapy for CHD. In particular, we review and comment the recent advances in cell therapy applied to CHD, the most promising cell types, delivery strategies, biochemical and engineering techniques that have been adopted in this context.
Collapse
Affiliation(s)
- Vincenzo Grimaldi
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.,CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Francesco Donatelli
- Department of Clinical and Community Sciences University of Milan, Milan, Italy.,Department of Cardiac Surgery, Ospedale Monaldi, Azienda dei Colli, 80131 Naples, Italy
| | | | - Francesco Cacciatore
- Department of Clinical and Community Sciences University of Milan, Milan, Italy.,Department of Cardiac Surgery, Ospedale Monaldi, Azienda dei Colli, 80131 Naples, Italy.,Department of Translational Medical Sciences, "Federico II" University of Naples, 80131 Naples, Italy.,Fondazione Salvatore Maugeri, IRCCS, Telese Terme, Benevento, Italy
| | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Naples, Italy
| |
Collapse
|
23
|
Wang D, Li LK, Dai T, Wang A, Li S. Adult Stem Cells in Vascular Remodeling. Am J Cancer Res 2018; 8:815-829. [PMID: 29344309 PMCID: PMC5771096 DOI: 10.7150/thno.19577] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/01/2017] [Indexed: 01/03/2023] Open
Abstract
Understanding the contribution of vascular cells to blood vessel remodeling is critical for the development of new therapeutic approaches to cure cardiovascular diseases (CVDs) and regenerate blood vessels. Recent findings suggest that neointimal formation and atherosclerotic lesions involve not only inflammatory cells, endothelial cells, and smooth muscle cells, but also several types of stem cells or progenitors in arterial walls and the circulation. Some of these stem cells also participate in the remodeling of vascular grafts, microvessel regeneration, and formation of fibrotic tissue around biomaterial implants. Here we review the recent findings on how adult stem cells participate in CVD development and regeneration as well as the current state of clinical trials in the field, which may lead to new approaches for cardiovascular therapies and tissue engineering.
Collapse
|
24
|
Cell Therapy for Refractory Angina: A Reappraisal. Stem Cells Int 2017; 2017:5648690. [PMID: 29375624 PMCID: PMC5742462 DOI: 10.1155/2017/5648690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/05/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiac cell-based therapy has emerged as a novel therapeutic option for patients dealing with untreatable refractory angina (RA). However, after more than a decade of controlled studies, no definitive consensus has been reached regarding clinical efficacy. Although positive results in terms of surrogate endpoints have been suggested by early and phase II clinical studies as well as by meta-analyses, the more recent reports lacked the provision of definitive response in terms of hard clinical endpoints. Regrettably, pivotal trials designed to conclusively determine the efficacy of cell-based therapeutics in such a challenging clinical condition are therefore still missing. Considering this, a comprehensive reappraisal of cardiac cell-based therapy role in RA seems warranted and timely, since a number of crucial cell- and patient-related aspects need to be systematically analysed. As an example, the large variability in efficacy endpoint selection appears to be a limiting factor for the advancement of cardiac cell-based therapy in the field. This review will provide an overview of the key elements that may have influenced the results of cell-based trials in the context of RA, focusing in particular on the understanding at which the extent of angina-related endpoints may predict cell-based therapeutic efficacy.
Collapse
|
25
|
Adipose-Derived Stromal Cells for Treatment of Patients with Chronic Ischemic Heart Disease (MyStromalCell Trial): A Randomized Placebo-Controlled Study. Stem Cells Int 2017; 2017:5237063. [PMID: 29333165 PMCID: PMC5733128 DOI: 10.1155/2017/5237063] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/21/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
We aimed to evaluate the effect of intramyocardial injections of autologous VEGF-A165-stimulated adipose-derived stromal cells (ASCs) in patients with refractory angina. MyStromalCell trial is a randomized double-blind placebo-controlled study including sixty patients with CCS/NYHA class II-III, left ventricular ejection fraction > 40%, and at least one significant coronary artery stenosis. Patients were treated with ASC or placebo in a 2 : 1 ratio. ASCs from the abdomen were culture expanded and stimulated with VEGF-A165. At 6 months follow-up, bicycle exercise tolerance increased significantly in time duration 22 s (95%CI −164 to 208 s) (P = 0.034), in watt 4 (95%CI −33 to 41, 0.048), and in METs 0.2 (95%CI −1.4 to 1.8) (P = 0.048) in the ASC group while there was a nonsignificant increase in the placebo group in time duration 9 s (95%CI −203 to 221 s) (P = 0.053), in watt 7 (95%CI −40 to 54) (P = 0.41), and in METs 0.1 (95%CI −1.7 to 1.9) (P = 0.757). The difference between the groups was not significant (P = 0.680, P = 0.608, and P = 0.720 for time duration, watt, and METs, resp.). Intramyocardial delivered VEGF-A165-stimulated ASC treatment was safe but did not improve exercise capacity compared to placebo. However, exercise capacity increased in the ASC but not in the placebo group. This trial is registered with ClinicalTrials.gov NCT01449032.
Collapse
|
26
|
Rationale and Design of the First Double-Blind, Placebo-Controlled Trial with Allogeneic Adipose Tissue-Derived Stromal Cell Therapy in Patients with Ischemic Heart Failure: A Phase II Danish Multicentre Study. Stem Cells Int 2017; 2017:8506370. [PMID: 29056973 PMCID: PMC5625749 DOI: 10.1155/2017/8506370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ischemic heart failure (IHF) has a poor prognosis in spite of optimal therapy. We have established a new allogeneic Cardiology Stem Cell Centre adipose-derived stromal cell (CSCC_ASC) product from healthy donors. It is produced without animal products, in closed bioreactor systems and cryopreserved as an off-the-shelf product ready to use. STUDY DESIGN A multicentre, double-blind, placebo-controlled phase II study with direct intramyocardial injections of allogeneic CSCC_ASC in patients with chronic IHF. A total of 81 patients will be randomised at 2 : 1 to CSCC_ASC or placebo. There is no HLA tissue type matching needed between the patients and the donors. METHODS The treatment will be delivered by direct injections into the myocardium. The primary endpoint is change in the left ventricle endsystolic volume at 6-month follow-up. Secondary endpoints are safety and changes in left ventricle ejection fraction, myocardial mass, stroke volume, and cardiac output. Other secondary endpoints are change in clinical symptoms, 6-minute walking test, and the quality of life after 6 and 12 months. CONCLUSION The aim of the present study is to demonstrate safety and the regenerative efficacy of the allogeneic CSCC_ASC product from healthy donors in a double-blind, placebo-controlled, multicentre study in patients with IHF.
Collapse
|
27
|
Abstract
INTRODUCTION In specific forms of congenital heart defects and pulmonary hypertension, the right ventricle (RV) is exposed to systemic levels of pressure overload. The RV is prone to failure in these patients because of its vulnerability to chronic pressure overload. As patients with a systemic RV reach adulthood, an emerging epidemic of RV failure has become evident. Medical therapies proven for LV failure are ineffective in treating RV failure. Areas covered: In this review, the pathophysiology of the failing RV under pressure overload is discussed, with specific emphasis on the pivotal roles of angiogenesis and oxidative stress. Studies investigating the ability of stem cell therapy to improve angiogenesis and mitigate oxidative stress in the setting of pressure overload are then reviewed. Finally, clinical trials utilizing stem cell therapy to prevent RV failure under pressure overload in congenital heart disease will be discussed. Expert commentary: Although considerable hurdles remain before their mainstream clinical implementation, stem cell therapy possesses revolutionary potential in the treatment of patients with failing systemic RVs who currently have very limited long-term treatment options. Rigorous clinical trials of stem cell therapy for RV failure that target well-defined mechanisms will ensure success adoption of this therapeutic strategy.
Collapse
Affiliation(s)
- Ming-Sing Si
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Richard G Ohye
- a Department of Cardiac Surgery, Section of Pediatric Cardiovascular Surgery , University of Michigan Medical School , Ann Arbor , MI , USA
| |
Collapse
|
28
|
Kastrup J, Haack-Sørensen M, Juhl M, Harary Søndergaard R, Follin B, Drozd Lund L, Mønsted Johansen E, Ali Qayyum A, Bruun Mathiasen A, Jørgensen E, Helqvist S, Jørgen Elberg J, Bruunsgaard H, Ekblond A. Cryopreserved Off-the-Shelf Allogeneic Adipose-Derived Stromal Cells for Therapy in Patients with Ischemic Heart Disease and Heart Failure-A Safety Study. Stem Cells Transl Med 2017; 6:1963-1971. [PMID: 28880460 PMCID: PMC6430047 DOI: 10.1002/sctm.17-0040] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
The present first‐in‐human clinical trial evaluated the safety and feasibility of a newly developed and cryopreserved Cardiology Stem Cell Centre adipose‐derived stromal cell (CSCC_ASC) product from healthy donors for intramyocardial injection in ten patients with ischemic heart disease and ischemic heart failure (IHF). Batches of CSCC_ASC were isolated from three healthy donors by liposuction from abdominal adipose tissue. Adipose mesenchymal stromal cells were culture expanded in bioreactors without the use of animal constituents, cryopreserved, and stored in vials in nitrogen dry‐storage containers until use. Direct injection of CSCC_ASC into the myocardium did not cause any complications or serious adverse events related to either treatment or cell administration in a 6‐month follow‐up period. Four out of ten heart failure patients developed donor‐specific de novo human leukocyte antigen (HLA) class I antibodies, and two out of ten patients had donor‐specific HLA antibodies already at baseline. There were no clinical symptoms or changes in inflammatory parameters in the follow‐up period that indicated an ongoing immune response. There was a tendency toward improvement in cardiac function after CSCC_ASC treatment at 6‐month follow‐up: left ventricular end systolic volume decreased and left ventricular ejection fraction increased. In addition, exercise capacity increased. These changes were independent of the presence or absence of HLA antibodies. It is concluded that the newly developed cryopreserved product CSCC_ASC from healthy donors was a safe and feasible treatment. We observed a tendency toward efficacy in patients with IHF. These findings have to be confirmed in larger placebo controlled clinical trials. Stem Cells Translational Medicine2017;6:1963–1971
Collapse
Affiliation(s)
- Jens Kastrup
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Rebekka Harary Søndergaard
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Bjarke Follin
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Lisbeth Drozd Lund
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Abbas Ali Qayyum
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Jens Jørgen Elberg
- Department of Plastic Surgery, Breast Surgery & Burns, Rigshospitalet, University of Copenhagen, Denmark
| | - Helle Bruunsgaard
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
29
|
Hossain MM, Murali MR, Kamarul T. Genetically modified mesenchymal stem/stromal cells transfected with adiponectin gene can stably secrete adiponectin. Life Sci 2017; 182:50-56. [PMID: 28606849 DOI: 10.1016/j.lfs.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
Abstract
AIMS Mesenchymal stem/stromal cells (MSCs) hold promises for the treatment of diverse diseases and regeneration of injured tissues. Genetic modification of MSCs through gene delivery might enhance their therapeutic potential. Adiponectin has been appeared as a potential biomarker for predicting various diseases. Plasma adiponectin levels are negatively correlated with various metabolic and vascular diseases and supplementation of exogenous adiponectin ameliorates the diseases. This study aims to develop adiponectin secreting genetically modified MSCs (GM-MSCs) as a potent strategic tool to complement endogenous adiponectin for the treatment of adiponectin deficiency diseases. MAIN METHODS Human bone marrow derived MSCs were isolated, expanded in vitro and transfected with adiponectin gene containing plasmid vector. Total RNA was extracted and cDNA was prepared by reverse transcription polymerase chain reaction (RT-PCR). The expression of adiponectin gene and protein in GM-MSCs was analyzed by PCR and Western blotting respectively. The secretion of adiponectin protein from GM-MSCs was analyzed by enzyme-linked immunosorbent assay. KEY FINDINGS The expression of adiponectin gene and plasmid DNA was detected in GM-MSCs but not in control group of MSCs. Adiponectin gene expression was detected in GM-MSCs at 2, 7, 14, 21 and 28days after transfection. Western blotting analysis revealed the expression of adiponectin protein only in GM-MSCs. The GM-MSCs stably secreted adiponectin protein into culture media at least for 4weeks. SIGNIFICANCE GM-MSCs express and secret adiponectin protein. Therefore, these adiponectin secreting GM-MSCs could be instrumental for the supplementation of adiponectin in the treatment of adiponectin deficiency related diseases.
Collapse
Affiliation(s)
- Md Murad Hossain
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Malliga Raman Murali
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Director, University Malay Medical Center, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Pieper IL, Smith R, Bishop JC, Aldalati O, Chase AJ, Morgan G, Thornton CA. Isolation of Mesenchymal Stromal Cells From Peripheral Blood of ST Elevation Myocardial Infarction Patients. Artif Organs 2017; 41:654-666. [DOI: 10.1111/aor.12829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | - Rachel Smith
- Swansea University Medical School, Institute of Life Science
| | | | - Omar Aldalati
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Alex J. Chase
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Gareth Morgan
- Swansea University Medical School, Institute of Life Science
| | | |
Collapse
|
31
|
Nigro P, Bassetti B, Cavallotti L, Catto V, Carbucicchio C, Pompilio G. Cell therapy for heart disease after 15 years: Unmet expectations. Pharmacol Res 2017; 127:77-91. [PMID: 28235633 DOI: 10.1016/j.phrs.2017.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Over the past two decades cardiac cell therapy (CCT) has emerged as a promising new strategy to cure heart diseases at high unmet need. Thousands of patients have entered clinical trials for acute or chronic heart conditions testing different cell types, including autologous or allogeneic bone marrow (BM)-derived mononuclear or selected cells, BM- or adipose tissue-derived mesenchymal cells, or cardiac resident progenitors based on their potential ability to regenerate scarred or dysfunctional myocardium. Nowadays, the original enthusiasm surrounding the regenerative medicine field has been cushioned by a cumulative body of evidence indicating an inefficient or modest efficacy of CCT in improving cardiac function, along with the continued lack of indisputable proof for long-term prognostic benefit. In this review, we have firstly comprehensively outlined the positive and negative results of cell therapy studies in patients with acute myocardial infarction, refractory angina and chronic heart failure. Next, we have discussed cell therapy- and patient-related variables (e.g. cell intrinsic and extrinsic characteristics as well as criteria of patient selection and proposed methodologies) that might have dampened the efficacy of past cell therapy trials. Finally, we have addressed critical factors to be considered before embarking on further clinical trials.
Collapse
Affiliation(s)
- Patrizia Nigro
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Beatrice Bassetti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Laura Cavallotti
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Valentina Catto
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Corrado Carbucicchio
- Cardiac Arrhythmia Research Centre, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino-IRCCS, via Carlo Parea 4, 20138, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, via Festa del Perdono 7, 20122, Milan, Italy.
| |
Collapse
|
32
|
Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering. Stem Cells Int 2017; 2017:3945403. [PMID: 28303152 PMCID: PMC5337882 DOI: 10.1155/2017/3945403] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs) are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.
Collapse
|
33
|
Trindade F, Leite-Moreira A, Ferreira-Martins J, Ferreira R, Falcão-Pires I, Vitorino R. Towards the standardization of stem cell therapy studies for ischemic heart diseases: Bridging the gap between animal models and the clinical setting. Int J Cardiol 2016; 228:465-480. [PMID: 27870978 DOI: 10.1016/j.ijcard.2016.11.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Today there is an increasing demand for heart transplantations for patients diagnosed with heart failure. Though, shortage of donors as well as the large number of ineligible patients hurdle such treatment option. This, in addition to the considerable number of transplant rejections, has driven the clinical research towards the field of regenerative medicine. Nonetheless, to date, several stem cell therapies tested in animal models fall by the wayside and when they meet the criteria to clinical trials, subjects often exhibit modest improvements. A main issue slowing down the admission of such therapies in the domain of human trials is the lack of protocol standardization between research groups, which hampers comparison between different approaches as well as the lack of thought regarding the clinical translation. In this sense, given the large amount of reports on stem cell therapy studies in animal models reported in the last 3years, we sought to evaluate their advantages and limitations towards the clinical setting and provide some suggestions for the forthcoming investigations. We expect, with this review, to start a new paradigm on regenerative medicine, by evoking the debate on how to plan novel stem cell therapy studies with animal models in order to achieve more consistent scientific production and accelerate the admission of stem cell therapies in the clinical setting.
Collapse
Affiliation(s)
- Fábio Trindade
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | - Rita Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | - Rui Vitorino
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| |
Collapse
|
34
|
Kastrup J, Mygind ND, Qayyum AA, Mathiasen AB, Haack-Sørensen M, Ekblond A. Mesenchymal stromal cell therapy in ischemic heart disease. SCAND CARDIOVASC J 2016; 50:293-299. [DOI: 10.1080/14017431.2016.1210213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jens Kastrup
- Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Naja Dam Mygind
- Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Abbas Ali Qayyum
- Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Chery J, Wong J, Huang S, Wang S, Si MS. Regenerative Medicine Strategies for Hypoplastic Left Heart Syndrome. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:459-469. [PMID: 27245633 DOI: 10.1089/ten.teb.2016.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoplastic left heart syndrome (HLHS), the most severe and common form of single ventricle congenital heart lesions, is characterized by hypoplasia of the mitral valve, left ventricle (LV), and all LV outflow structures. While advances in surgical technique and medical management have allowed survival into adulthood, HLHS patients have severe morbidities, decreased quality of life, and a shortened lifespan. The single right ventricle (RV) is especially prone to early failure because of its vulnerability to chronic pressure overload, a mode of failure distinct from ischemic cardiomyopathy encountered in acquired heart disease. As these patients enter early adulthood, an emerging epidemic of RV failure has become evident. Regenerative medicine strategies may help preserve or boost RV function in children and adults with HLHS by promoting angiogenesis and mitigating oxidative stress. Rescuing a RV in decompensated failure may also require the creation of new, functional myocardium. Although considerable hurdles remain before their clinical translation, stem cell therapy and cardiac tissue engineering possess revolutionary potential in the treatment of pediatric and adult patients with HLHS who currently have very limited long-term treatment options.
Collapse
Affiliation(s)
- Josue Chery
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Joshua Wong
- 2 Department of Pediatric Cardiology, University of Michigan , Ann Arbor, Michigan
| | - Shan Huang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Shuyun Wang
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| | - Ming-Sing Si
- 1 Department of Cardiac Surgery, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
36
|
|
37
|
Huang Y, Mai L, Cai X, Hu Y, Mai W. Stem cell therapy for heart disease-Meta-analysis may be misleading. Int J Cardiol 2015; 203:351-2. [PMID: 26529085 DOI: 10.1016/j.ijcard.2015.10.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Yuli Huang
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Department of Cardiology, the First People's Hospital of Shunde, Foshan, 528300, China
| | - Linlin Mai
- Department of Cardiology, the First People's Hospital of Shunde, Foshan, 528300, China
| | - Xiaoyan Cai
- Clinical Medicine Research Center, the First People's Hospital of Shunde Foshan, 528300, China
| | - Yunzhao Hu
- Department of Cardiology, the First People's Hospital of Shunde, Foshan, 528300, China
| | - Weiyi Mai
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
38
|
Padda J, Sequiera GL, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: hits and misses. Can J Physiol Pharmacol 2015; 93:835-41. [DOI: 10.1139/cjpp-2014-0468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiac injury and loss of cardiomyocytes is a causative as well as a resultant condition of cardiovascular disorders, which are the leading cause of death throughout the world. This loss of cardiomyocytes cannot be completely addressed through the currently available drugs being administered, which mainly function only in relieving the symptoms. There is a huge potential being investigated for regenerative and cell replacement therapies through recruiting stem cells of various origins namely embryonic, reprogramming/induction, and adult tissue. These sources are being actively studied for translation to clinical scenarios. In this review, we attempt to discuss some of these promising scenarios, including the clinical trials and the obstacles that need to be overcome, and hope to address the direction in which stem cell therapy is heading.
Collapse
Affiliation(s)
- Jagjit Padda
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Glen Lester Sequiera
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Regenerative Medicine Program, College of Medicine, Faculty of Health Sciences, University of Manitoba, R 3028-2, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
39
|
Mesenchymal stromal cell therapy: different sources exhibit different immunobiological properties. Transplantation 2015; 99:1113-8. [PMID: 26035274 DOI: 10.1097/tp.0000000000000734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Abstract
Chronic angina is a common manifestation of ischaemic heart disease. Medical treatments are the mainstay approach to reduce the occurrence of angina and improve patients' quality of life. This Series paper focuses on commonly used standard treatments (eg, nitrates, β blockers, and calcium-channel blockers), emerging anti-angina treatments (which are not available in all parts of the world), and experimental treatments. Although many emerging treatments are available, evidence is scarce about their ability to reduce angina and ischaemia.
Collapse
Affiliation(s)
- Steen E Husted
- Department of Medicine, Hospital Unit West, Herning, Denmark; Department of Clinical Pharmacology, Institute of Biomedicine, Aarhus University, Aarhus, Denmark
| | - E Magnus Ohman
- The Program for Advanced Coronary Disease, Division of Cardiology, Duke University and Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
41
|
Behbahan IS, Keating A, Gale RP. Bone Marrow Therapies for Chronic Heart Disease. Stem Cells 2015; 33:3212-27. [PMID: 26086629 DOI: 10.1002/stem.2080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/16/2015] [Indexed: 12/20/2022]
Abstract
Chronic heart failure is a leading cause of death. The demand for new therapies and the potential regenerative capacity of bone marrow-derived cells has led to numerous clinical trials. We critically discuss current knowledge of the biology and clinical application of bone marrow cells. It appears unlikely that bone marrow cells can develop into functional cardiomyocyte after infusion but may have favorable paracrine effects. Most, but not all, clinical trials report a modest short- but not long-term benefit of infusing bone marrow-derived cells. Effect size appears to correlate with stringency of study-design: the most stringent trials report the smallest effect-sizes. We conclude there may be short- but not substantial long-term benefit of infusing bone marrow-derived cells into persons with chronic heart failure and any benefit observed is unlikely to result from trans-differentiation of bone marrow-derived cells into functioning cardiomyocytes.
Collapse
Affiliation(s)
- Iman Saramipoor Behbahan
- Clinical Observer, Division of Hematology, Stanford MDS Center, Stanford University, Palo Alto, California, USA
| | - Armand Keating
- Division of Hematology, University of Toronto, Cell Therapy Program, Princess Margaret Hospital, Toronto, Canada
| | - Robert Peter Gale
- Section of Haematology, Division of Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Follin B, Juhl M, Cohen S, Pedersen AE, Gad M, Kastrup J, Ekblond A. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: Phenotypic and immunomodulatory evaluation. Cytotherapy 2015; 17:1104-18. [DOI: 10.1016/j.jcyt.2015.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/25/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|
43
|
|
44
|
Mathiasen AB, Qayyum AA, Jørgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, Haack-Sørensen M, Ekblond A, Kastrup J. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 2015; 36:1744-53. [PMID: 25926562 DOI: 10.1093/eurheartj/ehv136] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/02/2015] [Indexed: 01/10/2023] Open
Abstract
AIMS Regenerative treatment with mesenchymal stromal cells (MSCs) has been promising in patients with ischaemic heart failure but needs confirmation in larger randomized trials. We aimed to study effects of intra-myocardial autologous bone marrow-derived MSC treatment in patients with severe ischaemic heart failure. METHODS AND RESULTS The MSC-HF trial is a randomized, double-blind, placebo-controlled trial. Patients were randomized 2 : 1 to intra-myocardial injections of MSC or placebo, respectively. The primary endpoint was change in left ventricular end-systolic volume (LVESV), measured by magnetic resonance imaging or computed tomography at 6 months follow-up. Sixty patients aged 30-80 years with severe ischaemic heart failure, New York Heart Association (NYHA) classes II-III, left ventricular ejection fraction (LVEF) <45% and no further treatment options were randomized. Fifty-five patients completed the 6-month follow-up (37 MSCs vs. 18 placebo). At 6 months, LVESV was reduced in the MSC group: -7.6 (95% CI -11.8 to -3.4) mL (P = 0.001), and increased in the placebo group: 5.4 (95% CI -0.4 to 11.2) mL (P = 0.07). The difference between groups was 13.0 (95% CI 5.9-20.1) mL (P = 0.001). Compared with placebo, there were also significant improvements in LVEF of 6.2% (P<0.0001), stroke volume of 18.4 mL (P < 0.0001), and myocardial mass of 5.7 g (P = 0.001). No differences were found in NYHA class, 6-min walking test and Kansas City cardiomyopathy questionnaire. No side effects were identified. CONCLUSION Intra-myocardial injections of autologous culture expanded MSCs were safe and improved myocardial function in patients with severe ischaemic heart failure. STUDY REGISTRATION NUMBER NCT00644410 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Anders Bruun Mathiasen
- Cardiac Catheterization Laboratory 2014 and Cardiology Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Abbas Ali Qayyum
- Cardiac Catheterization Laboratory 2014 and Cardiology Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Erik Jørgensen
- Cardiac Catheterization Laboratory 2014 and Cardiology Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Steffen Helqvist
- Cardiac Catheterization Laboratory 2014 and Cardiology Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Anne Fischer-Nielsen
- Department of Clinical Immunology 2034, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus F Kofoed
- Cardiac Catheterization Laboratory 2014 and Cardiology Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark Department of Radiology, Diagnostic Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiac Catheterization Laboratory 2014 and Cardiology Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Annette Ekblond
- Cardiac Catheterization Laboratory 2014 and Cardiology Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Jens Kastrup
- Cardiac Catheterization Laboratory 2014 and Cardiology Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| |
Collapse
|
45
|
Tratwal J, Mathiasen AB, Juhl M, Brorsen SK, Kastrup J, Ekblond A. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells. Stem Cell Res Ther 2015; 6:62. [PMID: 25889587 PMCID: PMC4431456 DOI: 10.1186/s13287-015-0062-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/05/2014] [Accepted: 03/24/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns of ASCs. Methods Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow cytometry. Microarray gene expressions were obtained using the Affymetrix HT HG-U133+ GeneChip®. Gene set enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes and gene ontology terms. Transcription of selected genes of interest was confirmed by quantitative PCR. Results Compared to ASCs in complete medium, 190 and 108 genes were significantly altered by serum deprivation and serum deprivation combined with VEGF, respectively. No significant differences in gene expression patterns between serum-deprived ASCs and serum-deprived ASCs combined with VEGF stimulation were found. Genes most prominently and significantly upregulated by both conditions were growth factors (IGF1, BMP6, PDGFD, FGF9), adhesion molecule CLSTN2, extracellular matrix-related proteins such as matricellular proteins SMOC2, SPON1 and ADAMTS12, and inhibitors of proliferation (JAG1). The most significantly downregulated genes included matrix metalloproteinases (MMP3, MMP1), and proliferation markers (CDKN3) and GREM2 (a BMP6 antagonist). Conclusion The decisive factor for the observed change in ASC gene expression proves to be serum starvation rather than VEGF stimulation. Changes in expression of growth factors, matricellular proteins and matrix metalloproteinases in concert, diverge from direct pro-angiogenic paracrine mechanisms as a primary consequence of the used protocol. In vitro serum starvation (with or without VEGF present) appears to favour cardioprotection, extracellular matrix remodelling and blood vessel maturation relevant for the late maturation phase in infarct healing.
Collapse
Affiliation(s)
- Josefine Tratwal
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Anders Bruun Mathiasen
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Sonja Kim Brorsen
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University Hospital Copenhagen, Juliane Maries Vej 20, dept. 9302, Copenhagen, 2100, Denmark.
| |
Collapse
|
46
|
Efimenko AY, Kochegura TN, Akopyan ZA, Parfyonova YV. Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells. Biores Open Access 2015; 4:26-38. [PMID: 26309780 PMCID: PMC4497652 DOI: 10.1089/biores.2014.0042] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During recent years different types of adult stem/progenitor cells have been successfully applied for the treatment of many pathologies, including cardiovascular diseases. The regenerative potential of these cells is considered to be due to their high proliferation and differentiation capacities, paracrine activity, and immunologic privilege. However, therapeutic efficacy of the autologous stem/progenitor cells for most clinical applications remains modest, possibly because of the attenuation of their regenerative potential in aged patients with chronic diseases such as cardiovascular diseases and metabolic disorders. In this review we will discuss the risk factors affecting the therapeutic potential of adult stem/progenitor cells as well as the main approaches to mitigating them using the methods of regenerative medicine.
Collapse
Affiliation(s)
- Anastasia Yu. Efimenko
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana N. Kochegura
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Zhanna A. Akopyan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Yelena V. Parfyonova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
- Laboratory of Angiogenesis, Russian Cardiology Research and Production Complex, Moscow, Russian Federation
| |
Collapse
|
47
|
Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y, Ashraf M, Xu M. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 2014; 182:349-60. [PMID: 25590961 DOI: 10.1016/j.ijcard.2014.12.043] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/27/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exosomes play an important role in intercellular signaling and exert regulatory function by carrying bioactive molecules. This study investigated (1) the cardioprotective capabilities of exosomes derived from mesenchymal stem cells (MSCs) overexpressing GATA-4 (MSC(GATA-4)) and (2) its underlying regulatory mechanisms for expression of target proteins in recipient cells. METHODS AND RESULTS Exosomes were isolated and purified from MSC(GATA-4) (Exo(GATA-4)) and control MSCs (Exo(Null)). Cell injury was investigated in primary cultured rat neonatal cardiomyocytes (CM) and in the rat heart. Exosomes contributed to increased CM survival, reduced CM apoptosis, and preserved mitochondrial membrane potential in CM cultured under a hypoxic environment. Direct intramyocardial transplantation of exosomes at the border of an ischemic region following ligation of the left anterior descending coronary artery significantly restored cardiac contractile function and reduced infarct size. Real-time PCR revealed that several anti-apoptotic miRs were highly expressed in Exo(GATA-4). Rapid internalization of Exo(GATA-4) by CM was documented using time-lapse imaging. Subsequent expression of these miRs, particularly miR-19a was higher in CM and in the myocardium treated with Exo(GATA-4) compared to those treated with Exo(Null). The enhanced protective effects observed in CM were diminished by the inhibition of miR-19a. The expression level of PTEN, a predicted target of miR-19a, was reduced in CM treated with Exo(GATA-4), which resulted in the activation of the Akt and ERK signaling pathways. CONCLUSIONS Exo(GATA-4) upon transplantation in the damaged tissue mediate protection by releasing multiple miRs responsible for activation of the cell survival signaling pathway.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ha Won Kim
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Min Gong
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Jingcai Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Ronald W Millard
- Department of Pharmacology & Cell Biophysics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA.
| |
Collapse
|
48
|
Dzhoyashvili NA, Efimenko AY, Kochegura TN, Kalinina NI, Koptelova NV, Sukhareva OY, Shestakova MV, Akchurin RS, Tkachuk VA, Parfyonova YV. Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2. J Transl Med 2014; 12:337. [PMID: 25491476 PMCID: PMC4268805 DOI: 10.1186/s12967-014-0337-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/21/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multipotent mesenchymal stem/stromal cells (MSC) including adipose-derived stromal cells (ADSC) have been successfully applied for cardiovascular diseases treatment. Their regenerative potential is considered due to the multipotency, paracrine activity and immunologic privilege. However, therapeutic efficacy of autologous MSC for myocardial ischemia therapy is modest. We analyzed if ADSC properties are attenuated in patients with chronic diseases such as coronary artery disease (CAD) and diabetes mellitus type 2 (T2DM). METHODS AND RESULTS ADSC were isolated from subcutaneous fat tissue of patients without established cardiovascular diseases and metabolic disorders (control group, n = 19), patients with CAD only (n = 32) and patients with CAD and T2DM (n = 28). ADSC phenotype (flow cytometry) was CD90(+)/CD73(+)/CD105(+)/CD45(-)/CD31(-) and they were capable of adipogenic and osteogenic differentiation. ADSC morphology and immunophenotype were similar for all patients, but ADSC from patients with CAD and T2DM had higher proliferation activity and shorter telomeres compared to control patients. ADSC conditioned media stimulated capillary-like tubes formation by endothelial cells (EA.hy926), but this effect significantly decreased for patients with CAD (p = 0.03) and with CAD + T2DM (p = 0.017) compared to the control group. Surprisingly we revealed significantly higher secretion of some pro-angiogenic factors (ELISA) by ADSC: vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) for patients with CAD and HGF and placental growth factor (PlGF) for patients with CAD + T2DM. Among angiogenesis inhibitors such as thrombospondin-1, endostatin and plasminogen activator inhibitor-1 (PAI-1) level of PAI-1 in ADSC conditioned media was significantly higher for patients with CAD and CAD + T2DM compared to the control group (p < 0.01). Inhibition of PAI-1 in ADSC conditioned media by neutralizing antibodies partially restored ADSC angiogenic activity (p = 0.017). CONCLUSIONS ADSC angiogenic activity is significantly declined in patients with CAD and T2DM, which could restrict the effectiveness of autologous ADSC cell therapy in these cohorts of patients. This impairment might be due to the disturbance in coordinated network of pro- and anti-angiogenic growth factors secreted by ADSC. Changes in ADSC secretome differ between patients with CAD and T2DM and further investigation are necessary to reveal the MSC-involved mechanisms of cardiovascular and metabolic diseases and develop novel approaches to their correction using the methods of regenerative medicine.
Collapse
Affiliation(s)
- Nina A Dzhoyashvili
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation. .,Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 31/5, Moscow, 119192, Russian Federation.
| | - Anastasia Yu Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 31/5, Moscow, 119192, Russian Federation.
| | - Tatiana N Kochegura
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 31/5, Moscow, 119192, Russian Federation.
| | - Natalia I Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 31/5, Moscow, 119192, Russian Federation.
| | - Natalia V Koptelova
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 31/5, Moscow, 119192, Russian Federation.
| | - Olga Yu Sukhareva
- Institute of Diabetes Mellitus, Endocrinology Research Centre, Moscow, Russian Federation.
| | - Marina V Shestakova
- Institute of Diabetes Mellitus, Endocrinology Research Centre, Moscow, Russian Federation.
| | - Renat S Akchurin
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation.
| | - Vsevolod A Tkachuk
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation. .,Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 31/5, Moscow, 119192, Russian Federation.
| | - Yelena V Parfyonova
- Russian Cardiology Research and Production Complex, Moscow, Russian Federation. .,Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 31/5, Moscow, 119192, Russian Federation.
| |
Collapse
|
49
|
Qayyum AA, Mathiasen AB, Kastrup J. Stem cell therapy to treat heart ischaemia: implications for diabetes cardiovascular complications. Curr Diab Rep 2014; 14:554. [PMID: 25344789 DOI: 10.1007/s11892-014-0554-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a well-known risk factor for coronary artery disease (CAD), which can lead to acute myocardial infarction, chronic myocardial ischaemia and heart failure. Despite the advantages in medical treatment, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), morbidity and mortality is still high in patients with CAD. Along with PCI and CABG or in patients without options for revascularization, stem cell regenerative therapy in controlled trials is a possibility. Stem cells are believed to exert their actions by angiogenesis and regeneration of cardiomyocytes. Recently published clinical trials and meta-analysis of stem cell studies have shown encouraging results with increased left ventricle ejection fraction and reduced symptoms in patients with CAD and heart failure. There is some evidence of mesenchymal stem cell being more effective compared to other cell types and cell therapy may be more effective in patients with known diabetes mellitus. However, further investigations are warranted.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Cardiac Catheterization Laboratory 2014 and Cardiac Stem Cell Laboratory, The Heart Centre, Rigshospitalet, Copenhagen University Hospital and Faculty of Health Sciences, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark,
| | | | | |
Collapse
|