1
|
Takada S, Sabe H, Kinugawa S. Treatments for skeletal muscle abnormalities in heart failure: sodium-glucose transporter 2 and ketone bodies. Am J Physiol Heart Circ Physiol 2021; 322:H117-H128. [PMID: 34860594 DOI: 10.1152/ajpheart.00100.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Various skeletal muscle abnormalities are known to occur in heart failure (HF), and are closely associated with exercise intolerance. Particularly, abnormal energy metabolism caused by mitochondrial dysfunction in skeletal muscle is a cause of decreased endurance exercise capacity. However, to date, no specific drug treatment has been established for the skeletal muscle abnormalities and exercise intolerance occurring in HF patients. Sodium-glucose transporter 2 (SGLT2) inhibitors promote glucose excretion by suppressing glucose reabsorption in the renal tubules, which has a hypoglycemic effect independent of insulin secretion. Recently, large clinical trials have demonstrated that treatment with SGLT2 inhibitors suppresses cardiovascular events in patients who have HF with systolic dysfunction. Mechanisms of the therapeutic effects of SGLT2 inhibitors for HF have been suggested to be diuretic, suppression of neurohumoral factor activation, renal protection, and improvement of myocardial metabolism, but has not been clarified to date. SGLT2 inhibitors are known to increase blood ketone bodies. This suggests that they may improve the abnormal skeletal muscle metabolism in HF, i.e., improve fatty acid metabolism, suppress glycolysis, and utilize ketone bodies in mitochondrial energy production. Ultimately, they may improve aerobic metabolism in skeletal muscle, and suppress anaerobic metabolism and improve aerobic exercise capacity at the level of the anaerobic threshold. The potential actions of such SGLT2 inhibitors explain their effectiveness in HF, and may be candidates for new drug treatments aimed at improving exercise intolerance. In this review, we outlined the effects of SGLT2 inhibitors on skeletal muscle metabolism, with a particular focus on ketone metabolism.
Collapse
Affiliation(s)
- Shingo Takada
- Department of Sports Education, Faculty of Lifelong Sport, Hokusho University, Ebetsu, Hokkaido, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Experimental and Clinical Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| |
Collapse
|
2
|
Yokota J, Endo R, Takahashi R, Matsukawa Y, Matsushima K. Dysphagia and malnutrition limit activities of daily living improvement in phase i cardiac rehabilitation: a prospective cohort study for acute phase heart failure patients. Heart Vessels 2021; 36:1306-1316. [PMID: 33675424 DOI: 10.1007/s00380-021-01814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Dysphagia and malnutrition combinations in hospitalized patients with acute heart failure (AHF) may affect activities of daily living (ADL) after hospital discharge more than dysphagia or malnutrition alone. The aim of the present study to clarify the impact of the combination of dysphagia and malnutrition on ADL in hospitalized patients with acute phase heart failure who have undergone cardiac rehabilitation (CR). Prospective cohort study. Acute care hospital. Participants were 224 AHF patients undergoing CR. Barthel index (BI), functional oral intake scale (FOIS), controlling nutritional status (CONUT), short physical performance battery (SPPB), and mini-mental state examination were evaluated at baseline. We examined primary effects of predictors (CONUT) and the moderator (FOIS) and the interaction effect of FOIS and CONUT (FOIS × CONUT) using hierarchical linear regression model and simple-slope tests. The ADL independence dropped in 29.5% of the patients on hospitalization; however, 82.6% of the patients successfully regained their independence at discharge. Based on the FOIS score and nutritional status on admission, 58.5% of the patients were classified into the non-dysphagia and non-malnutrition categories, 21.0% into non-dysphagia and malnutrition, 15.2% into dysphagia and non-malnutrition, and 5.3% into dysphagia and malnutrition. Lower FOIS and SPPB scores as well as the FOIS × CONUT interaction predicted a significantly lower BI but not CONUT. Simple slope test revealed a negative association between CONUT and BI with low-level FOIS (B = - 2.917, P < .001) but not with high-level FOIS (B = .476, P = .512). Thus, patients with dysphagia and malnutrition in combination had a greater risk of failed recovery of ADL after cardiac rehabilitation than those without this combination. In hospitalized AHF patients, FOIS and CONUT had an interactive effect on BI at hospital discharge in cases with low-level FOIS. Early detection of dysphagia might improve the accurate identification of hospitalized AHF patients at higher risk of ADL dependence at discharge.
Collapse
Affiliation(s)
- Junichi Yokota
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Clinical Research, National Hospital Organization Sendai Medical Center, Sendai, Japan. .,Division of Comprehensive Rehabilitation Sciences, Hirosaki University Graduate School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Ryunosuke Endo
- Division of Comprehensive Rehabilitation Sciences, Hirosaki University Graduate School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Ren Takahashi
- Department of Rehabilitation, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Yuko Matsukawa
- Department of Rehabilitation, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Keisuke Matsushima
- Department of Rehabilitation, National Hospital Organization Sendai Medical Center, Sendai, Japan
| |
Collapse
|
3
|
Wood N, Straw S, Scalabrin M, Roberts LD, Witte KK, Bowen TS. Skeletal muscle atrophy in heart failure with diabetes: from molecular mechanisms to clinical evidence. ESC Heart Fail 2021; 8:3-15. [PMID: 33225593 PMCID: PMC7835554 DOI: 10.1002/ehf2.13121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Two highly prevalent and growing global diseases impacted by skeletal muscle atrophy are chronic heart failure (HF) and type 2 diabetes mellitus (DM). The presence of either condition increases the likelihood of developing the other, with recent studies revealing a large and relatively poorly characterized clinical population of patients with coexistent HF and DM (HFDM). HFDM results in worse symptoms and poorer clinical outcomes compared with DM or HF alone, and cardiovascular-focused disease-modifying agents have proven less effective in HFDM indicating a key role of the periphery. This review combines current clinical knowledge and basic biological mechanisms to address the critical emergence of skeletal muscle atrophy in patients with HFDM as a key driver of symptoms. We discuss how the degree of skeletal muscle wasting in patients with HFDM is likely underpinned by a variety of mechanisms that include mitochondrial dysfunction, insulin resistance, inflammation, and lipotoxicity. Given many atrophic triggers (e.g. ubiquitin proteasome/autophagy/calpain activity and supressed IGF1-Akt-mTORC1 signalling) are linked to increased production of reactive oxygen species, we speculate that a higher pro-oxidative state in HFDM could be a unifying mechanism that promotes accelerated fibre atrophy. Overall, our proposal is that patients with HFDM represent a unique clinical population, prompting a review of treatment strategies including further focus on elucidating potential mechanisms and therapeutic targets of muscle atrophy in these distinct patients.
Collapse
Affiliation(s)
- Nathanael Wood
- Faculty of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Klaus K. Witte
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | |
Collapse
|
4
|
Systemic oxidative stress is associated with lower aerobic capacity and impaired skeletal muscle energy metabolism in heart failure patients. Sci Rep 2021; 11:2272. [PMID: 33500450 PMCID: PMC7838203 DOI: 10.1038/s41598-021-81736-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress plays a role in the progression of chronic heart failure (CHF). We investigated whether systemic oxidative stress is linked to exercise intolerance and skeletal muscle abnormalities in patients with CHF. We recruited 30 males: 17 CHF patients, 13 healthy controls. All participants underwent blood testing, cardiopulmonary exercise testing, and magnetic resonance spectroscopy (MRS). The serum thiobarbituric acid reactive substances (TBARS; lipid peroxides) were significantly higher (5.1 ± 1.1 vs. 3.4 ± 0.7 μmol/L, p < 0.01) and the serum activities of superoxide dismutase (SOD), an antioxidant, were significantly lower (9.2 ± 7.1 vs. 29.4 ± 9.7 units/L, p < 0.01) in the CHF cohort versus the controls. The oxygen uptake (VO2) at both peak exercise and anaerobic threshold was significantly depressed in the CHF patients; the parameters of aerobic capacity were inversely correlated with serum TBARS and positively correlated with serum SOD activity. The phosphocreatine loss during plantar-flexion exercise and intramyocellular lipid content in the participants' leg muscle measured by 31phosphorus- and 1proton-MRS, respectively, were significantly elevated in the CHF patients, indicating abnormal intramuscular energy metabolism. Notably, the skeletal muscle abnormalities were related to the enhanced systemic oxidative stress. Our analyses revealed that systemic oxidative stress is related to lowered whole-body aerobic capacity and skeletal muscle dysfunction in CHF patients.
Collapse
|
5
|
Matsumoto J, Takada S, Furihata T, Nambu H, Kakutani N, Maekawa S, Mizushima W, Nakano I, Fukushima A, Yokota T, Tanaka S, Handa H, Sabe H, Kinugawa S. Brain-Derived Neurotrophic Factor Improves Impaired Fatty Acid Oxidation Via the Activation of Adenosine Monophosphate-Activated Protein Kinase-ɑ - Proliferator-Activated Receptor-r Coactivator-1ɑ Signaling in Skeletal Muscle of Mice With Heart Failure. Circ Heart Fail 2020; 14:e005890. [PMID: 33356364 DOI: 10.1161/circheartfailure.119.005890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND We recently reported that treatment with rhBDNF (recombinant human brain-derived neurotrophic factor) improved the reduced exercise capacity of mice with heart failure (HF) after myocardial infarction (MI). Since BDNF is reported to enhance fatty acid oxidation, we herein conducted an in vivo investigation to determine whether the improvement in exercise capacity is due to the enhancement of the fatty acid oxidation of skeletal muscle via the AMPKα-PGC1α (adenosine monophosphate-activated protein kinase-ɑ-proliferator-activated receptor-r coactivator-1ɑ) axis. METHODS MI and sham operations were conducted in C57BL/6J mice. Two weeks postsurgery, we randomly divided the MI mice into groups treated with rhBDNF or vehicle for 2 weeks. AMPKα-PGC1α signaling and mitochondrial content in the skeletal muscle of the mice were evaluated by Western blotting and transmission electron microscopy. Fatty acid β-oxidation was examined by high-resolution respirometry using permeabilized muscle fiber. BDNF-knockout mice were treated with 5-aminoimidazole-4-carboxamide-1-beta-d-riboruranoside, an activator of AMPK. RESULTS The rhBDNF treatment significantly increased the expressions of phosphorylated AMPKα and PGC1α protein and the intermyofibrillar mitochondrial density in the MI mice. The lowered skeletal muscle mitochondrial fatty acid oxidation was significantly improved in the rhBDNF-treated MI mice. The reduced exercise capacity and mitochondrial dysfunction of the BDNF-knockout mice were improved by 5-aminoimidazole-4-carboxamide-1-beta-d-riboruranoside. CONCLUSIONS Beneficial effects of BDNF on the exercise capacity of mice with HF are mediated through an enhancement of fatty acid oxidation via the activation of AMPKα-PGC1α in skeletal muscle. BDNF may become a therapeutic option to improve exercise capacity as an alternative or adjunct to exercise training.
Collapse
Affiliation(s)
- Junichi Matsumoto
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideo Nambu
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Maekawa
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Wataru Mizushima
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ippei Nakano
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology (S. Tanaka), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Handa
- Department of Molecular Biology (H.H., H.S.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology (H.H., H.S.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine (J.M., S. Takada, T.F., H.N., N.K., S.M., W.M., I.N., A.F., T.Y., S.K.), Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Takada S, Sabe H, Kinugawa S. Abnormalities of Skeletal Muscle, Adipocyte Tissue, and Lipid Metabolism in Heart Failure: Practical Therapeutic Targets. Front Cardiovasc Med 2020; 7:79. [PMID: 32478098 PMCID: PMC7235191 DOI: 10.3389/fcvm.2020.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic diseases, including heart failure (HF), are often accompanied with skeletal muscle abnormalities in both quality and quantity, which are the major cause of impairment of the activities of daily living and quality of life. We have shown that skeletal muscle abnormalities are a hallmark of HF, in which metabolic pathways involving phosphocreatine and fatty acids are largely affected. Not only in HF, but the dysfunction of fatty acid metabolism may also occur in many chronic diseases, such as arteriosclerosis, as well as through insufficient physical exercise. Decreased fatty acid catabolism affects adenosine triphosphate (ATP) production in mitochondria, via decreased activity of the tricarboxylic acid cycle; and may cause abnormal accumulation of adipose tissue accompanied with hyperoxidation and ectopic lipid deposition. Such impairments of lipid metabolism are in turn detrimental to skeletal muscle, which is hence a chicken-and-egg problem between skeletal muscle and HF. In this review, we first discuss skeletal muscle abnormalities in HF, including sarcopenia; particularly their association with lipid metabolism and adipose tissue. On the other hand, the precise mechanisms involved in metabolic reprogramming and dysfunction are beginning to be understood, and an imbalance of daily nutritional intake of individuals has been found to be a causative factor for the development and worsening of HF. Physical exercise has long been known to be beneficial for the prevention and even treatment of HF. Again, the molecular mechanisms by which exercise promotes skeletal muscle as well as cardiac muscle functions are being clarified by recent studies. We propose that it is now the time to develop more “natural” methods to prevent and treat HF, rather than merely relying on drugs and medical interventions. Further analysis of the basic design of and molecular mechanisms involved in the human body, particularly the inextricable association between physical exercise and the integrity and functional plasticity of skeletal and cardiac muscles is required.
Collapse
Affiliation(s)
- Shingo Takada
- Faculty of Lifelong Sport, Department of Sports Education, Hokusho University, Ebetsu, Japan.,Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Kakutani N, Takada S, Nambu H, Matsumoto J, Furihata T, Yokota T, Fukushima A, Kinugawa S. Angiotensin-converting-enzyme inhibitor prevents skeletal muscle fibrosis in myocardial infarction mice. Skelet Muscle 2020; 10:11. [PMID: 32334642 PMCID: PMC7183133 DOI: 10.1186/s13395-020-00230-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transforming growth factor beta (TGF-β)-Smad2/3 is the major signaling pathway of fibrosis, which is characterized by the excessive production and accumulation of extracellular matrix (ECM) components, including collagen. Although the ECM is an essential component of skeletal muscle, fibrosis may be harmful to muscle function. On the other hand, our previous studies have shown that levels of angiotensin II, which acts upstream of TGF-β-Smad2/3 signaling, is increased in mice with myocardial infarction (MI). In this study, we found higher skeletal muscle fibrosis in MI mice compared with control mice, and we investigated the mechanisms involved therein. Moreover, we administered an inhibitor based on the above mechanism and investigated its preventive effects on skeletal muscle fibrosis. METHODS Male C57BL/6 J mice with MI were created, and sham-operated mice were used as controls. The time course of skeletal muscle fibrosis post-MI was analyzed by picrosirius-red staining (days 1, 3, 7, and 14). Mice were then divided into 3 groups: sham + vehicle (Sham + Veh), MI + Veh, and MI + lisinopril (an angiotensin-converting enzyme [ACE] inhibitor, 20 mg/kg body weight/day in drinking water; MI + Lis). Lis or Veh was administered from immediately after the surgery to 14 days postsurgery. RESULTS Skeletal muscle fibrosis was significantly increased in MI mice compared with sham mice from 3 to 14 days postsurgery. Although mortality was lower in the MI + Lis mice than the MI + Veh mice, there was no difference in cardiac function between the 2 groups at 14 days. Skeletal muscle fibrosis and hydroxyproline (a key marker of collagen content) were significantly increased in MI + Veh mice compared with the Sham + Veh mice. Consistent with these results, protein expression of TGF-β and phosphorylated Smad2/3 in the skeletal muscle during the early time points after surgery (days 1-7 postsurgery) and blood angiotensin II at 14 days postsurgery was increased in MI mice compared with sham mice. These impairments were improved in MI + Lis mice, without any effects on spontaneous physical activity, muscle strength, muscle weight, and blood pressure. CONCLUSIONS ACE inhibitor administration prevents increased skeletal muscle fibrosis during the early phase after MI. Our findings indicate a new therapeutic target for ameliorating skeletal muscle abnormalities in heart diseases.
Collapse
Affiliation(s)
- Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
- Faculty of Lifelong Sport, Department of Sports Education, Hokusho University, Ebetsu, Japan.
| | - Hideo Nambu
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Junichi Matsumoto
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
8
|
Kintscher U, Foryst-Ludwig A, Haemmerle G, Zechner R. The Role of Adipose Triglyceride Lipase and Cytosolic Lipolysis in Cardiac Function and Heart Failure. CELL REPORTS MEDICINE 2020; 1:100001. [PMID: 33205054 PMCID: PMC7659492 DOI: 10.1016/j.xcrm.2020.100001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heart failure is one of the leading causes of death worldwide. New therapeutic concepts are urgently required to lower the burden of heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), the two major forms of heart failure. Lipolytic processes are induced during the development of heart failure and occur in adipose tissue and multiple organs, including the heart. Increasing evidence suggests that cellular lipolysis, in particular, adipose triglyceride lipase (ATGL) activity, has an important function in cardiac (patho)physiology. This review summarizes the crucial role of cellular lipolysis for normal cardiac function and for the development of HFrEF and HFpEF. We discuss the most relevant pre-clinical studies and elaborate on the cardiac consequences of non-myocardial and myocardial lipolysis modulation. Finally, we critically analyze the therapeutic importance of pharmacological ATGL inhibition as a potential treatment option for HFrEF and/or HFpEF in the future.
Collapse
Affiliation(s)
- Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Corresponding author
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Einstein BIH Visiting Fellow, Berlin Institute of Health, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Nakano I, Hori H, Fukushima A, Yokota T, Kinugawa S, Takada S, Yamanashi K, Obata Y, Kitaura Y, Kakutani N, Abe T, Anzai T. Enhanced Echo Intensity of Skeletal Muscle Is Associated With Exercise Intolerance in Patients With Heart Failure. J Card Fail 2019; 26:685-693. [PMID: 31533068 DOI: 10.1016/j.cardfail.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Skeletal muscle is quantitatively and qualitatively impaired in patients with heart failure (HF), which is closely linked to lowered exercise capacity. Ultrasonography (US) for skeletal muscle has emerged as a useful, noninvasive tool to evaluate muscle quality and quantity. Here we investigated whether muscle quality based on US-derived echo intensity (EI) is associated with exercise capacity in patients with HF. METHODS AND RESULTS Fifty-eight patients with HF (61 ± 12 years) and 28 control subjects (58 ± 14 years) were studied. The quadriceps femoris echo intensity (QEI) was significantly higher and the quadriceps femoris muscle thickness (QMT) was significantly lower in the patients with HF than the controls (88.3 ± 13.4 vs 81.1 ± 7.5, P= .010; 5.21 ± 1.10 vs 6.54 ±1.34 cm, P< .001, respectively). By univariate analysis, QEI was significantly correlated with age, peak oxygen uptake (VO2), and New York Heart Association class in the HF group. A multivariable analysis revealed that the QEI was independently associated with peak VO2 after adjustment for age, gender, body mass index, and QMT: β-coefficient = -11.80, 95%CI (-20.73, -2.86), P= .011. CONCLUSION Enhanced EI in skeletal muscle was independently associated with lowered exercise capacity in HF. The measurement of EI is low-cost, easily accessible, and suitable for assessment of HF-related alterations in skeletal muscle quality.
Collapse
Affiliation(s)
- Ippei Nakano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Hori
- Department of Rehabilitation, Hokkaido University Hospital, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahiro Abe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Tsuda M, Fukushima A, Matsumoto J, Takada S, Kakutani N, Nambu H, Yamanashi K, Furihata T, Yokota T, Okita K, Kinugawa S, Anzai T. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure. J Cachexia Sarcopenia Muscle 2018; 9:844-859. [PMID: 30168279 PMCID: PMC6204592 DOI: 10.1002/jcsm.12322] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exercise intolerance is a common clinical feature and is linked to poor prognosis in patients with heart failure (HF). Skeletal muscle dysfunction, including impaired energy metabolism in the skeletal muscle, is suspected to play a central role in this intolerance, but the underlying mechanisms remain elusive. Lysine acetylation, a recently identified post-translational modification, has emerged as a major contributor to the derangement of mitochondrial metabolism. We thus investigated whether mitochondrial protein acetylation is associated with impaired skeletal muscle metabolism and lowered exercise capacity in both basic and clinical settings of HF. METHODS We first conducted a global metabolomic analysis to determine whether plasma acetyl-lysine is a determinant factor for peak oxygen uptake (peak VO2 ) in HF patients. We then created a murine model of HF (n = 11) or sham-operated (n = 11) mice with or without limited exercise capacity by ligating a coronary artery, and we tested the gastrocnemius tissues by using mass spectrometry-based acetylomics. A causative relationship between acetylation and the activity of a metabolic enzyme was confirmed in in vitro studies. RESULTS The metabolomic analysis verified that acetyl-lysine was the most relevant metabolite that was negatively correlated with peak VO2 (r = -0.81, P < 0.01). At 4 weeks post-myocardial infarction HF, a treadmill test showed lowered work (distance × body weight) and peak VO2 in the HF mice compared with the sham-operated mice (11 ± 1 vs. 23 ± 1 J, P < 0.01; 143 ± 5 vs. 159 ± 3 mL/kg/min, P = 0.01; respectively). As noted, the protein acetylation of gastrocnemius mitochondria was 48% greater in the HF mice than the sham-operated mice (P = 0.047). Acetylproteomics identified the mitochondrial enzymes involved in fatty acid β-oxidation (FAO), the tricarboxylic acid cycle, and the electron transport chain as targets of acetylation. In parallel, the FAO enzyme (β-hydroxyacyl CoA dehydrogenase) activity and fatty acid-driven mitochondrial respiration were reduced in the HF mice. This alteration was associated with a decreased expression of mitochondrial deacetylase, Sirtuin 3, because silencing of Sirtuin 3 in cultured skeletal muscle cells resulted in increased mitochondrial acetylation and reduced β-hydroxyacyl CoA dehydrogenase activity. CONCLUSIONS Enhanced mitochondrial protein acetylation is associated with impaired FAO in skeletal muscle and reduced exercise capacity in HF. Our results indicate that lysine acetylation is a crucial mechanism underlying deranged skeletal muscle metabolism, suggesting that its modulation is a potential approach for exercise intolerance in HF.
Collapse
Affiliation(s)
- Masaya Tsuda
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Matsumoto
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideo Nambu
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koichi Okita
- Graduate School of Program in Lifelong Learning Studies, Hokusho University, Ebetsu, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H. Skeletal Muscle Abnormalities in Heart Failure. Int Heart J 2015; 56:475-84. [PMID: 26346520 DOI: 10.1536/ihj.15-108] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise capacity is lowered in patients with heart failure, which limits their daily activities and also reduces their quality of life. Furthermore, lowered exercise capacity has been well demonstrated to be closely related to the severity and prognosis of heart failure. Skeletal muscle abnormalities including abnormal energy metabolism, transition of myofibers from type I to type II, mitochondrial dysfunction, reduction in muscular strength, and muscle atrophy have been shown to play a central role in lowered exercise capacity. The skeletal muscle abnormalities can be classified into the following main types: 1) low endurance due to mitochondrial dysfunction; and 2) low muscle mass and muscle strength due to imbalance of protein synthesis and degradation. The molecular mechanisms of these skeletal muscle abnormalities have been studied mainly using animal models. The current review including our recent study will focus upon the skeletal muscle abnormalities in heart failure.
Collapse
Affiliation(s)
- Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | | | | | | | | |
Collapse
|
12
|
Takahashi M, Kinugawa S, Takada S, Hirabayashi K, Yokota T, Matsushima S, Saito A, Okita K, Tsutsui H. Low-intensity exercise under ischemic conditions enhances metabolic stress in patients with heart failure. Int J Cardiol 2015; 201:142-4. [PMID: 26298358 DOI: 10.1016/j.ijcard.2015.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/22/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Masashige Takahashi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Shingo Takada
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kagami Hirabayashi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akimichi Saito
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koichi Okita
- Department of Sport Education, Hokusho University, Ebetsu, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
13
|
Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W, Nishikawa M, Takahashi M, Yokota T, Matsushima S, Okita K, Tsutsui H. Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle. Exp Physiol 2015; 100:312-22. [DOI: 10.1113/expphysiol.2014.084095] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Tsuneaki Homma
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Yoshihiro Masaki
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Wataru Mizushima
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Mikito Nishikawa
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Masashige Takahashi
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| | - Koichi Okita
- Graduate School of Lifelong Sport; Hokusho University; Hokkaido Ebetsu Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine; Hokkaido University Graduate School of Medicine; Kita-ku, Hokkaido Sapporo Japan
| |
Collapse
|
14
|
Fukushima A, Kinugawa S, Homma T, Masaki Y, Furihata T, Yokota T, Matsushima S, Takada S, Kadoguchi T, Oba K, Okita K, Tsutsui H. Serum brain-derived neurotropic factor level predicts adverse clinical outcomes in patients with heart failure. J Card Fail 2015; 21:300-6. [PMID: 25639689 DOI: 10.1016/j.cardfail.2015.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 12/01/2014] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Brain-derived neurotropic factor (BDNF) is involved in cardiovascular diseases as well as skeletal muscle energy metabolism and depression. We investigated whether serum BDNF level was associated with prognosis in patients with heart failure (HF). METHODS AND RESULTS We measured the serum BDNF level in 58 patients with HF (59.2 ± 13.7 years old, New York Heart Association functional class I-III) at baseline, and adverse events, including all cardiac deaths and HF rehospitalizations, were recorded during the median follow-up of 20.3 months. In a univariate analysis, serum BDNF levels were significantly associated with peak oxygen capacity (β = 0.547; P = .003), anaerobic threshold (β = 0.929; P = .004), and log minute ventilation/carbon dioxide production slope (β = -10.15; P = .005), but not Patient Health Questionnaire scores (β = -0.099; P = .586). A multivariate analysis demonstrated that serum BDNF level was an independent prognostic factor of adverse events (hazard ratio 0.41, 95% confidence interval 0.20-0.84; P = .003). The receiver operating characteristic curve demonstrated that low levels of BDNF (<17.4 ng/mL) were associated with higher rates of adverse events compared with high levels of BDNF (≥17.4 ng/mL; log rank test: P < .001). CONCLUSIONS Decreased serum BDNF levels were significantly associated with adverse outcomes in HF patients, suggesting that these levels can be a useful prognostic biomarker.
Collapse
Affiliation(s)
- Arata Fukushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Tsuneaki Homma
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshihiro Masaki
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Oba
- Translational Research and Clinical Trial Center, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Okita
- Graduate School of Program in Lifelong Learning Studies, Hokusho University, Ebetsu, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|