1
|
Cruz FM, Macías Á, Moreno-Manuel AI, Gutiérrez LK, Vera-Pedrosa ML, Martínez-Carrascoso I, Pérez PS, Robles JMR, Bermúdez-Jiménez FJ, Díaz-Agustín A, de Benito FM, Arias-Santiago S, Braza-Boils A, Martín-Martínez M, Gutierrez-Rodríguez M, Bernal JA, Zorio E, Jiménez-Jaimez J, Jalife J. Extracellular Kir2.1 C122Y Mutant Upsets Kir2.1-PIP 2 Bonds and Is Arrhythmogenic in Andersen-Tawil Syndrome. Circ Res 2024; 134:e52-e71. [PMID: 38497220 PMCID: PMC11009053 DOI: 10.1161/circresaha.123.323895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.
Collapse
Affiliation(s)
- Francisco M. Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | - Lilian K. Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | - Francisco J Bermúdez-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitor Díaz-Agustín
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Fernando Martínez de Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Salvador Arias-Santiago
- Servicio de Dermatología Hospital Universitario Virgen de las Nieves
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitana Braza-Boils
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mercedes Martín-Martínez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Marta Gutierrez-Rodríguez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Juan A. Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Esther Zorio
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Juan Jiménez-Jaimez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Oreto L, Briuglia S, Capra AP, Ruiz VG, Di Pino A. Bidirectional Ventricular Tachycardia and Prominent U Waves: Look at Fingers and Muscles and Use Flecainide. J Pediatr Pharmacol Ther 2023; 28:662-666. [PMID: 38025154 PMCID: PMC10681079 DOI: 10.5863/1551-6776-28.7.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/27/2023] [Indexed: 12/01/2023]
Abstract
We present a case of bidirectional ventricular tachycardia in a 15-year-old boy asymptomatic for arrhythmias, whose major complaint was muscle weakness. At our first evaluation he was receiving sotalol for his ventricular arrhythmias. In addition to bidirectional tachycardia, electrocardiogram during sinus rhythm showed prominent U waves and prolonged QT-U interval. These electrocardiographic signs, along with the evidence of clinodactyly and mild hypertelorism, led us to the diagnosis of Andersen-Tawil syndrome, confirmed by genetic analysis that revealed a "de novo" missense mutation of KCNJ2 gene. Monotherapy with flecainide was rapidly effective and almost eliminated ventricular arrhythmias. After a 4-year follow-up there were no adverse events, flecainide has been well tolerated without significant modification of the QRS or repolarization, and ventricular arrhythmias have not been relapsed to date. The case highlights the importance of a correct clinical diagnosis, which is crucial for the optimal selection of the most appropriate drug therapy, which is expected not to be harmful, before being beneficial.
Collapse
Affiliation(s)
- Lilia Oreto
- Mediterranean Pediatric Cardiology Center (LO, VGR, AD), Bambino Gesù Children’s Hospital, Taormina, Italy
| | - Silvana Briuglia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (SB, APC), University of Messina, Messina, Italy
| | - Anna Paola Capra
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (SB, APC), University of Messina, Messina, Italy
| | - Victoria Garcia Ruiz
- Mediterranean Pediatric Cardiology Center (LO, VGR, AD), Bambino Gesù Children’s Hospital, Taormina, Italy
| | - Alfredo Di Pino
- Mediterranean Pediatric Cardiology Center (LO, VGR, AD), Bambino Gesù Children’s Hospital, Taormina, Italy
| |
Collapse
|
3
|
Cruz FM, Macías Á, Moreno-Manuel AI, Gutiérrez LK, Vera-Pedrosa ML, Martínez-Carrascoso I, Pérez PS, Robles JMR, Bermúdez-Jiménez FJ, Díaz-Agustín A, de Benito FM, Santiago SA, Braza-Boils A, Martín-Martínez M, Gutierrez-Rodríguez M, Bernal JA, Zorio E, Jiménez-Jaimez J, Jalife J. Extracellular cysteine disulfide bond break at Cys122 disrupts PIP 2-dependent Kir2.1 channel function and leads to arrhythmias in Andersen-Tawil Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544151. [PMID: 37333254 PMCID: PMC10274791 DOI: 10.1101/2023.06.07.544151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Andersen-Tawil Syndrome Type 1 (ATS1) is a rare heritable disease caused by mutations in the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys122-to-Cys154 disulfide bond in the Kir2.1 channel structure is crucial for proper folding, but has not been associated with correct channel function at the membrane. We tested whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing the open state of the channel. Methods and Results We identified a Kir2.1 loss-of-function mutation in Cys122 (c.366 A>T; p.Cys122Tyr) in a family with ATS1. To study the consequences of this mutation on Kir2.1 function we generated a cardiac specific mouse model expressing the Kir2.1C122Y mutation. Kir2.1C122Y animals recapitulated the abnormal ECG features of ATS1, like QT prolongation, conduction defects, and increased arrhythmia susceptibility. Kir2.1C122Y mouse cardiomyocytes showed significantly reduced inward rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking ability and localization at the sarcolemma and the sarcoplasmic reticulum. Kir2.1C122Y formed heterotetramers with wildtype (WT) subunits. However, molecular dynamic modeling predicted that the Cys122-to-Cys154 disulfide-bond break induced by the C122Y mutation provoked a conformational change over the 2000 ns simulation, characterized by larger loss of the hydrogen bonds between Kir2.1 and phosphatidylinositol-4,5-bisphosphate (PIP2) than WT. Therefore, consistent with the inability of Kir2.1C122Y channels to bind directly to PIP2 in bioluminescence resonance energy transfer experiments, the PIP2 binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch-clamping the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing PIP2 concentrations. Conclusion The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential to channel function. We demonstrated that ATS1 mutations that break disulfide bonds in the extracellular domain disrupt PIP2-dependent regulation, leading to channel dysfunction and life-threatening arrhythmias.
Collapse
Affiliation(s)
- Francisco M. Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | - Lilian K. Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | - Francisco J Bermúdez-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitor Díaz-Agustín
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Fernando Martínez de Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Salvador Arias Santiago
- Servicio de Dermatología Hospital Universitario Virgen de las Nieves
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitana Braza-Boils
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mercedes Martín-Martínez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Marta Gutierrez-Rodríguez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Juan A. Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Esther Zorio
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Juan Jiménez-Jaimez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Macías Á, González-Guerra A, Moreno-Manuel AI, Cruz FM, Gutiérrez LK, García-Quintáns N, Roche-Molina M, Bermúdez-Jiménez F, Andrés V, Vera-Pedrosa ML, Martínez-Carrascoso I, Bernal JA, Jalife J. Kir2.1 dysfunction at the sarcolemma and the sarcoplasmic reticulum causes arrhythmias in a mouse model of Andersen-Tawil syndrome type 1. NATURE CARDIOVASCULAR RESEARCH 2022; 1:900-917. [PMID: 39195979 PMCID: PMC11358039 DOI: 10.1038/s44161-022-00145-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/02/2022] [Indexed: 08/29/2024]
Abstract
Andersen-Tawil syndrome type 1 (ATS1) is associated with life-threatening arrhythmias of unknown mechanism. In this study, we generated and characterized a mouse model of ATS1 carrying the trafficking-deficient mutant Kir2.1Δ314-315 channel. The mutant mouse recapitulates the electrophysiological phenotype of ATS1, with QT prolongation exacerbated by flecainide or isoproterenol, drug-induced QRS prolongation, increased vulnerability to reentrant arrhythmias and multifocal discharges resembling catecholaminergic polymorphic ventricular tachycardia (CPVT). Kir2.1Δ314-315 cardiomyocytes display significantly reduced inward rectifier K+ and Na+ currents, depolarized resting membrane potential and prolonged action potentials. We show that, in wild-type mouse cardiomyocytes and skeletal muscle cells, Kir2.1 channels localize to sarcoplasmic reticulum (SR) microdomains, contributing to intracellular Ca2+ homeostasis. Kir2.1Δ314-315 cardiomyocytes exhibit defective SR Kir2.1 localization and function, as intact and permeabilized Kir2.1Δ314-315 cardiomyocytes display abnormal spontaneous Ca2+ release events. Overall, defective Kir2.1 channel function at the sarcolemma and the SR explain the life-threatening arrhythmias in ATS1 and its overlap with CPVT.
Collapse
Affiliation(s)
- Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Beverley KM, Pattnaik BR. Inward rectifier potassium (Kir) channels in the retina: living our vision. Am J Physiol Cell Physiol 2022; 323:C772-C782. [PMID: 35912989 PMCID: PMC9448332 DOI: 10.1152/ajpcell.00112.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
Channel proteins are vital for conducting ions throughout the body and are especially relevant to retina physiology. Inward rectifier potassium (Kir) channels are a class of K+ channels responsible for maintaining membrane potential and extracellular K+ concentrations. Studies of the KCNJ gene (that encodes Kir protein) expression identified the presence of all of the subclasses (Kir 1-7) of Kir channels in the retina or retinal-pigmented epithelium (RPE). However, functional studies have established the involvement of the Kir4.1 homotetramer and Kir4.1/5.1 heterotetramer in Müller glial cells, Kir2.1 in bipolar cells, and Kir7.1 in the RPE cell physiology. Here, we propose the potential roles of Kir channels in the retina based on the physiological contributions to the brain, pancreatic, and cardiac tissue functions. There are several open questions regarding the expressed KCNJ genes in the retina and RPE. For example, why does not the Kir channel subtype gene expression correspond with protein expression? Catching up with multiomics or functional "omics" approaches might shed light on posttranscriptional changes that might influence Kir subunit mRNA translation within the retina that guides our vision.
Collapse
Affiliation(s)
- Katie M Beverley
- Endocrinology and Reproductive Physiology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| | - Bikash R Pattnaik
- Endocrinology and Reproductive Physiology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
6
|
Le Tanno P, Folacci M, Revilloud J, Faivre L, Laurent G, Pinson L, Amedro P, Millat G, Janin A, Vivaudou M, Roux-Buisson N, Fauré J. Characterization of Loss-Of-Function KCNJ2 Mutations in Atypical Andersen Tawil Syndrome. Front Genet 2021; 12:773177. [PMID: 34899860 PMCID: PMC8655864 DOI: 10.3389/fgene.2021.773177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022] Open
Abstract
Andersen-Tawil Syndrome (ATS) is a rare disease defined by the association of cardiac arrhythmias, periodic paralysis and dysmorphic features, and is caused by KCNJ2 loss-of-function mutations. However, when extracardiac symptoms are atypical or absent, the patient can be diagnosed with Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT), a rare arrhythmia at high risk of sudden death, mostly due to RYR2 mutations. The identification of KCNJ2 variants in CPVT suspicion is very rare but important because beta blockers, the cornerstone of CPVT therapy, could be less efficient. We report here the cases of two patients addressed for CPVT-like phenotypes. Genetic investigations led to the identification of p. Arg82Trp and p. Pro186Gln de novo variants in the KCNJ2 gene. Functional studies showed that both variants forms of Kir2.1 monomers act as dominant negative and drastically reduced the activity of the tetrameric channel. We characterize here a new pathogenic variant (p.Pro186Gln) of KCNJ2 gene and highlight the interest of accurate cardiologic evaluation and of attention to extracardiac signs to distinguish CPVT from atypical ATS, and guide therapeutic decisions. We also confirm that the KCNJ2 gene must be investigated during CPVT molecular analysis.
Collapse
Affiliation(s)
- Pauline Le Tanno
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Mathilde Folacci
- CEA, CNRS, Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
| | - Jean Revilloud
- CEA, CNRS, Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
| | - Laurence Faivre
- Medical Genetics Department, Dijon Bourgogne University Hospital, François Mitterand Hospital, Dijon, France
| | - Gabriel Laurent
- Cardiology Department, Dijon Bourgogne University Hospital, François Mitterand Hospital, Dijon, France
| | - Lucile Pinson
- Medical Genetics Department, University Hospital, Montpellier, France.,Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Montpellier, France.,Genetic Department for Rare Diseases and Personalized Medicine, Clinical Division, Montpellier, France
| | - Pascal Amedro
- Pediatric and Congenital Cardiology Department, Clinical Investigation Centre, PhyMedExp, CNRS, INSERM, University of Montpellier, University Hospital, Montpellier, France
| | - Gilles Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Michel Vivaudou
- CEA, CNRS, Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
| | - Nathalie Roux-Buisson
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Julien Fauré
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
7
|
Horigome H, Ishikawa Y, Kokubun N, Yoshinaga M, Sumitomo N, Lin L, Kato Y, Tanabe-Kameda Y, Ohno S, Nagashima M, Horie M. Multivariate analysis of TU wave complex on electrocardiogram in Andersen-Tawil syndrome with KCNJ2 mutations. Ann Noninvasive Electrocardiol 2019; 25:e12721. [PMID: 31724784 PMCID: PMC7358888 DOI: 10.1111/anec.12721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The exact differences between the TU wave complex of ATS1 and that of healthy individuals remain to be investigated. We sought to characterize the TU wave complex of Andersen-Tawil syndrome type 1 (ATS1) using high frequency electrocardiogram (ECG) data. METHODS Electrocardiograms were recorded as time series data with a 2 kHz frequency ECG amplifier in 13 patients with ATS1 (positive for KCNJ2 mutation, ATS1 group) and age-matched healthy individuals (control group). Conventional ECG parameters were measured, and principal component analysis (PCA) and independent component analysis (ICA) were applied to the TU wave complex. RESULTS Time from T peak (Tp) to U peak (Up), time from bottom (B) to Up, and time from B to U end (BUe, U duration) (0.232 ± 0.018 vs. 0.165 ± 0.017, p < .0001), where B is the lowest point between T and U waves, were all longer in the ATS1 group than the control group. Multivariate logistic regression analysis revealed that BUe could completely differentiate the two groups. PCA ratios in the ATS1 group were significantly larger than the control group (26.5 ± 12.3 vs. 10.4 ± 6.2, p = .0005). ICA revealed 1 or 2 U-wave-specific independent components (ICs) that exclusively comprise the U wave in ATS1, whereas U waves in the control group were composed of some ICs that also comprised T waves. CONCLUSIONS U-wave-related temporal parameters, particularly BUe, and the existence of U-wave-specific ICs, extracted in the ICA, are useful for differentiation of U waves in ATS1 from those in healthy individuals.
Collapse
Affiliation(s)
- Hitoshi Horigome
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Norito Kokubun
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Masao Yoshinaga
- Department of Pediatrics, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Lisheng Lin
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Kato
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuri Tanabe-Kameda
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
8
|
Scheiper S, Hertel B, Beckmann BM, Kääb S, Thiel G, Kauferstein S. Characterization of a novel KCNJ2 sequence variant detected in Andersen-Tawil syndrome patients. BMC MEDICAL GENETICS 2017; 18:113. [PMID: 29017447 PMCID: PMC5634867 DOI: 10.1186/s12881-017-0472-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/27/2017] [Indexed: 11/30/2022]
Abstract
Background Mutations in the KCNJ2 gene encoding the ion channel Kir2.1 have been linked to the Andersen-Tawil syndrome (ATS). Molecular genetic screening performed in a family exhibiting clinical ATS phenotypes unmasked a novel sequence variant (c.434A > G, p.Y145C) in this gene. The aim of this study was to investigate the effect of this variant on Kir2.1 ion channel functionality. Methods Mutant as well as wild type GFP tagged Kir2.1 channels were expressed in HEK293 cells. In order to examine the effect of the new variant, electrophysiological measurements were performed using patch clamp technique. Cellular localization of the mutant in comparison to the wild type ion channel was analyzed by confocal laser scanning microscopy. Results The currents of cells expressing only mutant channels or a mixture of wild type and mutant were significantly reduced compared to those expressing wild type (WT) channels (p < 0.01). Whereas WT expressing cells exhibited at −120 mV an averaged current of −4.5 ± 1.9 nA, the mutant generates only a current of −0.17 ± 0.07 nA. A co-expression of mutant and WT channel generates only a partial rescue of the WT current. Confocal laser scanning microscopy indicated that the novel variant is not interfering with synthesis and/or protein trafficking. Conclusions The detected sequence variant causes loss-of-function of the Kir2.1 channel and explains the clinical phenotypes observed in Andersen-Tawil syndrome patients.
Collapse
Affiliation(s)
- Stefanie Scheiper
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Kennedyallee 104, D-60596, Frankfurt, Germany.
| | - Brigitte Hertel
- Plant Membrane Biophysics, Technical University Darmstadt, Darmstadt, Germany
| | - Britt-Maria Beckmann
- Department of Medicine I, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technical University Darmstadt, Darmstadt, Germany
| | - Silke Kauferstein
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Kennedyallee 104, D-60596, Frankfurt, Germany
| |
Collapse
|
9
|
|