1
|
Kawai K, Sato Y, Kawakami R, Sakamoto A, Cornelissen A, Mori M, Ghosh S, Kutys R, Virmani R, Finn AV. Generalized Arterial Calcification of Infancy (GACI): Optimizing Care with a Multidisciplinary Approach. J Multidiscip Healthc 2022; 15:1261-1276. [PMID: 35677616 PMCID: PMC9167688 DOI: 10.2147/jmdh.s251861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
It is very unusual to see evidence of arterial calcification in infants and children, and when detected, genetic disorders of calcium metabolism should be suspected. Generalized arterial calcification of infancy (GACI) is a hereditary disease, which is characterized by severe arterial calcification of medium sized arteries, mostly involving the media with marked intimal proliferation and ectopic mineralization of the extravascular tissues. It is caused by inactivating variants in genes encoding either ENPP1, in a majority of cases (70–75%), or ABCC6, in a minority (9–10%). Despite similar histologic appearances between ENPP1 and ABCC6 deficiencies, including arterial calcification, organ calcification, and cardiovascular calcification, mortality is higher in subjects carrying the ENPP1 versus ABCC6 variants (40% vs 10%, respectively). Overall mortality in individuals with GACI is high (55%) before the age of 6 months, with 24.4% dying in utero or being stillborn. Rare cases show spontaneous regression with age, while others who survive into adulthood often manifest musculoskeletal complications (osteoarthritis and interosseous membrane ossification), enthesis mineralization, and cervical spine fusion. Despite recent advances in the understanding of the genetic mechanisms underlying this disease, there is still no ideal therapy for the resolution of vascular calcification in GACI. Although bisphosphonates with anti-calcification properties have been commonly used for the treatment of CAGI, their benefit is controversial, with favorable results reported at one year and questionable benefit with delayed initiation of treatment. Enzyme replacement therapy with administration of recombinant form of ENPP1 prevents calcification and mortality, improves hypertension and cardiac function, and prevents intimal proliferation and osteomalacia in mouse models of ENPP1 deficiency. Therefore, newer treatments targeting genes are on the horizon. In this article, we review up to date knowledge of the understanding of GACI, its clinical, pathologic, and etiologic understanding and treatment in support of more comprehensive care of GACI patients.
Collapse
Affiliation(s)
| | - Yu Sato
- CVPath Institute, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | - Aloke V Finn
- CVPath Institute, Gaithersburg, MD, USA
- University of Maryland, School of Medicine, Baltimore, MD, USA
- Correspondence: Aloke V Finn, 19 Firstfield Road, Gaithersburg, MD, 20878, USA, Tel +301.208.3570, Fax +301.208.3745, Email
| |
Collapse
|
3
|
Cudrici CD, Newman KA, Ferrante EA, Huffstutler R, Carney K, Betancourt B, Miettinen M, Siegel R, Katz JD, Nesti LJ, St Hilaire C, Lakshmipathy D, Wen H, Bagheri MH, Boehm M, Brofferio A. Multifocal Calcific Periarthritis with Distinctive Clinical and Radiological Features in Patients with CD73 Deficiency. Rheumatology (Oxford) 2021; 61:163-173. [PMID: 33744914 DOI: 10.1093/rheumatology/keab270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Arterial calcification due to deficiency of CD73 (ACDC) is a hereditary autosomal recessive ectopic mineralization syndrome caused by loss-of-function mutations in the 5'-nucleotidase Ecto (NT5E) gene. Periarticular calcification has been reported but the clinical characterization of arthritis as well as the microstructure and chemical composition of periarticular calcifications and synovial fluid crystals has not been systematically investigated. METHODS Eight ACDC patients underwent extensive rheumatological and radiological evaluation over a period of 11 years. Periarticular and synovial biopsies were obtained from four patients. Characterization of crystal composition was evaluated by compensated polarized light microscopy, Alizarin red staining for synovial fluid along with x-ray diffraction and x-ray micro tomosynthesis for periarticular calcification. RESULTS Arthritis in ACDC patients has a clinical presentation of mixed erosive-degenerative joint changes with a median onset of articular symptoms at 17 years of age and progresses over time to the development of fixed deformities and functional limitations of small peripheral joints with eventually, larger joint and distinct axial involvement later in life. We have identified calcium pyrophosphate (CPP) and calcium hydroxyapatite (CHA) crystals in synovial fluid specimens and determined that CHA crystals are the principal component of periarticular calcifications. CONCLUSION This is the largest study in ACDC patients to describe erosive peripheral arthropathy and axial enthesopathic calcifications over a period of 11 years and the first to identify the composition of periarticular calcifications and synovial fluid crystals. ACDC should be considered among the genetic causes of early-onset osteoarthritis, as musculoskeletal disease signs may often precede vascular symptoms.
Collapse
Affiliation(s)
- Cornelia D Cudrici
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Kam A Newman
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Elisa A Ferrante
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Rebecca Huffstutler
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Katherine Carney
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Blas Betancourt
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA.,University of Florida, Division of Rheumatology & Clinical Immunology, Department of Medicine, Gainesville, FL, USA
| | - Markku Miettinen
- National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Richard Siegel
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA.,Novartis Institutes of Biomedical Research, Novartis Institutes of Biomedical Research, Translational Medicine, Autoimmunity, Transplantation and Inflammation Disease Area, Basel, CH USA
| | - James D Katz
- National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Leon J Nesti
- Walter Reed National Military Medical Center, Clinical and Experimental Orthopaedics, Bethesda, MD, USA
| | - Cynthia St Hilaire
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Cardiology, Department of Bioengineering, and Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Deepak Lakshmipathy
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Han Wen
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Mohammad H Bagheri
- National Institutes of Health, Department of Radiology and Imaging Sciences, Clinical Center, Bethesda, MD, USA
| | - Manfred Boehm
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Alessandra Brofferio
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
7
|
Moorhead WJ, Chu CC, Cuevas RA, Callahan J, Wong R, Regan C, Boufford CK, Sur S, Liu M, Gomez D, MacTaggart JN, Kamenskiy A, Boehm M, St Hilaire C. Dysregulation of FOXO1 (Forkhead Box O1 Protein) Drives Calcification in Arterial Calcification due to Deficiency of CD73 and Is Present in Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2020; 40:1680-1694. [PMID: 32375544 PMCID: PMC7310306 DOI: 10.1161/atvbaha.119.313765] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: The recessive disease arterial calcification due to deficiency of CD73 (ACDC) presents with extensive nonatherosclerotic medial layer calcification in lower extremity arteries. Lack of CD73 induces a concomitant increase in TNAP (tissue nonspecific alkaline phosphatase; ALPL), a key enzyme in ectopic mineralization. Our aim was to investigate how loss of CD73 activity leads to increased ALPL expression and calcification in CD73-deficient patients and assess whether this mechanism may apply to peripheral artery disease calcification. Approach and Results: We previously developed a patient-specific disease model using ACDC primary dermal fibroblasts that recapitulates the calcification phenotype in vitro. We found that lack of CD73-mediated adenosine signaling reduced cAMP production and resulted in increased activation of AKT. The AKT/mTOR (mammalian target of rapamycin) axis blocks autophagy and inducing autophagy prevented calcification; however, we did not observe autophagy defects in ACDC cells. In silico analysis identified a putative FOXO1 (forkhead box O1 protein) binding site in the human ALPL promoter. Exogenous AMP induced FOXO1 nuclear localization in ACDC but not in control cells, and this was prevented with a cAMP analogue or activation of A2a/2b adenosine receptors. Inhibiting FOXO1 reduced ALPL expression and TNAP activity and prevented calcification. Mutating the FOXO1 binding site reduced ALPL promoter activation. Importantly, we provide evidence that non-ACDC calcified femoropopliteal arteries exhibit decreased CD73 and increased FOXO1 levels compared with control arteries. Conclusions: These data show that lack of CD73-mediated cAMP signaling promotes expression of the human ALPL gene via a FOXO1-dependent mechanism. Decreased CD73 and increased FOXO1 was also observed in more common peripheral artery disease calcification.
Collapse
Affiliation(s)
- William J Moorhead
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Claire C Chu
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Rolando A Cuevas
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Jack Callahan
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Ryan Wong
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Cailyn Regan
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Camille K Boufford
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Swastika Sur
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Mingjun Liu
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Delphine Gomez
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.)
| | - Jason N MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha (J.N.M.)
| | | | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart, Lung, and Blood Institute, Bethesda, MD (M.B.)
| | - Cynthia St Hilaire
- From the Department of Medicine, Division of Cardiology, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, PA (W.J.M., C.C.C., R.A.C., J.C., R.W., C.R., C.K.B., S.S., M.L., D.G., C.S.H.).,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA (C.S.H.)
| |
Collapse
|
9
|
Devriese M, Legrand A, Courtois MC, Jeunemaitre X, Albuisson J. Pseudoxanthoma elasticum with prominent arterial calcifications evoking CD73 deficiency. Vasc Med 2019; 24:461-464. [PMID: 31164056 DOI: 10.1177/1358863x19853360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disorder characterized by skin, eye, and cardiovascular lesions due to ectopic mineralization and fragmentation of elastic fibers of connective tissues. We present an atypical case of PXE with diffuse vascular calcification and negligible skin and eye lesions. The patient was a 37-year-old man suffering from severe bilateral arterial calcifications in superficial femoral and posterior tibial arteries. Eye fundoscopy and skin examination were first considered normal. This phenotype suggested first the diagnosis of Arterial Calcification due to Deficiency of CD73 (ACDC) characterized by mutations in NT5E gene. However, we found two variants in ABCC6 gene, and no variant in NT5E. Skin reexamination revealed few lateral skin papules confined to the scalp. Phenotypic overlap was described in vascular calcification disorders, between GACI and PXE phenotypes, and we discuss here expansion of this overlap, including ACDC phenotype. Identification of these expanding and overlapping phenotypes was enabled by genetic screening of the corresponding genes, in a systematic approach. We propose to create a calcification next generation sequencing (NGS) panel with NT5E, GGCX, ENPP1, and ABCC6 genes to improve the molecular diagnosis of vascular calcification.
Collapse
Affiliation(s)
- Magali Devriese
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre de Référence des Maladies Vasculaires Rares, Paris, France
| | - Anne Legrand
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre de Référence des Maladies Vasculaires Rares, Paris, France.,INSERM, U970, Paris Centre de Recherche Cardiovasculaire, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Marie-Cécile Courtois
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Médecine Vasculaire, Paris, France
| | - Xavier Jeunemaitre
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre de Référence des Maladies Vasculaires Rares, Paris, France.,INSERM, U970, Paris Centre de Recherche Cardiovasculaire, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Juliette Albuisson
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre de Référence des Maladies Vasculaires Rares, Paris, France.,INSERM, U970, Paris Centre de Recherche Cardiovasculaire, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| |
Collapse
|