1
|
Grigoriev E, Ponasenko AV, Sinitskaya AV, Ivkin AA, Kornelyuk RA. Mitochondrial DNA as a Candidate Marker of Multiple Organ Failure after Cardiac Surgery. Int J Mol Sci 2022; 23:ijms232314748. [PMID: 36499077 PMCID: PMC9737207 DOI: 10.3390/ijms232314748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Assess the level of mitochondrial DNA depending on the presence of multiple organ failure in patients after heart surgery. The study included 60 patients who underwent surgical treatment of valvular heart disease using cardiopulmonary bypass. Uncomplicated patients were included in the 1st group (n = 30), patients with complications and multiple organ failure (MOF) were included in the 2nd group (n = 30). Serum mtDNA levels were determined by quantitative real-time polymerase chain reaction with fluorescent dyes. Mitochondrial DNA gene expression did not differ between group before surgery. Immediately after the intervention, cytochrome B gene expression was higher in the group with MOF, and it remained high during entire follow-up period. A similar trend was observed in cytochrome oxidase gene expression. Increased NADH levels of gene expressions during the first postoperative day were noted in both groups, the expression showed tendency to increase on the third postoperative day. mtDNA gene expression in the "MOF present" group remained at a higher level compared with the group without complications. A positive correlation was reveled between the severity of MOF according to SOFA score and the level of mtDNA (r = 0.45; p = 0.028) for the end-point "First day". The ROC analysis showed that mtDNA circulating in plasma (AUC = 0.605) can be a predictor of MOF development. The level of mtDNA significantly increases in case of MOF, irrespective of its cause. (2) The expression of mtDNA genes correlates with the level of MOF severity on the SOFA score.
Collapse
|
2
|
Schwartz B, Gjini P, Gopal DM, Fetterman JL. Inefficient Batteries in Heart Failure: Metabolic Bottlenecks Disrupting the Mitochondrial Ecosystem. JACC Basic Transl Sci 2022; 7:1161-1179. [PMID: 36687274 PMCID: PMC9849281 DOI: 10.1016/j.jacbts.2022.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
Mitochondrial abnormalities have long been described in the setting of cardiomyopathies and heart failure (HF), yet the mechanisms of mitochondrial dysfunction in cardiac pathophysiology remain poorly understood. Many studies have described HF as an energy-deprived state characterized by a decline in adenosine triphosphate production, largely driven by impaired oxidative phosphorylation. However, impairments in oxidative phosphorylation extend beyond a simple decline in adenosine triphosphate production and, in fact, reflect pervasive metabolic aberrations that cannot be fully appreciated from the isolated, often siloed, interrogation of individual aspects of mitochondrial function. With the application of broader and deeper examinations into mitochondrial and metabolic systems, recent data suggest that HF with preserved ejection fraction is likely metabolically disparate from HF with reduced ejection fraction. In our review, we introduce the concept of the mitochondrial ecosystem, comprising intricate systems of metabolic pathways and dynamic changes in mitochondrial networks and subcellular locations. The mitochondrial ecosystem exists in a delicate balance, and perturbations in one component often have a ripple effect, influencing both upstream and downstream cellular pathways with effects enhanced by mitochondrial genetic variation. Expanding and deepening our vantage of the mitochondrial ecosystem in HF is critical to identifying consistent metabolic perturbations to develop therapeutics aimed at preventing and improving outcomes in HF.
Collapse
Key Words
- ADP, adenosine diphosphate
- ANT1, adenine translocator 1
- ATP, adenosine triphosphate
- CVD, cardiovascular disease
- DCM, dilated cardiomyopathy
- DRP-1, dynamin-related protein 1
- EET, epoxyeicosatrienoic acid
- FADH2/FAD, flavin adenine dinucleotide
- HETE, hydroxyeicosatetraenoic acid
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HIF1α, hypoxia-inducible factor 1α
- LV, left ventricle
- LVAD, left ventricular assist device
- LVEF, left ventricular ejection fraction
- NADH/NAD+, nicotinamide adenine dinucleotide
- OPA1, optic atrophy protein 1
- OXPHOS, oxidative phosphorylation
- PGC1-α, peroxisome proliferator-activated receptor gamma coactivator 1 alpha
- SIRT1-7, sirtuins 1-7
- cardiomyopathy
- heart failure
- iPLA2γ, Ca2+-independent mitochondrial phospholipase
- mPTP, mitochondrial permeability transition pore
- metabolism
- mitochondria
- mitochondrial ecosystem
- mtDNA, mitochondrial DNA
Collapse
Affiliation(s)
- Brian Schwartz
- Evans Department of Medicine, Section of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Petro Gjini
- Evans Department of Medicine, Section of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Deepa M Gopal
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Peripheral Blood Mononuclear Cells and Platelets Mitochondrial Dysfunction, Oxidative Stress, and Circulating mtDNA in Cardiovascular Diseases. J Clin Med 2020; 9:jcm9020311. [PMID: 31979097 PMCID: PMC7073649 DOI: 10.3390/jcm9020311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVDs) are devastating disorders and the leading cause of mortality worldwide. The pathophysiology of cardiovascular diseases is complex and multifactorial and, in the past years, mitochondrial dysfunction and excessive production of reactive oxygen species (ROS) have gained growing attention. Indeed, CVDs can be considered as a systemic alteration, and understanding the eventual implication of circulating blood cells peripheral blood mononuclear cells (PBMCs) and or platelets, and particularly their mitochondrial function, ROS production, and mitochondrial DNA (mtDNA) releases in patients with cardiac impairments, appears worthwhile. Interestingly, reports consistently demonstrate a reduced mitochondrial respiratory chain oxidative capacity related to the degree of CVD severity and to an increased ROS production by PBMCs. Further, circulating mtDNA level was generally modified in such patients. These data are critical steps in term of cardiac disease comprehension and further studies are warranted to challenge the possible adjunct of PBMCs’ and platelets’ mitochondrial dysfunction, oxidative stress, and circulating mtDNA as biomarkers of CVD diagnosis and prognosis. This new approach might also allow further interesting therapeutic developments.
Collapse
|
4
|
Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, Duan H, Zhou K, Hua Y, Wu G, Li Y. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLoS One 2018; 13:e0206003. [PMID: 30403687 PMCID: PMC6221293 DOI: 10.1371/journal.pone.0206003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022] Open
Abstract
Background Mitochondria are energy-producing structure of the cell and help to maintain redox environment. In cardiovascular disease, the number of mitochondrial DNA (mtDNA) will changes accordingly compare to normal condition. Some investigators ask whether it has a clear association between mtDNA and cardiovascular disease with its adverse events. Thus, we conduct the meta-analysis to assess the role of circulating mtDNA in evaluating cardiovascular disease. Methods The meta-analysis was conducted in accordance with a predetermined protocol following the recommendations of Cochrane Handbook of Systematic Reviews. We searched the Pubmed, Embase, the Cochrane Central Register of Controlled Trials and World Health Organization clinical trials registry center to identify relevant studies up to the end of October 2017. Data were analyzed using STATA. Besides, publication bias and meta-regression analysis were also conducted. Results We collected results from 5 articles for further analyses with 8,252 cases and 20,904 control. The normalized mtDNA copy number level is lower in cardiovascular disease (CVD) than the control groups with a pooled standard mean difference (SMD) of -0.36(95%CI,-0.65 to -0.08); The pooled odds ratio (OR) for CVD proportion associated with a 1-SD (standard deviation) decrease in mtDNA copy number level is 1.23 (95% CI,1.06–1.42); The OR for CVD patients with mtDNA copy number lower than median level is 1.88(95% CI,1.65–2.13); The OR for CVD patients with mtDNA copy number located in the lowest quartile part is 2.15(95% CI, 1.46–3.18); the OR between mtDNA copy number and the risk of sudden cardiac death (SCD) is 1.83(95% CI, 1.22–2.74). Conclusion Although inter-study variability, the overall performance test of mtDNA for evaluating CVD and SCD revealed that the mtDNA copy number presented the potential to be a biomarker for CVD and SCD prediction. Given that, the fewer copies of mtDNA, the higher the risk of CVD.
Collapse
Affiliation(s)
- Peng Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Jing
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Fan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Duan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Vecoli C, Borghini A, Pulignani S, Mercuri A, Turchi S, Carpeggiani C, Picano E, Andreassi MG. Prognostic value of mitochondrial DNA 4977 deletion and mitochondrial DNA copy number in patients with stable coronary artery disease. Atherosclerosis 2018; 276:91-97. [PMID: 30053637 DOI: 10.1016/j.atherosclerosis.2018.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Mitochondrial DNA copy number (mtDNA-CN) depletion has been recently associated with an increased cardiovascular risk. However, the integrity of mtDNA is another key aspect of the energy metabolism and mitochondrial function. We investigated the prognostic role of peripheral blood common mitochondrial deletion (mtDNA4977) and mtDNA-CN on long-term major adverse cardiac events (MACEs) and all-cause mortality in a cohort of patients with coronary artery disease (CAD). METHODS Within the Italian GENOCOR (Genetic Mapping for Assessment of Cardiovascular Risk) cohort, we studied 515 patients (450 males, 65 ± 8 years) with known or suspected stable CAD. mtDNA4977 deletion and mtDNA-CN were assessed in peripheral blood using qRT-PCR. RESULTS During a mean follow-up of 4.5 ± 1.1 years, 78 (15%) patients had MACEs (15 cardiac deaths, 17 nonfatal myocardial infarction and 46 coronary revascularizations) and 28 patients died for non-cardiac causes. Patients with high levels of mtDNA4977 deletion (>75th) had increased risk of MACEs (log rank = 7.2, p=0.007) and all-cause mortality (log rank = 5.7, p=0.01) compared with patients with low mtDNA4977 deletion (≤75th). Multivariate Cox regression analysis showed that log mtDNA4977 was a significant predictor of MACEs (HR = 2.17; 95% CI, 1.31-3.59; p=0.003) and all-cause mortality (HR = 2.03; 95% CI: 1.13-3.65, p=0.02). Log mtDNA-CN was not significantly associated with MACEs or all-cause mortality. However, patients with high mtDNA4977 deletion (>75th) and low mtDNA-CN (<25th) had significantly increased risk for MACEs (HR: 3.73; 95% CI: 1.79-7.79; p=0.0005). CONCLUSIONS Mitochondria DNA damage was associated with an increased risk of MACEs and all-cause mortality in patients with stable CAD, confirming the critical role of mitochondrial dysfunction in atherosclerosis.
Collapse
|
6
|
Huang CH, Kuo CL, Huang CS, Liu CS, Chang CC. Depleted Leukocyte Mitochondrial DNA Copy Number Correlates With Unfavorable Left Ventricular Volumetric and Spherical Shape Remodeling in Acute Myocardial Infarction After Primary Angioplasty. Circ J 2017; 81:1901-1910. [PMID: 28626147 DOI: 10.1253/circj.cj-17-0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Left ventricular (LV) shape influences LV systolic function. It is possible to assess LV shape using 3-D echocardiography sphericity index (SI). Maintaining mitochondrial DNA copy number (MCN) is important for preserving mitochondrial function and LV systolic function after acute myocardial infarction (AMI). Information is limited, however, regarding the relationship between leukocyte MCN and the subsequent change in LV shape after AMI. METHODS AND RESULTS Fifty-five AMI patients undergoing primary angioplasty were recruited. Plasma MCN was measured before primary angioplasty using quantitative polymerase chain reaction. 3-D echocardiography measurement of SI was performed at baseline, and at 1-, 3-, and 6-month follow-up. AMI subjects with MCN lower than the median had a higher 6-month SI and LV volume compared with those with higher MCN. Baseline echocardiographic parameters were similar between the 2 groups. MCN was negatively correlated with 3- and 6-month SI, and 3- and 6-month LV volume. On multiple linear regression analysis, baseline plasma MCN could predict LV SI and LV volume at 6 months after primary angioplasty for AMI, even after adjusting for traditional prognostic factors. CONCLUSIONS In AMI patients, higher plasma leukocyte MCN at baseline was associated with favorable LV shape and remodeling at 6-month follow-up. Plasma leukocyte MCN may provide a novel prognostic biomarker for LV remodeling after AMI.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Division of Cardiology, Department of Internal Medicine, Changhua Christian Hospital
- Institute of Statistics and Information Science, National Changhua University of Education
- School of Medicine, College of Medicine, Kaohsiung Medical University
- Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University
| | - Chen-Ling Kuo
- Vascular and Genomic Center, Changhua Christian Hospital
| | | | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital
- Department of Neurology, Changhua Christian Hospital
| | - Chia-Chu Chang
- Department of Nephrology, Changhua Christian Hospital
- Medical Research Center, Department of Internal Medicine, Changhua Christian Hospital
- School of Medicine, Chung Shan Medical University
| |
Collapse
|
7
|
Lien LM, Chiou HY, Yeh HL, Chiu SY, Jeng JS, Lin HJ, Hu CJ, Hsieh FI, Wei YH. Significant Association Between Low Mitochondrial DNA Content in Peripheral Blood Leukocytes and Ischemic Stroke. J Am Heart Assoc 2017; 6:JAHA.117.006157. [PMID: 29151031 PMCID: PMC5721740 DOI: 10.1161/jaha.117.006157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Cumulative evidence has shown that low mitochondrial DNA (mtDNA) content is related to elevated oxidative stress and atherosclerosis, which play important roles in ischemic stroke. The objective of this study was to explore the association between mtDNA content in peripheral blood leukocytes and ischemic stroke. Methods and Results A total of 350 patients with first‐ever ischemic stroke and 350 healthy controls were recruited in this case‐control study. The mtDNA content in peripheral blood leukocytes was determined by quantitative real‐time polymerase chain reaction. The levels of oxidized glutathione, reduced glutathione, and 8‐hydroxy‐2′‐deoxyguanosine were measured by ELISA kits. Multivariate logistic regression models were used to analyze the relationship between mtDNA content in peripheral blood leukocytes and ischemic stroke. Our results show that mtDNA content of patients with ischemic stroke was notably lower compared with controls. A significant association was found between low mtDNA content and ischemic stroke. Furthermore, significant interactions were identified between low mtDNA and proven risk factors in patients with ischemic stroke. The levels of oxidized glutathione and 8‐hydroxy‐2′‐deoxyguanosine were significantly greater in patients with ischemic stroke compared with controls. Conclusions Our results demonstrate that low mtDNA content in peripheral blood leukocytes is associated with ischemic stroke. The relationship of low mtDNA content and ischemic stroke was particularly notable in individuals who had low mtDNA content combined with diabetes mellitus, metabolic syndrome, or cigarette smoking. Oxidative stress may be one of the contributory factors to decreased mtDNA content in patients with ischemic stroke.
Collapse
Affiliation(s)
- Li-Ming Lien
- Department of Neurology, Shin-Kong WHS Memorial Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hsu-Ling Yeh
- Department of Neurology, Shin-Kong WHS Memorial Hospital, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Yen Chiu
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Juan Lin
- Department of Neurology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chaur-Jong Hu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Fang-I Hsieh
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City, Taiwan
| |
Collapse
|
8
|
Knez J, Lakota K, Božič N, Okrajšek R, Cauwenberghs N, Thijs L, Kneževič I, Vrtovec B, Tomšič M, Čučnik S, Sodin-Šemrl S, Kuznetsova T, Brguljan-Hitij J. Correlation Between Mitochondrial DNA Content Measured in Myocardium and Peripheral Blood of Patients with Non-Ischemic Heart Failure. Genet Test Mol Biomarkers 2017; 21:736-741. [PMID: 29087733 DOI: 10.1089/gtmb.2017.0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/OBJECTIVES Heart failure (HF) is associated with disturbances in mitochondrial energy production. This mitochondrial dysfunction is reflected by depletion of mitochondrial DNA (mtDNA) in different tissues. Our aims were to determine if there was a correlation between mtDNA content measured in myocardial tissue and the easily accessible peripheral blood cells of patients with non-ischemic HF; and to determine if there was a correlation between myocardial mtDNA and left ventricular (LV) ejection fraction. METHODS We prospectively collected paired myocardial tissue and peripheral blood samples from 13 consecutive end-stage non-ischemic HF patients undergoing cardiac transplantation. mtDNA content was assessed with real-time quantitative PCR by calculating the relative ratio of two specific mitochondrial sequences and one nuclear control gene sequence. RESULTS HF patients with lower myocardial mtDNA content had a significantly lower LV ejection fraction (r = 0.65, p = 0.016). Peripheral blood mtDNA content correlated positively with right ventricular myocardial mtDNA content (r = 0.63, p = 0.021). We also observed that averaged myocardial DNA content tended to correlate with peripheral blood mtDNA content (r = 0.53, p = 0.061). CONCLUSIONS In non-ischemic HF patients, myocardial mtDNA content is positively correlated with peripheral blood mtDNA content and LV function as assessed by echocardiography.
Collapse
Affiliation(s)
- Judita Knez
- 1 Division of Internal Medicine, Department of Hypertension, University Medical Centre Ljubljana , Ljubljana, Slovenia
- 2 Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium
| | - Katja Lakota
- 3 Division of Internal Medicine, Department of Rheumatology, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Nina Božič
- 1 Division of Internal Medicine, Department of Hypertension, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Renata Okrajšek
- 4 Division of Internal Medicine, Department of Cardiology, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Nicholas Cauwenberghs
- 2 Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium
| | - Lutgarde Thijs
- 2 Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium
| | - Ivan Kneževič
- 5 Division of Surgery, Department of Cardiovascular Surgery, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Bojan Vrtovec
- 4 Division of Internal Medicine, Department of Cardiology, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Matija Tomšič
- 3 Division of Internal Medicine, Department of Rheumatology, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Saša Čučnik
- 3 Division of Internal Medicine, Department of Rheumatology, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Snežna Sodin-Šemrl
- 3 Division of Internal Medicine, Department of Rheumatology, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Tatiana Kuznetsova
- 2 Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven , Leuven, Belgium
| | - Jana Brguljan-Hitij
- 1 Division of Internal Medicine, Department of Hypertension, University Medical Centre Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
9
|
Peripheral Blood Mitochondrial DNA and Myocardial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:347-358. [DOI: 10.1007/978-3-319-55330-6_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|