1
|
Chandrasekera D, Katare R. Exosomal microRNAs in diabetic heart disease. Cardiovasc Diabetol 2022; 21:122. [PMID: 35778763 PMCID: PMC9250231 DOI: 10.1186/s12933-022-01544-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a metabolic disorder that affects millions of people worldwide. Diabetic heart disease (DHD) comprises coronary artery disease, heart failure, cardiac autonomic neuropathy, peripheral arterial disease, and diabetic cardiomyopathy. The onset and progression of DHD have been attributed to molecular alterations in response to hyperglycemia in diabetes. In this context, microRNAs (miRNAs) have been demonstrated to have a significant role in the development and progression of DHD. In addition to their effects on the host cells, miRNAs can be released into circulation after encapsulation within the exosomes. Exosomes are extracellular nanovesicles ranging from 30 to 180 nm in diameter secreted by all cell types. They carry diverse cargos that are altered in response to various conditions in their parent cells. Exosomal miRNAs have been extensively studied in recent years due to their role and therapeutic potential in DHD. This review will first provide an overview of exosomes, their biogenesis and function, followed by the role of exosomes in cardiovascular disease and then focuses on the known role of exosomes and associated miRNAs in DHD.
Collapse
Affiliation(s)
- Dhananjie Chandrasekera
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, 270, Great King Street, Dunedin, New Zealand.
| | - Rajesh Katare
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, 270, Great King Street, Dunedin, New Zealand.
| |
Collapse
|
2
|
Yee-Goh AS, Yamauchi A, van Hout I, Bellae Papannarao J, Sugunesegran R, Parry D, Davis P, Katare R. Cardiac Progenitor Cells and Adipocyte Stem Cells from Same Patients Exhibit In Vitro Functional Differences. Int J Mol Sci 2022; 23:ijms23105588. [PMID: 35628402 PMCID: PMC9141982 DOI: 10.3390/ijms23105588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiac progenitor cells (CPCs) and adipocyte stem cells (ASCs) are widely tested for their efficacy in repairing the diseased heart with varying results. However, no study has directly compared the functional efficacy of CPCs and ASCs collected from the same patient. CPCs and ASCs were isolated from the right atrial appendage and epicardial adipose tissue of the same patients, using explant culture. The flow cytometry analysis confirmed that both the cell types express common mesenchymal stem cells markers CD90 and CD105. ASCs, in addition, expressed CD29 and CD73. The wound-healing assay demonstrated that CPCs migrate faster to cover the wound area. Both cell types were resistant to hypoxia-induced cell death when exposed to hypoxia and serum deprivation; however, the ASCs showed increased proliferation. Conditioned medium (CM) collected after culturing serum-deprived CPCs and ASCs showed differential secretion patterns, with ASC CM showing an increased IGF-1 level, while CPC CM showed an increased FGF level. Only CPC CM reduced hypoxia-induced apoptosis in AC-16 human ventricular cardiomyocytes, while vascular network formation by endothelial cells was comparable between CPC and ASC CM. In conclusion, ASCs and CPCs exhibit differential characteristics within the same patient, and in vitro studies showed that CPCs have marginally superior functional efficacy.
Collapse
Affiliation(s)
- Anthony Soonseng Yee-Goh
- Department of Physiology, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin 9010, New Zealand; (A.S.Y.-G.); (A.Y.); (I.v.H.); (J.B.P.)
| | - Atsushi Yamauchi
- Department of Physiology, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin 9010, New Zealand; (A.S.Y.-G.); (A.Y.); (I.v.H.); (J.B.P.)
| | - Isabelle van Hout
- Department of Physiology, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin 9010, New Zealand; (A.S.Y.-G.); (A.Y.); (I.v.H.); (J.B.P.)
| | - Jayanthi Bellae Papannarao
- Department of Physiology, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin 9010, New Zealand; (A.S.Y.-G.); (A.Y.); (I.v.H.); (J.B.P.)
| | - Ramanen Sugunesegran
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin 9010, New Zealand; (R.S.); (D.P.); (P.D.)
| | - Dominic Parry
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin 9010, New Zealand; (R.S.); (D.P.); (P.D.)
| | - Philip Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin 9010, New Zealand; (R.S.); (D.P.); (P.D.)
| | - Rajesh Katare
- Department of Physiology, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin 9010, New Zealand; (A.S.Y.-G.); (A.Y.); (I.v.H.); (J.B.P.)
- Correspondence: ; Tel.: +64-3-4797292
| |
Collapse
|
3
|
Satthenapalli R, Lee S, Bellae Papannarao J, Hore TA, Chakraborty A, Jones PP, Lamberts RR, Katare R. Stage-specific regulation of signalling pathways to differentiate pluripotent stem cells to cardiomyocytes with ventricular lineage. Stem Cell Res Ther 2022; 13:185. [PMID: 35524336 PMCID: PMC9077927 DOI: 10.1186/s13287-022-02845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Pluripotent stem cells (PSCs) can be an ideal source of differentiation of cardiomyocytes in vitro and during transplantation to induce cardiac regeneration. However, differentiation of PSCs into a heterogeneous population is associated with an increased incidence of arrhythmia following transplantation. We aimed to design a protocol to drive PSCs to a ventricular lineage by regulating Wnt and retinoic acid (RA) signalling pathways. Methods Mouse embryonic stem cells were cultured either in monolayers or three-dimensional hanging drop method to form embryonic bodies (EBs) and exposed to different treatments acting on Wnt and retinoic acid signalling. Samples were collected at different time points to analyse cardiomyocyte-specific markers by RT-PCR, flow cytometry and immunofluorescence. Results Treatment of monolayer and EBs with Wnt and RA signalling pathways and ascorbic acid, as a cardiac programming enhancer, resulted in the formation of an immature non-contractile cardiac population that expressed many of the putative markers of cardiac differentiation. The population exhibited upregulation of ventricular specific markers while suppressing the expression of pro-atrial and pro-sinoatrial markers. Differentiation of EBs resulted in early foetal like non-contractile ventricular cardiomyocytes with an inherent propensity to contract when stimulated. Conclusion Our results provide the first evidence of in vitro differentiation that mimics the embryonic morphogenesis towards ventricular specific cardiomyocytes through regulation of Wnt and RA signalling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02845-9.
Collapse
Affiliation(s)
- Ramakanth Satthenapalli
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Scott Lee
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Jayanthi Bellae Papannarao
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Timothy A Hore
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9010, New Zealand
| | - Akash Chakraborty
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.,Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Peter P Jones
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Regis R Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| |
Collapse
|
4
|
Purvis N, Kumari S, Chandrasekera D, Bellae Papannarao J, Gandhi S, van Hout I, Coffey S, Bunton R, Sugunesegran R, Parry D, Davis P, Williams MJA, Bahn A, Katare R. Diabetes induces dysregulation of microRNAs associated with survival, proliferation and self-renewal in cardiac progenitor cells. Diabetologia 2021; 64:1422-1435. [PMID: 33655378 DOI: 10.1007/s00125-021-05405-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Diabetes mellitus causes a progressive loss of functional efficacy in stem cells, including cardiac progenitor cells (CPCs). The underlying molecular mechanism is still not known. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate genes at the post-transcriptional level. We aimed to determine if diabetes mellitus induces dysregulation of miRNAs in CPCs and to test if in vitro therapeutic modulation of miRNAs would improve the functions of diabetic CPCs. METHODS CPCs were isolated from a mouse model of type 2 diabetes (db/db), non-diabetic mice and human right atrial appendage heart tissue. Total RNA isolated from mouse CPCs was miRNA profiled using Nanostring analysis. Bioinformatic analysis was employed to predict the functional effects of altered miRNAs. MS analysis was applied to determine the targets, which were confirmed by western blot analysis. Finally, to assess the beneficial effects of therapeutic modulation of miRNAs in vitro and in vivo, prosurvival miR-30c-5p was overexpressed in mouse and human diabetic CPCs, and the functional consequences were determined by measuring the level of apoptotic cell death, cardiac function and mitochondrial membrane potential (MMP). RESULTS Among 599 miRNAs analysed in mouse CPCs via Nanostring analysis, 16 miRNAs showed significant dysregulation in the diabetic CPCs. Using bioinformatics tools and quantitative real-time PCR (qPCR) validation, four altered miRNAs (miR-30c-5p, miR-329-3p, miR-376c-3p and miR-495-3p) were identified to play an important role in cell proliferation and survival. Diabetes mellitus significantly downregulated miR-30c-5p, while it upregulated miR-329-3p, miR-376c-3p and miR-495-3p. MS analysis revealed proapoptotic voltage-dependent anion-selective channel 1 (VDAC1) as a direct target for miR-30c-5p, and cell cycle regulator, cyclin-dependent protein kinase 6 (CDK6), as the direct target for miR-329-3p, miR-376c-3p and miR-495-3p. Western blot analyses showed a marked increase in VDAC1 expression, while CDK6 expression was downregulated in diabetic CPCs. Finally, in vitro and in vivo overexpression of miR-30c-5p markedly reduced the apoptotic cell death and preserved MMP in diabetic CPCs via inhibition of VDAC1. CONCLUSIONS/INTERPRETATION Our results demonstrate that diabetes mellitus induces a marked dysregulation of miRNAs associated with stem cell survival, proliferation and differentiation, and that therapeutic overexpression of prosurvival miR-30c-5p reduced diabetes-induced cell death and loss of MMP in CPCs via the newly identified target for miR-30c-5p, VDAC1.
Collapse
Affiliation(s)
- Nima Purvis
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sweta Kumari
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Dhananjie Chandrasekera
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jayanthi Bellae Papannarao
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sophie Gandhi
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ramanen Sugunesegran
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Dominic Parry
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael J A Williams
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Rajesh Katare
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
McQuaig R, Dixit P, Yamauchi A, Van Hout I, Papannarao JB, Bunton R, Parry D, Davis P, Katare R. Combination of Cardiac Progenitor Cells From the Right Atrium and Left Ventricle Exhibits Synergistic Paracrine Effects In Vitro. Cell Transplant 2020; 29:963689720972328. [PMID: 33153286 PMCID: PMC7784587 DOI: 10.1177/0963689720972328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases, such as ischemic heart disease, remain the most common cause of death worldwide. Regenerative medicine with stem cell therapy is a promising tool for cardiac repair. Combination of different cell types has been shown to improve the therapeutic potential, which is thought to be due to synergistic or complimentary reparative effects. We investigated if the combination of cardiac progenitor cells (CPCs) of right atrial appendage (RAA) and left ventricle (LV) that are isolated from the same patient exert synergistic or complimentary paracrine effects for apoptotic cell death and angiogenesis in an in vitro model. Flow cytometry analysis showed that both RAA and LV CPCs expressed the mesenchymal cell markers CD90 and CD105, and were predominantly negative for the hematopoietic cell marker, CD34. Analysis of conditioned media (CM) collected from the CPCs cultured either alone or in combination in serum-deprived hypoxic conditions to simulate ischemia showed marked increase in the level of pro-survival hepatocyte growth factor and pro-angiogenic vascular endothelial growth factor-A in the combined RAA and LV CPC group. Next, to determine the therapeutic potential of CM, AC16 human ventricular cardiomyocytes and human umbilical vein endothelial cells (HUVECs) were treated with CM. Results showed a significant reduction in hypoxia-induced apoptosis of human cardiomyocytes treated with CM collected from combined RAA and LV CPC group. Similarly, matrigel assay showed a significantly increased tube length formed by HUVECs when treated with CM from combined RAA and LV CPC group. Our study provided evidence that the combination of RAA CPCs and LV CPCs may have superior therapeutic effects due to synergistic paracrine effects for cardiac repair. Therefore, in vivo studies are warranted to determine if a combination of different stem cell types have greater therapeutic potential than single-cell therapies.
Collapse
Affiliation(s)
- Ryan McQuaig
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Parul Dixit
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Atsushi Yamauchi
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jayanthi Bellae Papannarao
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Dominic Parry
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery and Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Jeong YM, Cheng XW, Lee KH, Lee S, Cho H, Kim W. Substance P enhances the local activation of NK 1R-expressing c-kit + cardiac progenitor cells in right atrium of ischemia/reperfusion-injured heart. BMC Mol Cell Biol 2020; 21:41. [PMID: 32517655 PMCID: PMC7285458 DOI: 10.1186/s12860-020-00286-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Localization of neurokinin 1 receptor (NK1R), the endogenous receptor for neuropeptide substance P (SP), has already been described for the right atrium (RA) of the heart. However, the biological role of SP/NK1R signal pathways in the RA remains unclear. Sprague-Dawley rats were randomly divided into 4 groups (n = 22 each); subjected to sham, ischemia/reperfusion-injury (I/R), I/R with 5 nmole/kg SP injection (SP + I/R), and SP + I/R with 1 mg/kg RP67580 injection (RP, a selective non-peptide tachykinin NK1R antagonist) (RP/SP + I/R). The left anterior descending coronary artery was occluded for 40 min followed by 1 day reperfusion with SP or SP + RP or without either. After 1 day, both atria and ventricles as well as the heart apexes were collected. RESULTS SP promoted the expression of c-Kit, GATA4, Oct4, Nanog, and Sox2 in only the RA of the SP + I/R rats via NK1R activation. In agreement with these observations, NK1R-expressing c-Kit+ Nkx2.5+GATA4+ cardiac progenitor cells (CPCs) in the ex vivo RA explant outgrowth assay markedly migrated out from RA1 day SP + I/R approximately 2-fold increase more than RA1 day I/R. Treatment of SP promoted proliferation, migration, cardiosphere formation, and potential to differentiate into cardiomyocytes. Using RP inhibitor, NK1R antagonist not only inhibited cell proliferation and migration but also reduced the formation of cardiosphere and differentiation of c-Kit+ CPCs. CONCLUSION SP/NK1R might play a role as a key mediator involved in the cellular response to c-Kit+ CPC expansion in RA of the heart within 24 h after I/R.
Collapse
Affiliation(s)
- Yun-Mi Jeong
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.,Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak Street, Si-heung City, Republic of Korea
| | - Xian Wu Cheng
- The Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Kyung Hye Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Sora Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Haneul Cho
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
7
|
Rawal S, Nagesh PT, Coffey S, Van Hout I, Galvin IF, Bunton RW, Davis P, Williams MJA, Katare R. Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium. Cardiovasc Diabetol 2019; 18:13. [PMID: 30696455 PMCID: PMC6352455 DOI: 10.1186/s12933-019-0814-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023] Open
Abstract
Background The diabetic heart undergoes remodelling contributing to an increased incidence of heart failure in individuals with diabetes at a later stage. The molecular regulators that drive this process in the diabetic heart are still unknown. Methods Real-time (RT) PCR analysis was performed to determine the expression of cardiac specific microRNA-208a in right atrial appendage (RAA) and left ventricular (LV) biopsy tissues collected from diabetic and non-diabetic patients undergoing coronary artery bypass graft surgery. To determine the time-dependent changes, cardiac tissue were collected from type 2 diabetic mice at different age groups. A western blotting analysis was conducted to determine the expression of contractile proteins α- and β-myosin heavy chain (MHC) and thyroid hormone receptor-α (TR-α), the negative regulator of β-MHC. To determine the beneficial effects of therapeutic modulation of miR-208a, high glucose treated adult mouse HL-1 cardiomyocytes were transfected with anti-miR-208a. Results RT-PCR analysis showed marked upregulation of miR-208a from early stages of diabetes in type 2 diabetic mouse heart, which was associated with a marked increase in the expression of pro-hypertrophic β-MHC and downregulation of TR-α. Interestingly, upregulation of miR-208a preceded the switch of α-/β-MHC isoforms and the development of diastolic and systolic dysfunction. We also observed significant upregulation of miR-208a and modulation of miR-208a associated proteins in the type 2 human diabetic heart. Therapeutic inhibition of miR-208a activity in high glucose treated HL-1 cardiomyocytes prevented the activation of β-MHC and hence the hypertrophic response. Conclusion Our results provide the first evidence that early modulation of miR-208a in the diabetic heart induces alterations in the downstream signaling pathway leading to cardiac remodelling and that therapeutic inhibition of miR-208a may be beneficial in preventing diabetes-induced adverse remodelling of the heart.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.,New York University, New York, USA
| | - Prashanth Thevakar Nagesh
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.,New York University, New York, USA
| | - Sean Coffey
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Ivor F Galvin
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard W Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael J A Williams
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| |
Collapse
|
8
|
Abstract
Cardiac progenitor cells (CPCs) are gaining interest as a therapeutic option for the treatment of the heart. Due to the limited pool of CPCs residing in the heart, it is essential to isolate and expand the CPCs in vitro. Here we describe the protocol for isolation and culture of the heterogeneous population of CPCs from right atrial appendage and left ventricular tissue collected from patients undergoing on-pump coronary artery bypass graft surgery for the treatment of ischemic heart disease. Our protocol is developed to simultaneously isolate, culture, and characterize the CPCs from both atrial and ventricular tissues. We also describe the protocol for flow cytometry and immunohistochemical characterization of the isolated CPCs.
Collapse
|
9
|
Diabetes induces the activation of pro-ageing miR-34a in the heart, but has differential effects on cardiomyocytes and cardiac progenitor cells. Cell Death Differ 2018; 25:1336-1349. [PMID: 29302057 PMCID: PMC6030067 DOI: 10.1038/s41418-017-0047-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023] Open
Abstract
Increased apoptosis and premature cellular ageing of the diabetic heart underpin the development of diabetic heart disease. The molecular mechanisms underlying these pathologies are still unclear. Here we determined the role of pro-senescence microRNA (miR)-34a in accelerating the ageing of the diabetic heart. RT-PCR analysis showed a significant increase in the level of circulating miR-34a from early stages in asymptomatic type-2 diabetic individuals compared to non-diabetic controls. We also observed significant upregulation of miR-34a in the type-2 human diabetic heart suggesting circulating miR-34a may be cardiac in origin. Moreover, western blot analysis identified marked downregulation of the pro-survival protein sirtuin 1 (SIRT1), a direct target of miR-34a. Analysis of cultured human adult cardiomyocytes exposed to high glucose and cardiac progenitor cells (CPCs) isolated from the diabetic heart confirmed significant upregulation of miR-34a and downregulation of SIRT1, associated with a marked increase in pro-apoptotic caspase-3/7 activity. Although therapeutic inhibition of miR-34a activity restored SIRT1 expression in both cardiomyocytes and CPCs, p53 expression was further upregulated in cardiomyocytes but conversely downregulated in CPCs. In spite of increased p53, miR-34a inhibition significantly reduced high glucose induced apoptotic cell death in cardiomyocytes. However, this effect was not observed in CPCs, which in fact showed reduced proliferation following miR-34a inhibition. Taken together, our results demonstrate upregulation of miR-34a in the diabetic heart and in the circulation from an early stage of the disease. However, inhibition of miR-34a activity has differential effects depending on the cell type, thereby warranting the need to eliminate off-target effects when introducing miR-based therapy.
Collapse
|