1
|
Ni H, Grandi E. Computational Modeling of Cardiac Electrophysiology. Methods Mol Biol 2024; 2735:63-103. [PMID: 38038844 DOI: 10.1007/978-1-0716-3527-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mathematical modeling and simulation are well-established and powerful tools to integrate experimental data of individual components of cardiac electrophysiology, excitation-contraction coupling, and regulatory signaling pathways, to gain quantitative and mechanistic insight into pathophysiological processes and guide therapeutic strategies. Here, we briefly describe the processes governing cardiac myocyte electrophysiology and Ca2+ handling and their regulation, as well as action potential propagation in tissue. We discuss the models and methods used to describe these phenomena, including procedures for model parameterization and validation, in addition to protocols for model interrogation and analysis and techniques that account for phenotypic variability and parameter uncertainty. Our objective is to provide a summary of basic concepts and approaches as a resource for scientists training in this discipline and for all researchers aiming to gain an understanding of cardiac modeling studies.
Collapse
Affiliation(s)
- Haibo Ni
- Department of Pharmacology, University of California, Davis, CA, USA.
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Ni H, Morotti S, Zhang X, Dobrev D, Grandi E. Integrative human atrial modelling unravels interactive protein kinase A and Ca2+/calmodulin-dependent protein kinase II signalling as key determinants of atrial arrhythmogenesis. Cardiovasc Res 2023; 119:2294-2311. [PMID: 37523735 PMCID: PMC11318383 DOI: 10.1093/cvr/cvad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 08/02/2023] Open
Abstract
AIMS Atrial fibrillation (AF), the most prevalent clinical arrhythmia, is associated with atrial remodelling manifesting as acute and chronic alterations in expression, function, and regulation of atrial electrophysiological and Ca2+-handling processes. These AF-induced modifications crosstalk and propagate across spatial scales creating a complex pathophysiological network, which renders AF resistant to existing pharmacotherapies that predominantly target transmembrane ion channels. Developing innovative therapeutic strategies requires a systems approach to disentangle quantitatively the pro-arrhythmic contributions of individual AF-induced alterations. METHODS AND RESULTS Here, we built a novel computational framework for simulating electrophysiology and Ca2+-handling in human atrial cardiomyocytes and tissues, and their regulation by key upstream signalling pathways [i.e. protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)] involved in AF-pathogenesis. Populations of atrial cardiomyocyte models were constructed to determine the influence of subcellular ionic processes, signalling components, and regulatory networks on atrial arrhythmogenesis. Our results reveal a novel synergistic crosstalk between PKA and CaMKII that promotes atrial cardiomyocyte electrical instability and arrhythmogenic triggered activity. Simulations of heterogeneous tissue demonstrate that this cellular triggered activity is further amplified by CaMKII- and PKA-dependent alterations of tissue properties, further exacerbating atrial arrhythmogenesis. CONCLUSIONS Our analysis reveals potential mechanisms by which the stress-associated adaptive changes turn into maladaptive pro-arrhythmic triggers at the cellular and tissue levels and identifies potential anti-AF targets. Collectively, our integrative approach is powerful and instrumental to assemble and reconcile existing knowledge into a systems network for identifying novel anti-AF targets and innovative approaches moving beyond the traditional ion channel-based strategy.
Collapse
Affiliation(s)
- Haibo Ni
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Xianwei Zhang
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, University
Duisburg-Essen, Essen, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and
Université de Montréal, Montréal, Canada
- Department of Molecular Physiology and Biophysics, Baylor College of
Medicine, Houston, TX, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis,
451 Health Sciences Drive, Davis, CA 95616, USA
| |
Collapse
|
3
|
Herrera NT, Zhang X, Ni H, Maleckar MM, Heijman J, Dobrev D, Grandi E, Morotti S. Dual effects of the small-conductance Ca 2+-activated K + current on human atrial electrophysiology and Ca 2+-driven arrhythmogenesis: an in silico study. Am J Physiol Heart Circ Physiol 2023; 325:H896-H908. [PMID: 37624096 PMCID: PMC10659325 DOI: 10.1152/ajpheart.00362.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
By sensing changes in intracellular Ca2+, small-conductance Ca2+-activated K+ (SK) channels dynamically regulate the dynamics of the cardiac action potential (AP) on a beat-to-beat basis. Given their predominance in atria versus ventricles, SK channels are considered a promising atrial-selective pharmacological target against atrial fibrillation (AF), the most common cardiac arrhythmia. However, the precise contribution of SK current (ISK) to atrial arrhythmogenesis is poorly understood, and may potentially involve different mechanisms that depend on species, heart rates, and degree of AF-induced atrial remodeling. Both reduced and enhanced ISK have been linked to AF. Similarly, both SK channel up- and downregulation have been reported in chronic AF (cAF) versus normal sinus rhythm (nSR) patient samples. Here, we use our multiscale modeling framework to obtain mechanistic insights into the contribution of ISK in human atrial cardiomyocyte electrophysiology. We simulate several protocols to quantify how ISK modulation affects the regulation of AP duration (APD), Ca2+ transient, refractoriness, and occurrence of alternans and delayed afterdepolarizations (DADs). Our simulations show that ISK activation shortens the APD and atrial effective refractory period, limits Ca2+ cycling, and slightly increases the propensity for alternans in both nSR and cAF conditions. We also show that increasing ISK counteracts DAD development by enhancing the repolarization force that opposes the Ca2+-dependent depolarization. Taken together, our results suggest that increasing ISK in human atrial cardiomyocytes could promote reentry while protecting against triggered activity. Depending on the leading arrhythmogenic mechanism, ISK inhibition may thus be a beneficial or detrimental anti-AF strategy.NEW & NOTEWORTHY Using our established framework for human atrial myocyte simulations, we investigated the role of the small-conductance Ca2+-activated K+ current (ISK) in the regulation of cell function and the development of Ca2+-driven arrhythmias. We found that ISK inhibition, a promising atrial-selective pharmacological strategy against atrial fibrillation, counteracts the reentry-promoting abbreviation of atrial refractoriness, but renders human atrial myocytes more vulnerable to delayed afterdepolarizations, thus potentially increasing the propensity for ectopic (triggered) activity.
Collapse
Affiliation(s)
- Nathaniel T Herrera
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Xianwei Zhang
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Mary M Maleckar
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Jordi Heijman
- Department of Cardiology, Faculty of Health, Medicine, and Life Sciences, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Faculty of Medicine, West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California, United States
| |
Collapse
|
4
|
Ogiermann D, Perotti LE, Balzani D. A simple and efficient adaptive time stepping technique for low-order operator splitting schemes applied to cardiac electrophysiology. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3670. [PMID: 36510350 DOI: 10.1002/cnm.3670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
We present a simple, yet efficient adaptive time stepping scheme for cardiac electrophysiology (EP) simulations based on standard operator splitting techniques. The general idea is to exploit the relation between the splitting error and the reaction's magnitude-found in a previous one-dimensional analytical study by Spiteri and Ziaratgahi-to construct the new time step controller for three-dimensional problems. Accordingly, we propose to control the time step length of the operator splitting scheme as a function of the reaction magnitude, in addition to the common approach of adapting the reaction time step. This conforms with observations in numerical experiments supporting the need for a significantly smaller time step length during depolarization than during repolarization. The proposed scheme is compared with classical proportional-integral-differential controllers using state-of-the-art error estimators, which are also presented in details as they have not been previously applied in the context of cardiac EP with operator splitting techniques. Benchmarks show that choosing the time step as a sigmoidal function of the reaction magnitude is highly efficient and full cardiac cycles can be computed with precision even in a realistic biventricular setup. The proposed scheme outperforms common adaptive time stepping techniques, while depending on fewer tuning parameters.
Collapse
Affiliation(s)
- Dennis Ogiermann
- Chair of Continuum Mechanics, Ruhr University Bochum, Bochum, Germany
| | - Luigi E Perotti
- Mechanical and Aerospace Engineering Department, University of Central Florida, Orlando, Florida, USA
| | - Daniel Balzani
- Chair of Continuum Mechanics, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Alinezhad L, Ghalichi F, Ahmadlouydarab M, Chenaghlou M. Left atrial appendage shape impacts on the left atrial flow hemodynamics: A numerical hypothesis generating study on two cases. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 213:106506. [PMID: 34752960 DOI: 10.1016/j.cmpb.2021.106506] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVES The left atrial appendage (LAA) is the most common region for thrombus formation in atrial fibrillation (AF). Morphological parameters such as shape, size, and LAA volume can cause insufficient effectiveness of available therapeutic options. This study aimed to examine blood flow inside LAA and its removal effects. Computational fluid dynamic (CFD) simulations were carried out on two patients with different morphologies. METHODS Two patients' CT was used to reconstruct the 3D geometries of the left atrium (LA) and left atrial appendage (LAA). Then, the geometries were refined in the mentioned software, and the LAA in some models was removed. Next, in generated 3D volume mesh, sinus rhythm (SR) and atrial fibrillation (AF) outflow velocity were imposed at the mitral valve as boundary conditions. Finally, CFD simulation was conducted to analyzing blood flow within LA with/without LA. RESULTS The results confirmed that velocity and vorticity decreased under AF conditions inside the LA domain for both patients. However, removing LAA may cause unpredictable consequences, due to different shape and volume of LAA. LAA removal had insignificant effects on velocity and vorticity within LA in SR-mitral outflow. However, removing LAA increased the blood flow rate by 9.15% and vorticity by 7.27% for patient one under AF rhythm (SR)-outflow. In contrast, for patient two, LAA removal in both AF and SR decreased velocity and vorticity within the LA domain. In SR-mitral outflow, velocity dropped by 18.8 %, and vorticity by 13.2%. Also, under AF velocity and vorticity decreased by 23.33% and 18.6% respectively. Meanwhile, the results indicated that the vorticity magnitude increased inside the LAA under AF associated with the risk of thrombus formation, particularly for patient one under AF. The distal part of LAA in both patients was the most common region for blood stasis because of the lowest velocity magnitude. CONCLUSION Overall, the morphology of LAA could be the critical parameter to determine the possibility of thrombosis formation, particularly under AF conditions. High volume, low blood flow velocity and two-lobe-appendage are more likely to have blood stasis. Furthermore, the morphology difference can affect the LAA removal result and make it more complicated. So, it could be challenging to generalize LAA removal as a therapeutic option for different patients. The implication of this CFD observation needs more investigation.
Collapse
Affiliation(s)
- Lida Alinezhad
- Department of Biomedical Engineering, Division of Biomechanics, Sahand University of Technology, Tabriz, Iran
| | - Farzan Ghalichi
- Department of Biomedical Engineering, Division of Biomechanics, Sahand University of Technology, Tabriz, Iran
| | - Majid Ahmadlouydarab
- Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Maryam Chenaghlou
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Couselo-Seijas M, Rodríguez-Mañero M, González-Juanatey JR, Eiras S. Updates on epicardial adipose tissue mechanisms on atrial fibrillation. Obes Rev 2021; 22:e13277. [PMID: 34002458 DOI: 10.1111/obr.13277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Obesity is a well-known risk factor for atrial fibrillation (AF). Local epi-myocardial or intra-myocardial adiposity caused by aging, obesity, or cardiovascular disease (CVD) is considered to be a better predictor of the risk of AF than general adiposity. Some of the described mechanisms suggest that epicardial adipose tissue (EAT) participates in structural remodeling owing to its endocrine activity or its infiltration between cardiomyocytes. Epicardial fat also wraps up the ganglionated plexi that reach the myocardium. Although the increment of volume/thickness and activity of EAT might modify autonomic activity, autonomic system dysfunction might also change the endocrine activity of epicardial fat in a feedback response. As a result, new preventive therapeutic strategies are focused on reducing adiposity and weight loss before AF ablation or inhibiting autonomic neurotransmitter secretion on fat pads during open-heart surgery to reduce the recurrence or postoperative risk of AF. In this manuscript, we review some of the novel findings regarding the pathophysiology and associated risk factors of AF, with special emphasis on the role of EAT in the electrical, structural, and molecular mechanisms of AF initiation and maintenance. In addition, we have included a brief note provided on epicardial fat preclinical models that could be useful for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Marinela Couselo-Seijas
- Translational Cardiology group, Health Research Institute, Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Moisés Rodríguez-Mañero
- Translational Cardiology group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - José R González-Juanatey
- University of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,Cardiology group, Health Research Institute, Santiago de Compostela, Spain
| | - Sonia Eiras
- Translational Cardiology group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
8
|
Gharaviri A, Pezzuto S, Potse M, Conte G, Zeemering S, Sobota V, Verheule S, Krause R, Auricchio A, Schotten U. Synergistic antiarrhythmic effect of inward rectifier current inhibition and pulmonary vein isolation in a 3D computer model for atrial fibrillation. Europace 2021; 23:i161-i168. [PMID: 33751085 DOI: 10.1093/europace/euaa413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Recent clinical studies showed that antiarrhythmic drug (AAD) treatment and pulmonary vein isolation (PVI) synergistically reduce atrial fibrillation (AF) recurrences after initially successful ablation. Among newly developed atrial-selective AADs, inhibitors of the G-protein-gated acetylcholine-activated inward rectifier current (IKACh) were shown to effectively suppress AF in an experimental model but have not yet been evaluated clinically. We tested in silico whether inhibition of inward rectifier current or its combination with PVI reduces AF inducibility. METHODS AND RESULTS We simulated the effect of inward rectifier current blockade (IK blockade), PVI, and their combination on AF inducibility in a detailed three-dimensional model of the human atria with different degrees of fibrosis. IK blockade was simulated with a 30% reduction of its conductivity. Atrial fibrillation was initiated using incremental pacing applied at 20 different locations, in both atria. IK blockade effectively prevented AF induction in simulations without fibrosis as did PVI in simulations without fibrosis and with moderate fibrosis. Both interventions lost their efficacy in severe fibrosis. The combination of IK blockade and PVI prevented AF in simulations without fibrosis, with moderate fibrosis, and even with severe fibrosis. The combined therapy strongly decreased the number of fibrillation waves, due to a synergistic reduction of wavefront generation rate while the wavefront lifespan remained unchanged. CONCLUSION Newly developed blockers of atrial-specific inward rectifier currents, such as IKAch, might prevent AF occurrences and when combined with PVI effectively supress AF recurrences in human.
Collapse
Affiliation(s)
- Ali Gharaviri
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Simone Pezzuto
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Mark Potse
- Carmen Team, Inria Bordeaux-Sud-Ouest, Talence, France.,Université de Bordeaux, IMB, UMR 5251, F-33400, Talence, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
| | - Giulio Conte
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland.,Division of Cardiology, Fondazione Cardiocentro Ticino, Via Tesserete 48, 6900 Lugano, Switzerland
| | - Stef Zeemering
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Vladimír Sobota
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Rolf Krause
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - Angelo Auricchio
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland.,Division of Cardiology, Fondazione Cardiocentro Ticino, Via Tesserete 48, 6900 Lugano, Switzerland
| | - Ulrich Schotten
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Nedios S, Lindemann F, Heijman J, Crijns HJGM, Bollmann A, Hindricks G. Atrial remodeling and atrial fibrillation recurrence after catheter ablation : Past, present, and future developments. Herz 2021; 46:312-317. [PMID: 34223914 DOI: 10.1007/s00059-021-05050-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/30/2022]
Abstract
The term "atrial remodeling" is used to describe the electrical, mechanical, and structural changes associated with the presence of an arrhythmogenic substrate for atrial fibrillation. Rhythm control therapy may slow down or even reverse progressive atrial remodeling. Atrial remodeling has long been recognized as an important predictor of clinical outcomes and therapeutic success, but recent advances have highlighted its clinical relevance and revealed the implications of specific anatomical changes such as atrial asymmetry or shape. This has opened the path to computational precision medicine that captures these data in detail and combines them with other factors, to provide patient-specific solutions. The goal of precision medicine lies in improving clinical outcomes, reducing costs, and avoiding unnecessary procedures. In this article, we review the history of atrial remodeling and we summarize the insights from our research on anatomical atrial remodeling and its association with rhythm outcomes after catheter ablation. Finally, we present recent advances in the field, reflecting the beginning of a new technological era that will enable us to improve patient care by personalized patient-specific medicine.
Collapse
Affiliation(s)
- Sotirios Nedios
- Department of Electrophysiology, Heart Center at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| | - Frank Lindemann
- Department of Electrophysiology, Heart Center at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Jordi Heijman
- Department of Cardiology, CardiovascularResearch Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, CardiovascularResearch Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| |
Collapse
|
10
|
Heijman J, Sutanto H, Crijns HJGM, Nattel S, Trayanova NA. Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care. Cardiovasc Res 2021; 117:1682-1699. [PMID: 33890620 PMCID: PMC8208751 DOI: 10.1093/cvr/cvab138] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Despite significant advances in its detection, understanding and management, atrial fibrillation (AF) remains a highly prevalent cardiac arrhythmia with a major impact on morbidity and mortality of millions of patients. AF results from complex, dynamic interactions between risk factors and comorbidities that induce diverse atrial remodelling processes. Atrial remodelling increases AF vulnerability and persistence, while promoting disease progression. The variability in presentation and wide range of mechanisms involved in initiation, maintenance and progression of AF, as well as its associated adverse outcomes, make the early identification of causal factors modifiable with therapeutic interventions challenging, likely contributing to suboptimal efficacy of current AF management. Computational modelling facilitates the multilevel integration of multiple datasets and offers new opportunities for mechanistic understanding, risk prediction and personalized therapy. Mathematical simulations of cardiac electrophysiology have been around for 60 years and are being increasingly used to improve our understanding of AF mechanisms and guide AF therapy. This narrative review focuses on the emerging and future applications of computational modelling in AF management. We summarize clinical challenges that may benefit from computational modelling, provide an overview of the different in silico approaches that are available together with their notable achievements, and discuss the major limitations that hinder the routine clinical application of these approaches. Finally, future perspectives are addressed. With the rapid progress in electronic technologies including computing, clinical applications of computational modelling are advancing rapidly. We expect that their application will progressively increase in prominence, especially if their added value can be demonstrated in clinical trials.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Henry Sutanto
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Duisburg, Germany
- IHU Liryc and Fondation Bordeaux Université, Bordeaux, France
| | - Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Model Systems for Addressing Mechanism of Arrhythmogenesis in Cardiac Repair. Curr Cardiol Rep 2021; 23:72. [PMID: 34050853 PMCID: PMC8164614 DOI: 10.1007/s11886-021-01498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in model systems for addressing mechanisms of arrhythmogenesis in cardiac repair. RECENT FINDINGS Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis. Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mechanisms of cardiac arrhythmias. Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into novel mitigation strategies for cardiac arrhythmias in cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Phung N. Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Deborah K. Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
12
|
Clerx M, Mirams GR, Rogers AJ, Narayan SM, Giles WR. Immediate and Delayed Response of Simulated Human Atrial Myocytes to Clinically-Relevant Hypokalemia. Front Physiol 2021; 12:651162. [PMID: 34122128 PMCID: PMC8188899 DOI: 10.3389/fphys.2021.651162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Although plasma electrolyte levels are quickly and precisely regulated in the mammalian cardiovascular system, even small transient changes in K+, Na+, Ca2+, and/or Mg2+ can significantly alter physiological responses in the heart, blood vessels, and intrinsic (intracardiac) autonomic nervous system. We have used mathematical models of the human atrial action potential (AP) to explore the electrophysiological mechanisms that underlie changes in resting potential (Vr) and the AP following decreases in plasma K+, [K+]o, that were selected to mimic clinical hypokalemia. Such changes may be associated with arrhythmias and are commonly encountered in patients (i) in therapy for hypertension and heart failure; (ii) undergoing renal dialysis; (iii) with any disease with acid-base imbalance; or (iv) post-operatively. Our study emphasizes clinically-relevant hypokalemic conditions, corresponding to [K+]o reductions of approximately 1.5 mM from the normal value of 4 to 4.5 mM. We show how the resulting electrophysiological responses in human atrial myocytes progress within two distinct time frames: (i) Immediately after [K+]o is reduced, the K+-sensing mechanism of the background inward rectifier current (IK1) responds. Specifically, its highly non-linear current-voltage relationship changes significantly as judged by the voltage dependence of its region of outward current. This rapidly alters, and sometimes even depolarizes, Vr and can also markedly prolong the final repolarization phase of the AP, thus modulating excitability and refractoriness. (ii) A second much slower electrophysiological response (developing 5-10 minutes after [K+]o is reduced) results from alterations in the intracellular electrolyte balance. A progressive shift in intracellular [Na+]i causes a change in the outward electrogenic current generated by the Na+/K+ pump, thereby modifying Vr and AP repolarization and changing the human atrial electrophysiological substrate. In this study, these two effects were investigated quantitatively, using seven published models of the human atrial AP. This highlighted the important role of IK1 rectification when analyzing both the mechanisms by which [K+]o regulates Vr and how the AP waveform may contribute to "trigger" mechanisms within the proarrhythmic substrate. Our simulations complement and extend previous studies aimed at understanding key factors by which decreases in [K+]o can produce effects that are known to promote atrial arrhythmias in human hearts.
Collapse
Affiliation(s)
- Michael Clerx
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Gary R Mirams
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert J Rogers
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Wayne R Giles
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Amuzescu B, Airini R, Epureanu FB, Mann SA, Knott T, Radu BM. Evolution of mathematical models of cardiomyocyte electrophysiology. Math Biosci 2021; 334:108567. [PMID: 33607174 DOI: 10.1016/j.mbs.2021.108567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Advanced computational techniques and mathematical modeling have become more and more important to the study of cardiac electrophysiology. In this review, we provide a brief history of the evolution of cardiomyocyte electrophysiology models and highlight some of the most important ones that had a major impact on our understanding of the electrical activity of the myocardium and associated transmembrane ion fluxes in normal and pathological states. We also present the use of these models in the study of various arrhythmogenesis mechanisms, particularly the integration of experimental pharmacology data into advanced humanized models for in silico proarrhythmogenic risk prediction as an essential component of the Comprehensive in vitro Proarrhythmia Assay (CiPA) drug safety paradigm.
Collapse
Affiliation(s)
- Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Razvan Airini
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Florin Bogdan Epureanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX 78229, USA
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| |
Collapse
|
14
|
Ni H, Fogli Iseppe A, Giles WR, Narayan SM, Zhang H, Edwards AG, Morotti S, Grandi E. Populations of in silico myocytes and tissues reveal synergy of multiatrial-predominant K + -current block in atrial fibrillation. Br J Pharmacol 2020; 177:4497-4515. [PMID: 32667679 DOI: 10.1111/bph.15198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacotherapy of atrial fibrillation (AF), the most common cardiac arrhythmia, remains unsatisfactory due to low efficacy and safety concerns. New therapeutic strategies target atrial-predominant ion-channels and involve multichannel block (poly)therapy. As AF is characterized by rapid and irregular atrial activations, compounds displaying potent antiarrhythmic effects at fast and minimal effects at slow rates are desirable. We present a novel systems pharmacology framework to quantitatively evaluate synergistic anti-AF effects of combined block of multiple atrial-predominant K+ currents (ultra-rapid delayed rectifier K+ current, IKur , small conductance Ca2+ -activated K+ current, IKCa , K2P 3.1 2-pore-domain K+ current, IK2P ) in AF. EXPERIMENTAL APPROACH We constructed experimentally calibrated populations of virtual atrial myocyte models in normal sinus rhythm and AF-remodelled conditions using two distinct, well-established atrial models. Sensitivity analyses on our atrial populations was used to investigate the rate dependence of action potential duration (APD) changes due to blocking IKur , IK2P or IKCa and interactions caused by blocking of these currents in modulating APD. Block was simulated in both single myocytes and one-dimensional tissue strands to confirm insights from the sensitivity analyses and examine anti-arrhythmic effects of multi-atrial-predominant K+ current block in single cells and coupled tissue. KEY RESULTS In both virtual atrial myocytes and tissues, multiple atrial-predominant K+ -current block promoted favourable positive rate-dependent APD prolongation and displayed positive rate-dependent synergy, that is, increasing synergistic antiarrhythmic effects at fast pacing versus slow rates. CONCLUSION AND IMPLICATIONS Simultaneous block of multiple atrial-predominant K+ currents may be a valuable antiarrhythmic pharmacotherapeutic strategy for AF.
Collapse
Affiliation(s)
- Haibo Ni
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Alex Fogli Iseppe
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sanjiv M Narayan
- Division of Cardiology, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - Andrew G Edwards
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
15
|
Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:54-75. [PMID: 32188566 DOI: 10.1016/j.pbiomolbio.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) plays a central role in cardiomyocyte excitation-contraction coupling. To ensure an optimal electrical impulse propagation and cardiac contraction, Ca2+ levels are regulated by a variety of Ca2+-handling proteins. In turn, Ca2+ modulates numerous electrophysiological processes. Accordingly, Ca2+-handling abnormalities can promote cardiac arrhythmias via various mechanisms, including the promotion of afterdepolarizations, ion-channel modulation and structural remodeling. In the last 30 years, significant improvements have been made in the computational modeling of cardiomyocyte Ca2+ handling under physiological and pathological conditions. However, numerous questions involving the Ca2+-dependent regulation of different macromolecular complexes, cross-talk between Ca2+-dependent regulatory pathways operating over a wide range of time scales, and bidirectional interactions between electrophysiology and mechanics remain to be addressed by in vitro and in silico studies. A better understanding of disease-specific Ca2+-dependent proarrhythmic mechanisms may facilitate the development of improved therapeutic strategies. In this review, we describe the fundamental mechanisms of cardiomyocyte Ca2+ handling in health and disease, and provide an overview of currently available computational models for cardiomyocyte Ca2+ handling. Finally, we discuss important uncertainties and open questions about cardiomyocyte Ca2+ handling and highlight how synergy between in vitro and in silico studies may help to answer several of these issues.
Collapse
|
16
|
Sutanto H, Laudy L, Clerx M, Dobrev D, Crijns HJ, Heijman J. Maastricht antiarrhythmic drug evaluator (MANTA): A computational tool for better understanding of antiarrhythmic drugs. Pharmacol Res 2019; 148:104444. [DOI: 10.1016/j.phrs.2019.104444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/10/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
|
17
|
Martinez-Mateu L, Saiz J, Aromolaran AS. Differential Modulation of IK and ICa,L Channels in High-Fat Diet-Induced Obese Guinea Pig Atria. Front Physiol 2019; 10:1212. [PMID: 31607952 PMCID: PMC6773813 DOI: 10.3389/fphys.2019.01212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity mechanisms that make atrial tissue vulnerable to arrhythmia are poorly understood. Voltage-dependent potassium (IK, IKur, and IK1) and L-type calcium currents (ICa,L) are electrically relevant and represent key substrates for modulation in obesity. We investigated whether electrical remodeling produced by high-fat diet (HFD) alone or in concert with acute atrial stimulation were different. Electrophysiology was used to assess atrial electrical function after short-term HFD-feeding in guinea pigs. HFD atria displayed spontaneous beats, increased IK (IKr + IKs) and decreased ICa,L densities. Only with pacing did a reduction in IKur and increased IK1 phenotype emerge, leading to a further shortening of action potential duration. Computer modeling studies further indicate that the measured changes in potassium and calcium current densities contribute prominently to shortened atrial action potential duration in human heart. Our data are the first to show that multiple mechanisms (shortened action potential duration, early afterdepolarizations and increased incidence of spontaneous beats) may underlie initiation of supraventricular arrhythmias in obese guinea pig hearts. These results offer different mechanistic insights with implications for obese patients harboring supraventricular arrhythmias.
Collapse
Affiliation(s)
- Laura Martinez-Mateu
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Ademuyiwa S Aromolaran
- Cardiac Electrophysiology and Metabolism Research Group, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
18
|
Nemavhola F. Detailed structural assessment of healthy interventricular septum in the presence of remodeling infarct in the free wall - A finite element model. Heliyon 2019; 5:e01841. [PMID: 31198871 PMCID: PMC6556880 DOI: 10.1016/j.heliyon.2019.e01841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/09/2019] [Accepted: 05/24/2019] [Indexed: 11/28/2022] Open
Abstract
Purpose Computational modelling may improve the fundamental understanding of various mechanisms of diseases more particularly related to clinical challenges. In this study the effect of remodeling infarct presence in the left ventricle on the interventricular septal wall is studied using the finite element methods. Methods In this study, two rat heart (one model with healthy myocardium and one model with remodeling free wall and healthy septal wall) with magnetic resonance imaging data was gathered to reconstruct three-dimensional (3D) rat heart models. 3D data points from Segment® were imported into SolidEdge® for creation of 3D rat heart models. Abaqus® was used for finite element modeling. Results The strain in the healthy interventricular septum of the infarcted left ventricle wall increased when compared to the healthy interventricular septum in the healthy left ventricle. Similarly, the average stress in the healthy left ventricle was observed to have increased on the healthy the interventricular septum where the free wall is subjected to remodeling infarct. When comparing the infarcted models to the healthy model, it was found that the average strain had greatly increased by up to 50.0 %. Conclusions The remodeling infarct in the left ventricle has an impact on the healthy interventricular septal wall. Even though the interventricular septal wall was modelled as healthy, it was observed that it has undergone considerable changes in stresses and strains in circumferential and longitudinal direction. The observed changes in myocardial stresses and strains may result in poor global functioning of the heart.
Collapse
Affiliation(s)
- Fulufhelo Nemavhola
- Department of Mechanical and Industrial Engineering, School of Engineering, College of Science, Engineering and Technology, University of South Africa, Florida, South Africa
| |
Collapse
|
19
|
Heijman J, Dobrev D. Bayesian network analyses in atrial fibrillation - A path to better therapies? IJC HEART & VASCULATURE 2019; 22:210-211. [PMID: 30963097 PMCID: PMC6437288 DOI: 10.1016/j.ijcha.2019.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite several major innovations in atrial fibrillation (AF) management, including the improved detection of AF and advances in catheter-ablation-based rhythm control, AF remains a major health-care burden. Recent advances have enabled curation of increasingly large data sets, which, together with improvements in AF detection through screening and continuous rhythm monitoring, enable novel 'big data' approaches to better predict and classify AF. In this issue of the International Journal of Cardiology Heart & Vasculature, Drs. Ebana and Furakawa describe an approach to shed light on potential causal links between several risk factors and atrial arrhythmias from the superior vena cava using a Bayesian network analysis. This approach may be a relevant step from statistical association towards identification of causative mechanisms and together with experimental work and mechanistic computer models may help to establish tailored mechanism-based therapies for AF.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
20
|
Aronis KN, Ali R, Trayanova NA. The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. Int J Cardiol 2019; 287:139-147. [PMID: 30755334 DOI: 10.1016/j.ijcard.2019.01.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation is the most common arrhythmia in humans and is associated with high morbidity, mortality and health-related expenses. Computational approaches have been increasingly utilized in atrial electrophysiology. In this review we summarize the recent advancements in atrial fibrillation modeling at the organ scale. Multi-scale atrial models now incorporate high level detail of atrial anatomy, tissue ultrastructure and fibrosis distribution. We provide the state-of-the art methodologies in developing personalized atrial fibrillation models with realistic geometry and tissue properties. We then focus on the use of multi-scale atrial models to gain mechanistic insights in AF. Simulations using atrial models have provided important insight in the mechanisms underlying AF, showing the importance of the atrial fibrotic substrate and altered atrial electrophysiology in initiation and maintenance of AF. Last, we summarize the translational evidence that supports incorporation of computational modeling in clinical practice for development of personalized treatment strategies for patients with AF. In early-stages clinical studies, AF models successfully identify patients where pulmonary vein isolation alone is not adequate for treatment of AF and suggest novel targets for ablation. We conclude with a summary of the future developments envisioned for the field of atrial computational electrophysiology.
Collapse
Affiliation(s)
- Konstantinos N Aronis
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Rheeda Ali
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|