1
|
Guglielmo M, Fusini L, Baessato F, Baggiano A, Mushtaq S, Annoni A, Carerj ML, Cilia F, Fazzari F, Formenti A, Gripari P, Mancini ME, Marchetti F, Penso M, Volpe A, Tassetti L, Guaricci AI, Muscogiuri G, Costantini P, van der Bilt I, van der Harst P, Rabbat MG, Rossi A, Fontana M, Pontone G. PROGnostic RolE of strain measurements in stress cardiac MRI in predicting major adverse cardiac events. Int J Cardiol 2024; 412:132337. [PMID: 38964552 DOI: 10.1016/j.ijcard.2024.132337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES We aimed to investigate the role of feature-tracking (FT) strain in long-term risk stratification of patients with known or suspected coronary artery disease (CAD) who underwent stress cardiac MRI with dipyridamole; to determine if contrast-free stress cardiac MRI with strain measurements could provide comparable prognostic value to myocardial perfusion. MATERIALS AND METHODS This retrospective study included consecutive patients with stable symptoms suggesting possible cardiac ischemia who underwent stress cardiac MRI with dipyridamole. The mean follow-up period was 5.8 years ±1.2 [SD]. FT cardiac MRI analysis was performed for each patient to obtain 2D global peak circumferential strain (GCS). The primary outcome measure was major adverse cardiac events (MACE), defined as nonfatal myocardial infarction and cardiac death. RESULTS A total of 729 patients (mean age, 63 years ±10 [SD]; 616 males) were included. MACE occurred in 70 (9.6%) patients. The presence of late gadolinium enhancement (LGE) ([HR] 2.74, [95% CI: 1.53, 4.88]; P < .001) and stress GCS (HR, 1.06 [95% CI: 1.01, 1.12]; P = .016) were independently associated with MACE. A model based on contrast-free assessment of LVEF and stress GCS showed similar performance for predicting MACE than LVEF and perfusion (P = .056). CONCLUSIONS In patients with known or suspected CAD undergoing stress cardiac MRI with dipyridamole, GCS and LGE presence were independent predictors of MACE. Contrast-free stress cardiac MRI with stress GCS measurement offered prognostic value akin to myocardial perfusion assessment. CLINICAL RELEVANCE STATEMENT Stress global circumferential strain represented an additional method to predict major adverse cardiac events in patients undergoing stress cardiac MRI, even without the use of contrast agents. This would be of particular significance in patients with severe renal impairment.
Collapse
Affiliation(s)
- Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Francesca Baessato
- Department of Cardiology, San Maurizio Regional Hospital, Bolzano, Italy
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Cardiovascular Sciences and Community Health, University of Milan, Milan, Italy
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Andrea Annoni
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Maria Ludovica Carerj
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Section of Diagnostic and Interventional Radiology, Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Messina, Italy
| | - Francesco Cilia
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Fabio Fazzari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alberto Formenti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Paola Gripari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Maria Elisabetta Mancini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesca Marchetti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Marco Penso
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alessandra Volpe
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luigi Tassetti
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Andrea Igoren Guaricci
- Cardiology University Unit, Department of Interdisciplinary Medicine, University Hospital Polyclinc of Bari, Bari, Italy
| | - Giuseppe Muscogiuri
- Department of Diagnostic and Interventional Radiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Pietro Costantini
- Radiology Department, Ospedale Maggiore della Carita' University Hospital, Novara, Italy
| | - Ivo van der Bilt
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands; Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Mark G Rabbat
- Loyola University of Chicago, Chicago, IL, USA; Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Marianna Fontana
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, UK
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Pergola V, Pradegan N, Cozza E, Cozac DA, Cao I, Tessari C, Savo MT, Toscano G, Angelini A, Tarzia V, Tarantini G, Tona F, De Conti G, Iliceto S, Gerosa G, Motta R. Redefining CAV surveillance strategies: Benefits of CCTA vs. ICA. J Cardiovasc Comput Tomogr 2024:S1934-5925(24)00392-7. [PMID: 39034189 DOI: 10.1016/j.jcct.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cardiac allograft vasculopathy (CAV) assessment post-heart transplantation (HT) typically relies on invasive coronary angiography (ICA). However, cardiac computed tomography angiography (CCTA) is emerging as a promising alternative due to its potential benefits in economic, safety, and logistical aspects. This study aimed to evaluate the impact of a CCTA program on these aspects in CAV surveillance post-HT. METHODS A retrospective single-center study was conducted between March 2021 and February 2023, involving HT patients who underwent either CCTA or ICA. RESULTS Among 260 patients undergoing CAV surveillance, 115 (44.2%) patients underwent CCTA, and 145 (55.8%) patients underwent ICA. The CCTA group showed incurred lower overall costs (p < 0.0001) and shorter hospitalization times (p < 0.0001) compared to the ICA group. In terms of safety, CCTA surveillance required significantly lower contrast volumes (p < 0.0001) and lower effective doses (p = 0.03). CONCLUSION CCTA emerges as a safe and cost-effective non-invasive alternative for CAV surveillance post-HT, outperforming ICA in terms of safety, logistical aspects, and economic burden.
Collapse
Affiliation(s)
- Valeria Pergola
- Cardiology Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Nicola Pradegan
- Cardiac Surgery Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy.
| | - Elena Cozza
- Cardiology Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Dan Alexandru Cozac
- Cardiology Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy; Emergency Institute for Cardiovascular Diseases and Transplantation of Targu Mures, Romania
| | - Irene Cao
- Cardiac Surgery Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Chiara Tessari
- Cardiac Surgery Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Maria Teresa Savo
- Cardiology Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Giuseppe Toscano
- Cardiology Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Annalisa Angelini
- Cardiovascular Pathology, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Vincenzo Tarzia
- Cardiac Surgery Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Giuseppe Tarantini
- Cardiology Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Francesco Tona
- Cardiology Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Giorgio De Conti
- Radiology Unit, Azienda Ospedale-Università Padova, 35128, Padova, Italy
| | - Sabino Iliceto
- Cardiology Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Gino Gerosa
- Cardiac Surgery Unit, Cardio-thoraco-vascular and Public Health Department, Padova University Hospital, Padova, Italy
| | - Raffaella Motta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health-DCTV, University of Padova, 35128, Padova, Italy
| |
Collapse
|
3
|
Tassetti L, Sfriso E, Torlone F, Baggiano A, Mushtaq S, Cannata F, Del Torto A, Fazzari F, Fusini L, Junod D, Maragna R, Volpe A, Carrabba N, Conte E, Guglielmo M, La Mura L, Pergola V, Pedrinelli R, Indolfi C, Sinagra G, Perrone Filardi P, Guaricci AI, Pontone G. The Role of Multimodality Imaging (CT & MR) as a Guide to the Management of Chronic Coronary Syndromes. J Clin Med 2024; 13:3450. [PMID: 38929984 PMCID: PMC11205051 DOI: 10.3390/jcm13123450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic coronary syndrome (CCS) is one of the leading cardiovascular causes of morbidity, mortality, and use of medical resources. After the introduction by international guidelines of the same level of recommendation to non-invasive imaging techniques in CCS evaluation, a large debate arose about the dilemma of choosing anatomical (with coronary computed tomography angiography (CCTA)) or functional imaging (with stress echocardiography (SE), cardiovascular magnetic resonance (CMR), or nuclear imaging techniques) as a first diagnostic evaluation. The determinant role of the atherosclerotic burden in defining cardiovascular risk and prognosis more than myocardial inducible ischemia has progressively increased the use of a first anatomical evaluation with CCTA in a wide range of pre-test probability in CCS patients. Functional testing holds importance, both because the role of revascularization in symptomatic patients with proven ischemia is well defined and because functional imaging, particularly with stress cardiac magnetic resonance (s-CMR), gives further prognostic information regarding LV function, detection of myocardial viability, and tissue characterization. Emerging techniques such as stress computed tomography perfusion (s-CTP) and fractional flow reserve derived from CT (FFRCT), combining anatomical and functional evaluation, appear capable of addressing the need for a single non-invasive examination, especially in patients with high risk or previous revascularization. Furthermore, CCTA in peri-procedural planning is promising to acquire greater importance in the non-invasive planning and guiding of complex coronary revascularization procedures, both by defining the correct strategy of interventional procedure and by improving patient selection. This review explores the different roles of non-invasive imaging techniques in managing CCS patients, also providing insights into preoperative planning for percutaneous or surgical myocardial revascularization.
Collapse
Affiliation(s)
- Luigi Tassetti
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Enrico Sfriso
- Radiology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | | | - Andrea Baggiano
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Saima Mushtaq
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Francesco Cannata
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Alberico Del Torto
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Fabio Fazzari
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Laura Fusini
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Daniele Junod
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Riccardo Maragna
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Alessandra Volpe
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
| | - Nazario Carrabba
- Department of Cardiothoracovascular Medicine, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy;
| | - Edoardo Conte
- Department of Clinical Cardiology and Cardiovascular Imaging, Galeazzi-Sant’Ambrogio Hospital IRCCS, 20157 Milan, Italy;
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Medical Center Utrecht, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Lucia La Mura
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy; (L.L.M.); (P.P.F.)
| | - Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy;
| | - Roberto Pedrinelli
- Cardiac, Thoracic and Vascular Department, University of Pisa, 56124 Pisa, Italy;
| | - Ciro Indolfi
- Istituto di Cardiologia, Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Gianfranco Sinagra
- Cardiology Specialty School, University of Trieste, 34127 Trieste, Italy;
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), 34149 Trieste, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy; (L.L.M.); (P.P.F.)
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Gianluca Pontone
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (L.T.); (A.B.); (S.M.); (F.C.); (F.F.); (L.F.); (D.J.); (R.M.); (A.V.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
4
|
Yoshida K, Tanabe Y, Hosokawa T, Morikawa T, Fukuyama N, Kobayashi Y, Kouchi T, Kawaguchi N, Matsuda M, Kido T, Kido T. Coronary computed tomography angiography for clinical practice. Jpn J Radiol 2024; 42:555-580. [PMID: 38453814 PMCID: PMC11139719 DOI: 10.1007/s11604-024-01543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024]
Abstract
Coronary artery disease (CAD) is a common condition caused by the accumulation of atherosclerotic plaques. It can be classified into stable CAD or acute coronary syndrome. Coronary computed tomography angiography (CCTA) has a high negative predictive value and is used as the first examination for diagnosing stable CAD, particularly in patients at intermediate-to-high risk. CCTA is also adopted for diagnosing acute coronary syndrome, particularly in patients at low-to-intermediate risk. Myocardial ischemia does not always co-exist with coronary artery stenosis, and the positive predictive value of CCTA for myocardial ischemia is limited. However, CCTA has overcome this limitation with recent technological advancements such as CT perfusion and CT-fractional flow reserve. In addition, CCTA can be used to assess coronary artery plaques. Thus, the indications for CCTA have expanded, leading to an increased demand for radiologists. The CAD reporting and data system (CAD-RADS) 2.0 was recently proposed for standardizing CCTA reporting. This RADS evaluates and categorizes patients based on coronary artery stenosis and the overall amount of coronary artery plaque and links this to patient management. In this review, we aimed to review the major trials and guidelines for CCTA to understand its clinical role. Furthermore, we aimed to introduce the CAD-RADS 2.0 including the assessment of coronary artery stenosis, plaque, and other key findings, and highlight the steps for CCTA reporting. Finally, we aimed to present recent research trends including the perivascular fat attenuation index, artificial intelligence, and the advancements in CT technology.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takaaki Hosokawa
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tomoro Morikawa
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoki Fukuyama
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yusuke Kobayashi
- Department of Radiology, Matsuyama Red Cross Hospital, Bunkyocho, Matsuyama, Ehime, Japan
| | - Takanori Kouchi
- Department of Radiology, Juzen General Hospital, Kitashinmachi, Niihama, Ehime, Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Megumi Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
5
|
Clerc OF, Frey SM, Honegger U, Amrein MLF, Caobelli F, Haaf P, Zellweger MJ. Coronary artery calcium score and pre-test probabilities as gatekeepers to predict and rule out perfusion defects in positron emission tomography. J Nucl Cardiol 2023; 30:2559-2573. [PMID: 37415007 PMCID: PMC10682222 DOI: 10.1007/s12350-023-03322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Little is known about the gatekeeper performance of coronary artery calcium score (CACS) before myocardial perfusion positron emission tomography (PET), compared with updated pre-test probabilities from American and European guidelines (pre-test-AHA/ACC, pre-test-ESC). METHODS We enrolled participants without known coronary artery disease undergoing CACS and Rubidium-82 PET. Abnormal perfusion was defined as summed stress score ≥ 4. Using Bayes' formula, pre-test probabilities and CACS were combined into post-test probabilities. RESULTS We included 2050 participants (54% male, mean age 64.6 years) with median CACS 62 (IQR 0-380), pre-test-ESC 17% (11-26), pre-test-AHA/ACC 27% (16-44), and abnormal perfusion in 437 participants (21%). To predict abnormal perfusion, area under the curve of CACS was 0.81, pre-test-AHA/ACC 0.68, pre-test-ESC 0.69, post-test-AHA/ACC 0.80, and post-test-ESC 0.81 (P < 0.001 for CACS vs. each pre-test, and each post-test vs. pre-test). CACS = 0 had 97% negative predictive value (NPV), pre-test-AHA/ACC ≤ 5% 100%, pre-test-ESC ≤ 5% 98%, post-test-AHA/ACC ≤ 5% 98%, and post-test-ESC ≤ 5% 96%. Among participants, 26% had CACS = 0, 2% pre-test-AHA/ACC ≤ 5%, 7% pre-test-ESC ≤ 5%, 23% post-test-AHA/ACC ≤ 5%, and 33% post-test-ESC ≤ 5% (all P < 0.001). CONCLUSIONS CACS and post-test probabilities are excellent predictors of abnormal perfusion and can rule it out with very high NPV in a substantial proportion of participants. CACS and post-test probabilities may be used as gatekeepers before advanced imaging. Coronary artery calcium score (CACS) predicted abnormal perfusion (SSS ≥ 4) in myocardial positron emission tomography (PET) better than pre-test probabilities of coronary artery disease (CAD), while pre-test-AHA/ACC and pre-test-ESC performed similarly (left). Using Bayes' formula, pre-test-AHA/ACC or pre-test-ESC were combined with CACS into post-test probabilities (middle). This calculation reclassified a substantial proportion of participants to low probability of CAD (0-5%), not needing further imaging, as shown for AHA/ACC probabilities (2% with pre-test-AHA/ACC to 23% with post-test-AHA/ACC, P < 0.001, right). Very few participants with abnormal perfusion were classified under pre-test or post-test probabilities 0-5%, or under CACS 0. AUC: area under the curve. Pre-test-AHA/ACC: Pre-test probability of the American Heart Association/American College of Cardiology. Post-test-AHA/ACC: Post-test probability combining pre-test-AHA/ACC and CACS. Pre-test-ESC: Pre-test probability of the European Society of Cardiology. SSS: Summed stress score.
Collapse
Affiliation(s)
- Olivier F Clerc
- Department of Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Simon M Frey
- Department of Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ursina Honegger
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Melissa L F Amrein
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Philip Haaf
- Department of Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael J Zellweger
- Department of Cardiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Pontone G, Rossi A, Gimelli A, Neglia D. Should we choose CT angiography first instead of SPECT/PET first for the diagnosis and management of coronary artery disease? Atherosclerosis 2023; 385:117315. [PMID: 37890440 DOI: 10.1016/j.atherosclerosis.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
In patients presenting with chest pain, current guidelines recommend the use of coronary computed tomography angiography and single-photon emission tomography/positron emission tomography, both with equal class 1 indication and level of evidence A. There is no clear recommendation on which test should be used as a first-line test. The choice of the test should be based on individualized clinical risk assessment, patient characteristics, local expertise/availability, and patient preferences. In this context, it is fair to ask which non-invasive imaging test to choose. The debate reproduced in this article answers this question by summarizing the considerations in selecting present state-of-the-art criteria of the right test for the right patient to ensure efficient resource utilization, minimize unnecessary testing, and maximize diagnostic accuracy and therapeutic efficacy.
Collapse
Affiliation(s)
- Gianluca Pontone
- Department of Periooperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Danilo Neglia
- Cardiovascular and Imaging Departments, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
7
|
Kwiecinski J, Oleksiak A, Kruk M, Zysk A, Debski A, Knaapen P, Schumacher SP, Barbero U, Witkowski A, Kepka C, Opolski MP. Computed tomography perfusion and angiography in patients with chronic total occlusion undergoing percutaneous coronary intervention. Atherosclerosis 2023; 381:117174. [PMID: 37400307 DOI: 10.1016/j.atherosclerosis.2023.06.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND AIMS Myocardial perfusion imaging (MPI) and anatomical imaging with coronary computed tomography angiography (CCTA) can play an important role in the preprocedural planning of a chronic total occlusion (CTO) percutaneous coronary intervention (PCI). We aimed to establish the feasibility of a novel dynamic computed tomography perfusion (CTP) analysis for the assessment of myocardial perfusion before and after a successful recanalization of CTO in patients undergoing CCTA as part of a standard preprocedural workup. METHODS In a prospective observational study symptomatic patients underwent dynamic CTP on a dual-source CT scanner both before and 3 months after successful CTO PCI. RESULTS Twenty-seven patients completed the study (63 ± 8 years old, 78% male). Following successful CTO PCI, there was a significant reduction in the ischemic burden (5 [5-7] versus 1 [0-2] segments, p < 0.001), and improvement in myocardial blood flow (85.3 [71.7-94.1] versus 134.6 [123.8-156.9] mL/min, p < 0.001) resulting in an increase in the relative flow reserve (0.49 [0.41-0.57] versus 0.88 [0.74-0.95], p < 0.001). CONCLUSIONS CTP emerges as a robust and safe method for MPI in CTO patients. The single imaging session assessment of both coronary anatomy and perfusion with CT lends itself to precise disease phenotyping in the challenging population of CTO patients.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Anna Oleksiak
- Department of Intensive Cardiac Therapy, National Institute of Cardiology, Warsaw, Poland
| | - Mariusz Kruk
- Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, Warsaw, Poland
| | - Antoni Zysk
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Artur Debski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Paul Knaapen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Stefan P Schumacher
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Umberto Barbero
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland; Department of Cardiology, Santissima Annunziata Hospital, Savigliano, Italy
| | - Adam Witkowski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Cezary Kepka
- Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, Warsaw, Poland
| | - Maksymilian P Opolski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland.
| |
Collapse
|
8
|
Becker LM, Peper J, Verhappen BJLA, Swart LA, Dedic A, van Dockum WG, van der Ent M, Royaards KJ, Niezen A, Hensen JHJ, van Kuijk JP, Mohamed Hoesein FAA, Leiner T, Bruning TA, Swaans MJ. Real world impact of added FFR-CT to coronary CT angiography on clinical decision-making and patient prognosis - IMPACT FFR study. Eur Radiol 2023; 33:5465-5475. [PMID: 36920521 PMCID: PMC10326083 DOI: 10.1007/s00330-023-09517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/04/2023] [Accepted: 02/06/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES The addition of CT-derived fractional flow reserve (FFR-CT) increases the diagnostic accuracy of coronary CT angiography (CCTA). We assessed the impact of FFR-CT in routine clinical practice on clinical decision-making and patient prognosis in patients suspected of stable coronary artery disease (CAD). METHODS This retrospective, single-center study compared a cohort that received CCTA with FFR-CT to a historical cohort that received CCTA before FFR-CT was available. We assessed the clinical management decisions after FFR-CT and CCTA and the rate of major adverse cardiac events (MACEs) during the 1-year follow-up using chi-square tests for independence. Kaplan-Meier curves were used to visualize the occurrence of safety outcomes over time. RESULTS A total of 360 patients at low to intermediate risk of CAD were included, 224 in the CCTA only group, and 136 in the FFR-CT group. During follow-up, 13 MACE occurred in 12 patients, 9 (4.0%) in the CCTA group, and three (2.2%) in the FFR-CT group. Clinical management decisions differed significantly between both groups. After CCTA, 60 patients (26.5%) received optimal medical therapy (OMT) only, 115 (51.3%) invasive coronary angiography (ICA), and 49 (21.9%) single positron emission CT (SPECT). After FFR-CT, 106 patients (77.9%) received OMT only, 27 (19.9%) ICA, and three (2.2%) SPECT (p < 0.001 for all three options). The revascularization rate after ICA was similar between groups (p = 0.15). However, patients in the CCTA group more often underwent revascularization (p = 0.007). CONCLUSION Addition of FFR-CT to CCTA led to a reduction in (invasive) diagnostic testing and less revascularizations without observed difference in outcomes after 1 year. KEY POINTS • Previous studies have shown that computed tomography-derived fractional flow reserve improves the accuracy of coronary computed tomography angiography without changes in acquisition protocols. • This study shows that use of computed tomography-derived fractional flow reserve as gatekeeper to invasive coronary angiography in patients suspected of stable coronary artery disease leads to less invasive testing and revascularization without observed difference in outcomes after 1 year. • This could lead to a significant reduction in costs, complications and (retrospectively unnecessary) usage of diagnostic testing capacity, and a significant increase in patient satisfaction.
Collapse
Affiliation(s)
- Leonie M Becker
- Department of Cardiology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands.
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Joyce Peper
- Department of Cardiology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bram J L A Verhappen
- Department of Cardiology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| | - Laurens A Swart
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Admir Dedic
- Department of Cardiology, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands
| | | | | | - Kees-Jan Royaards
- Department of Cardiology, Maasstad Hospital, Rotterdam, The Netherlands
| | - André Niezen
- Department of Radiology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Jan-Hein J Hensen
- Department of Radiology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Jan-Peter van Kuijk
- Department of Cardiology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| | | | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Radiology, Mayo Clinic Rochester Minnesota, Rochester, USA
| | - Tobias A Bruning
- Department of Cardiology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Martin J Swaans
- Department of Cardiology, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| |
Collapse
|
9
|
Ricci F, Khanji MY, Bisaccia G, Cipriani A, Di Cesare A, Ceriello L, Mantini C, Zimarino M, Fedorowski A, Gallina S, Petersen SE, Bucciarelli-Ducci C. Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease: A Systematic Review and Meta-analysis. JAMA Cardiol 2023; 8:662-673. [PMID: 37285143 PMCID: PMC10248816 DOI: 10.1001/jamacardio.2023.1290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023]
Abstract
Importance The clinical utility of stress cardiovascular magnetic resonance imaging (CMR) in stable chest pain is still debated, and the low-risk period for adverse cardiovascular (CV) events after a negative test result is unknown. Objective To provide contemporary quantitative data synthesis of the diagnostic accuracy and prognostic value of stress CMR in stable chest pain. Data Sources PubMed and Embase databases, the Cochrane Database of Systematic Reviews, PROSPERO, and the ClinicalTrials.gov registry were searched for potentially relevant articles from January 1, 2000, through December 31, 2021. Study Selection Selected studies evaluated CMR and reported estimates of diagnostic accuracy and/or raw data of adverse CV events for participants with either positive or negative stress CMR results. Prespecified combinations of keywords related to the diagnostic accuracy and prognostic value of stress CMR were used. A total of 3144 records were evaluated for title and abstract; of those, 235 articles were included in the full-text assessment of eligibility. After exclusions, 64 studies (74 470 total patients) published from October 29, 2002, through October 19, 2021, were included. Data Extraction and Synthesis This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Main Outcomes and Measures Diagnostic odds ratios (DORs), sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), odds ratio (OR), and annualized event rate (AER) for all-cause death, CV death, and major adverse cardiovascular events (MACEs) defined as the composite of myocardial infarction and CV death. Results A total of 33 diagnostic studies pooling 7814 individuals and 31 prognostic studies pooling 67 080 individuals (mean [SD] follow-up, 3.5 [2.1] years; range, 0.9-8.8 years; 381 357 person-years) were identified. Stress CMR yielded a DOR of 26.4 (95% CI, 10.6-65.9), a sensitivity of 81% (95% CI, 68%-89%), a specificity of 86% (95% CI, 75%-93%), and an AUROC of 0.84 (95% CI, 0.77-0.89) for the detection of functionally obstructive coronary artery disease. In the subgroup analysis, stress CMR yielded higher diagnostic accuracy in the setting of suspected coronary artery disease (DOR, 53.4; 95% CI, 27.7-103.0) or when using 3-T imaging (DOR, 33.2; 95% CI, 19.9-55.4). The presence of stress-inducible ischemia was associated with higher all-cause mortality (OR, 1.97; 95% CI, 1.69-2.31), CV mortality (OR, 6.40; 95% CI, 4.48-9.14), and MACEs (OR, 5.33; 95% CI, 4.04-7.04). The presence of late gadolinium enhancement (LGE) was associated with higher all-cause mortality (OR, 2.22; 95% CI, 1.99-2.47), CV mortality (OR, 6.03; 95% CI, 2.76-13.13), and increased risk of MACEs (OR, 5.42; 95% CI, 3.42-8.60). After a negative test result, pooled AERs for CV death were less than 1.0%. Conclusion and Relevance In this study, stress CMR yielded high diagnostic accuracy and delivered robust prognostication, particularly when 3-T scanners were used. While inducible myocardial ischemia and LGE were associated with higher mortality and risk of MACEs, normal stress CMR results were associated with a lower risk of MACEs for at least 3.5 years.
Collapse
Affiliation(s)
- Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- William Harvey Research Institute, Barts Biomedical Research Centre, National Institute for Health and Care Research, Queen Mary University London, Charterhouse Square, London, United Kingdom
| | - Mohammed Y. Khanji
- William Harvey Research Institute, Barts Biomedical Research Centre, National Institute for Health and Care Research, Queen Mary University London, Charterhouse Square, London, United Kingdom
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Annamaria Di Cesare
- Cardiology Unit, Rimini Hospital, Local Health Authority of Romagna, Rimini, Italy
| | - Laura Ceriello
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Marco Zimarino
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Sabina Gallina
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Steffen E. Petersen
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom
- The Alan Turing Institute, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guys and St Thomas NHS Trust London, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
10
|
Groenhoff L, De Zan G, Costantini P, Siani A, Ostillio E, Carriero S, Muscogiuri G, Bergamaschi L, Patti G, Pizzi C, Sironi S, Pavon AG, Carriero A, Guglielmo M. The Non-Invasive Diagnosis of Chronic Coronary Syndrome: A Focus on Stress Computed Tomography Perfusion and Stress Cardiac Magnetic Resonance. J Clin Med 2023; 12:jcm12113793. [PMID: 37297986 DOI: 10.3390/jcm12113793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Coronary artery disease is still a major cause of death and morbidity worldwide. In the setting of chronic coronary disease, demonstration of inducible ischemia is mandatory to address treatment. Consequently, scientific and technological efforts were made in response to the request for non-invasive diagnostic tools with better sensitivity and specificity. To date, clinicians have at their disposal a wide range of stress-imaging techniques. Among others, stress cardiac magnetic resonance (S-CMR) and computed tomography perfusion (CTP) techniques both demonstrated their diagnostic efficacy and prognostic value in clinical trials when compared to other non-invasive ischemia-assessing techniques and invasive fractional flow reserve measurement techniques. Standardized protocols for both S-CMR and CTP usually imply the administration of vasodilator agents to induce hyperemia and contrast agents to depict perfusion defects. However, both methods have their own limitations, meaning that optimizing their performance still requires a patient-tailored approach. This review focuses on the characteristics, drawbacks, and future perspectives of these two techniques.
Collapse
Affiliation(s)
- Léon Groenhoff
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Giulia De Zan
- Department of Translational Medicine, University of Eastern Piedmont, Maggiore della Carità Hospital, 28100 Novara, Italy
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Pietro Costantini
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Agnese Siani
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Eleonora Ostillio
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Serena Carriero
- Postgraduate School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Giuseppe Muscogiuri
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
- School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca Bergamaschi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, University of Eastern Piedmont, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Anna Giulia Pavon
- Cardiovascular Department, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | | | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, Haga Teaching Hospital, 2545 AA The Hague, The Netherlands
| |
Collapse
|
11
|
Xie Q, Zhou L, Li Y, Zhang R, Wei H, Ma G, Tang Y, Xiao P. Comparison of prognosis between coronary computed tomography angiography versus invasive coronary angiography for stable coronary artery disease: a systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:1010536. [PMID: 37215543 PMCID: PMC10196209 DOI: 10.3389/fcvm.2023.1010536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Background The impact of using invasive coronary angiography (ICA) or coronary computed tomography angiography (CCTA) as an initial examination on the incidence of major adverse cardiovascular events (MACEs) in patients with stable coronary artery disease and the occurrence of major operation-related complications is uncertain. Objective This study aimed to explore the effects of ICA vs. CCTA on MACEs, all-cause death, and major operation-related complications. Methods A systematic search of electronic databases (PubMed and Embase) was conducted for randomized controlled trials and observational studies comparing MACEs between ICA and CCTA from January 2012 to May 2022. The primary outcome measure was analyzed using a random-effects model as a pooled odds ratio (OR). The main observations were MACEs, all-cause death, and major operation-related complications. Results A total of six studies, comprising 26,548 patients, met the inclusion criteria (ICA n = 8,472; CCTA n = 18,076). There were statistically significant differences between ICA and CCTA for MACE [OR 1.37; 95% confidence interval (CI), 1.06-1.77; p = 0.02], all-cause death (OR 1.56; 95% CI, 1.38-1.78; p < 0.00001), and major operation-related complications (OR 2.10; 95% CI, 1.23-3.61; p = 0.007) among patients with stable coronary artery disease. Subgroup analysis demonstrated statistically significant results in the impact of ICA or CCTA on MACEs according to the length of follow-up. Compared to CCTA, ICA was related to a higher incidence of MACEs in the subgroup with a short follow-up (≤3 years) (OR 1.74; 95% CI, 1.54-1.96; p < 0.00001). Conclusions Among patients with stable coronary artery disease, an initial examination with ICA was significantly associated with the risk of MACEs, all-cause death, and major procedure-related complications compared to CCTA in this meta-analysis.
Collapse
Affiliation(s)
- Qingya Xie
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Lingling Zhou
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruizhe Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Han Wei
- Department of Cardiology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Gaoxiang Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuping Tang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Pingxi Xiao
- Department of Cardiology, The Forth Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Guaricci AI, Neglia D, Acampa W, Andreini D, Baggiano A, Bianco F, Carrabba N, Conte E, Gaudieri V, Mushtaq S, Napoli G, Pergola V, Pontone G, Pedrinelli R, Mercuro G, Indolfi C, Guglielmo M. Computed tomography and nuclear medicine for the assessment of coronary inflammation: clinical applications and perspectives. J Cardiovasc Med (Hagerstown) 2023; 24:e67-e76. [PMID: 37052223 DOI: 10.2459/jcm.0000000000001433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
There is increasing evidence that in patients with atherosclerotic cardiovascular disease (ASCVD) under optimal medical therapy, a persisting dysregulation of the lipid and glucose metabolism, associated with adipose tissue dysfunction and inflammation, predicts a substantial residual risk of disease progression and cardiovascular events. Despite the inflammatory nature of ASCVD, circulating biomarkers such as high-sensitivity C-reactive protein and interleukins may lack specificity for vascular inflammation. As known, dysfunctional epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) produce pro-inflammatory mediators and promote cellular tissue infiltration triggering further pro-inflammatory mechanisms. The consequent tissue modifications determine the attenuation of PCAT as assessed and measured by coronary computed tomography angiography (CCTA). Recently, relevant studies have demonstrated a correlation between EAT and PCAT and obstructive coronary artery disease, inflammatory plaque status and coronary flow reserve (CFR). In parallel, CFR is well recognized as a marker of coronary vasomotor function that incorporates the haemodynamic effects of epicardial, diffuse and small-vessel disease on myocardial tissue perfusion. An inverse relationship between EAT volume and coronary vascular function and the association of PCAT attenuation and impaired CFR have already been reported. Moreover, many studies demonstrated that 18F-FDG PET is able to detect PCAT inflammation in patients with coronary atherosclerosis. Importantly, the perivascular FAI (fat attenuation index) showed incremental value for the prediction of adverse clinical events beyond traditional risk factors and CCTA indices by providing a quantitative measure of coronary inflammation. As an indicator of increased cardiac mortality, it could guide early targeted primary prevention in a wide spectrum of patients. In this review, we summarize the current evidence regarding the clinical applications and perspectives of EAT and PCAT assessment performed by CCTA and the prognostic information derived by nuclear medicine.
Collapse
Affiliation(s)
- Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari
| | - Danilo Neglia
- Cardiovascular Department, Fondazione Toscana Gabriele Monasterio (FTGM), Pisa
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples
| | - Daniele Andreini
- Centro Cardiologico Monzino IRCCS
- Department of Clinical Sciences and Community Health, Cardiovascular Section, Milan
| | - Andrea Baggiano
- Centro Cardiologico Monzino IRCCS
- Department of Clinical Sciences and Community Health, Cardiovascular Section, Milan
| | - Francesco Bianco
- Cardiovascular Sciences Department - AOU 'Ospedali Riuniti', Ancona
| | - Nazario Carrabba
- Department of Cardiothoracovascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Florence
| | - Edoardo Conte
- Centro Cardiologico Monzino IRCCS
- Department of Biomedical Sciences for Health, University of Milan, Milan
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples
| | | | - Gianluigi Napoli
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari
| | - Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova
| | | | | | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Hochhegger B, Pasini R, Roncally Carvalho A, Rodrigues R, Altmayer S, Kayat Bittencourt L, Marchiori E, Forghani R. Artificial Intelligence for Cardiothoracic Imaging: Overview of Current and Emerging Applications. Semin Roentgenol 2023; 58:184-195. [PMID: 37087139 DOI: 10.1053/j.ro.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
Artificial intelligence algorithms can learn by assimilating information from large datasets in order to decipher complex associations, identify previously undiscovered pathophysiological states, and construct prediction models. There has been tremendous interest and increased incorporation of artificial intelligence into various industries, including healthcare. As a result, there has been an exponential rise in the number of research articles and industry participants producing models intended for a variety of applications in medical imaging, which can be challenging to navigate for radiologists. In thoracic imaging, multiple applications are being evaluated for chest radiography and computed tomography and include applications for lung nodule evaluation and cancer imaging, quantifying diffuse lung disorders, and cardiac imaging, to name a few. This review aims to provide an overview of current clinical AI models, focusing on the most common clinical applications of AI in cardiothoracic imaging.
Collapse
|
14
|
Assessment of the Efficiency of Non-Invasive Diagnostic Imaging Modalities for Detecting Myocardial Ischemia in Patients Suspected of Having Stable Angina. Healthcare (Basel) 2022; 11:healthcare11010023. [PMID: 36611483 PMCID: PMC9818638 DOI: 10.3390/healthcare11010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to assess and compare the efficiency of non-invasive imaging modalities in detecting myocardial ischemia in patients with suspected stable angina as easy-to-understand indices. Our study included 1000 patients with chest pain and possible stable myocardial ischemia. The modalities to be assessed were cardiac magnetic resonance imaging (CMRI), single-photon emission computed tomography, positron emission computed tomography (PET), stress echocardiography, and fractional flow reserve derived from coronary computed tomography angiography (FFRCT). As a simulation study, we assumed that all five imaging modalities were performed on these patients, and a decision tree analysis was conducted. From the results, the following efficiencies were assessed and compared: (1) number of true positive (TP), false positive (FP), false negative (FN), and true negative (TN) test results; (2) positive predictive value (PPV); (3) negative predictive value (NPV); (4) post-test probability; (5) diagnostic accuracy (DA); and (6) number needed to diagnose (NND). In the basic settings (pre-test probability: 30%), PET generated the highest TP (267) and NPV (95%, 95% confidence interval (CI): 93-96%). In contrast, CMRI produced the highest TN (616), PPV (76%, 95% CI: 71-80%), and DA (88%, 95% CI: 86-90%) and the lowest NND (1.33, 95% CI: 1.24-1.47). Although FFRCT generated the highest TP (267) and lowest FN (33), it generated the highest FP (168). In terms of detecting myocardial ischemia, compared with the other modalities, PET and CMRI were more efficient. The results of our study might be helpful for both patients and medical professionals associated with their examination.
Collapse
|
15
|
Lala RI, Mercea S, Jipa RA, Puschita M, Pop-Moldovan A. The chronic coronary syndrome—Heart failure roundabout: A multimodality imaging workflow approach. Front Cardiovasc Med 2022; 9:1019529. [DOI: 10.3389/fcvm.2022.1019529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Heart failure (HF) is a complex syndrome of considerable burden with high mortality and hospitalization rates. Approximately two-thirds of patients with HF have ischemic etiology, which makes crucial the identification of relevant coronary artery disease (CAD). Moreover, patients with chronic coronary syndrome (CCS) can first show signs of dyspnea and left ventricular (LV) dysfunction. If establishing a diagnosis of HF and consequent management is clear enough, it will not be the same when it comes to recommendations for etiology assessment. Ischemic heart disease is the most studied disease by cardiac multimodality imaging with excellent diagnostic performance. Based on this aspect, the high prevalence of CAD, the worst outcome—HF patients should undergo a diagnostic work-up using these multimodality imaging techniques. The aim of this mini-review is to provide insights on multimodality imaging for diagnosing CCS in patients with new onset of HF and propose a diagnostic work-up based on current international studies and guidelines.
Collapse
|
16
|
Zhang LJ, Tang C, Xu P, Guo B, Zhou F, Xue Y, Zhang J, Zheng M, Xu L, Hou Y, Lu B, Guo Y, Cheng J, Liang C, Song B, Zhang H, Hong N, Wang P, Chen M, Xu K, Liu S, Jin Z, Lu G. Coronary Computed Tomography Angiography-derived Fractional Flow Reserve: An Expert Consensus Document of Chinese Society of Radiology. J Thorac Imaging 2022; 37:385-400. [PMID: 36162081 DOI: 10.1097/rti.0000000000000679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invasive fractional flow reserve (FFR) measured by a pressure wire is a reference standard for evaluating functional stenosis in coronary artery disease. Coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) uses advanced computational analysis methods to noninvasively obtain FFR results from a single conventional coronary computed tomography angiography data to evaluate the hemodynamic significance of coronary artery disease. More and more evidence has found good correlation between the results of noninvasive CT-FFR and invasive FFR. CT-FFR has proven its potential in optimizing patient management, improving risk stratification and prognosis, and reducing total health care costs. However, there is still a lack of standardized interpretation of CT-FFR technology in real-world clinical settings. This expert consensus introduces the principle, workflow, and interpretation of CT-FFR; summarizes the state-of-the-art application of CT-FFR; and provides suggestions and recommendations for the application of CT-FFR with the aim of promoting the standardized application of CT-FFR in clinical practice.
Collapse
Affiliation(s)
- Long Jiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Chunxiang Tang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Pengpeng Xu
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Bangjun Guo
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Fan Zhou
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Yi Xue
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | - Minwen Zheng
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University-Xi'an
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University
| | - Bin Lu
- Department of Radiology, State Key Laboratory and National Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing
| | - Youmin Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province
| | - Bin Song
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital
| | - Peijun Wang
- Department of Radiology, Tongji Hospital of Tongji University School of Medicine
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology
| | - Ke Xu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province
| | - Shiyuan Liu
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences
| | - Zhengyu Jin
- Department of Medical Imaging and Nuclear Medicine, Changzheng Hospital of Naval Medical University, Shanghai
| | - Guangming Lu
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| |
Collapse
|
17
|
Muscogiuri G, Volpato V, Cau R, Chiesa M, Saba L, Guglielmo M, Senatieri A, Chierchia G, Pontone G, Dell’Aversana S, Schoepf UJ, Andrews MG, Basile P, Guaricci AI, Marra P, Muraru D, Badano LP, Sironi S. Application of AI in cardiovascular multimodality imaging. Heliyon 2022; 8:e10872. [PMID: 36267381 PMCID: PMC9576885 DOI: 10.1016/j.heliyon.2022.e10872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 09/27/2022] [Indexed: 12/16/2022] Open
Abstract
Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Italy,School of Medicine, University of Milano-Bicocca, Milan, Italy,Corresponding author.
| | - Valentina Volpato
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy,IRCCS Ospedale Galeazzi - Sant'Ambrogio, University Cardiology Department, Milan, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari, Polo di Monserrato, Cagliari, Italy
| | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari, Polo di Monserrato, Cagliari, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands
| | | | | | | | - Serena Dell’Aversana
- Department of Radiology, Ospedale S. Maria Delle Grazie - ASL Napoli 2 Nord, Pozzuoli, Italy
| | - U. Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr., Charleston, SC, USA
| | - Mason G. Andrews
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr., Charleston, SC, USA
| | - Paolo Basile
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Denisa Muraru
- School of Medicine, University of Milano-Bicocca, Milan, Italy,Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luigi P. Badano
- School of Medicine, University of Milano-Bicocca, Milan, Italy,Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, Milan, Italy,Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
18
|
El Hussein MT, Fibich E. Noninvasive diagnostic modalities for the diagnosis of coronary artery disease: A guide for acute care NPs. Nurse Pract 2022; 47:27-36. [PMID: 36165970 DOI: 10.1097/01.npr.0000873524.89648.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Selecting noninvasive diagnostic tests for coronary artery disease can be a daunting task to acute care NPs. This article provides an overview of the pathophysiology of coronary artery disease, relevant noninvasive diagnostic imaging modalities, and an evidence-based approach to guide subsequent diagnostic and therapeutic interventions.
Collapse
|
19
|
Muscogiuri G, Guaricci AI, Cau R, Saba L, Senatieri A, Chierchia G, Pontone G, Volpato V, Palmisano A, Esposito A, Basile P, Marra P, D'angelo T, Booz C, Rabbat M, Sironi S. Multimodality imaging in acute myocarditis. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1097-1109. [PMID: 36218216 DOI: 10.1002/jcu.23310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
The diagnosis of acute myocarditis often involves several noninvasive techniques that can provide information regarding volumes, ejection fraction, and tissue characterization. In particular, echocardiography is extremely helpful for the evaluation of biventricular volumes, strain and ejection fraction. Cardiac magnetic resonance, beyond biventricular volumes, strain, and ejection fraction allows to characterize myocardial tissue providing information regarding edema, hyperemia, and fibrosis. Contemporary cardiac computed tomography angiography (CCTA) can not only be extremely important for the assessment of coronary arteries, pulmonary arteries and aorta but also tissue characterization using CCTA can be an additional tool that can explain chest pain with a diagnosis of myocarditis.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Milano, Italy
- School of Medicine, University of Milano-Bicocca, Milano, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, Cagliari, Italy
| | | | | | | | - Valentina Volpato
- University Cardiology Unit, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
| | - Anna Palmisano
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milano, Italy
| | - Antonio Esposito
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milano, Italy
| | - Paolo Basile
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Tommaso D'angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Messina, Italy
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Mark Rabbat
- Loyola University of Chicago, Chicago, Illinois, USA
- Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, Milano, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
20
|
Muscogiuri G, Guaricci AI, Soldato N, Cau R, Saba L, Siena P, Tarsitano MG, Giannetta E, Sala D, Sganzerla P, Gatti M, Faletti R, Senatieri A, Chierchia G, Pontone G, Marra P, Rabbat MG, Sironi S. Multimodality Imaging of Sudden Cardiac Death and Acute Complications in Acute Coronary Syndrome. J Clin Med 2022; 11:jcm11195663. [PMID: 36233531 PMCID: PMC9573273 DOI: 10.3390/jcm11195663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Sudden cardiac death (SCD) is a potentially fatal event usually caused by a cardiac arrhythmia, which is often the result of coronary artery disease (CAD). Up to 80% of patients suffering from SCD have concomitant CAD. Arrhythmic complications may occur in patients with acute coronary syndrome (ACS) before admission, during revascularization procedures, and in hospital intensive care monitoring. In addition, about 20% of patients who survive cardiac arrest develop a transmural myocardial infarction (MI). Prevention of ACS can be evaluated in selected patients using cardiac computed tomography angiography (CCTA), while diagnosis can be depicted using electrocardiography (ECG), and complications can be evaluated with cardiac magnetic resonance (CMR) and echocardiography. CCTA can evaluate plaque, burden of disease, stenosis, and adverse plaque characteristics, in patients with chest pain. ECG and echocardiography are the first-line tests for ACS and are affordable and useful for diagnosis. CMR can evaluate function and the presence of complications after ACS, such as development of ventricular thrombus and presence of myocardial tissue characterization abnormalities that can be the substrate of ventricular arrhythmias.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Piazzale Brescia 20, 20149 Milan, Italy
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Nicola Soldato
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Paola Siena
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Maria Grazia Tarsitano
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Davide Sala
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Paolo Sganzerla
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Alberto Senatieri
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
| | | | | | - Paolo Marra
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60611, USA
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
21
|
Muscogiuri G, Chiesa M, Baggiano A, Spadafora P, De Santis R, Guglielmo M, Scafuri S, Fusini L, Mushtaq S, Conte E, Annoni A, Formenti A, Mancini ME, Ricci F, Ariano FP, Spiritigliozzi L, Babbaro M, Mollace R, Maragna R, Giacari CM, Andreini D, Guaricci AI, Colombo GI, Rabbat MG, Pepi M, Sardanelli F, Pontone G. Diagnostic performance of deep learning algorithm for analysis of computed tomography myocardial perfusion. Eur J Nucl Med Mol Imaging 2022; 49:3119-3128. [PMID: 35194673 DOI: 10.1007/s00259-022-05732-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/12/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate the diagnostic accuracy of a deep learning (DL) algorithm predicting hemodynamically significant coronary artery disease (CAD) by using a rest dataset of myocardial computed tomography perfusion (CTP) as compared to invasive evaluation. METHODS One hundred and twelve consecutive symptomatic patients scheduled for clinically indicated invasive coronary angiography (ICA) underwent CCTA plus static stress CTP and ICA with invasive fractional flow reserve (FFR) for stenoses ranging between 30 and 80%. Subsequently, a DL algorithm for the prediction of significant CAD by using the rest dataset (CTP-DLrest) and stress dataset (CTP-DLstress) was developed. The diagnostic accuracy for identification of significant CAD using CCTA, CCTA + CTP stress, CCTA + CTP-DLrest, and CCTA + CTP-DLstress was measured and compared. The time of analysis for CTP stress, CTP-DLrest, and CTP-DLStress was recorded. RESULTS Patient-specific sensitivity, specificity, NPV, PPV, accuracy, and area under the curve (AUC) of CCTA alone and CCTA + CTPStress were 100%, 33%, 100%, 54%, 63%, 67% and 86%, 89%, 89%, 86%, 88%, 87%, respectively. Patient-specific sensitivity, specificity, NPV, PPV, accuracy, and AUC of CCTA + DLrest and CCTA + DLstress were 100%, 72%, 100%, 74%, 84%, 96% and 93%, 83%, 94%, 81%, 88%, 98%, respectively. All CCTA + CTP stress, CCTA + CTP-DLRest, and CCTA + CTP-DLStress significantly improved detection of hemodynamically significant CAD compared to CCTA alone (p < 0.01). Time of CTP-DL was significantly lower as compared to human analysis (39.2 ± 3.2 vs. 379.6 ± 68.0 s, p < 0.001). CONCLUSION Evaluation of myocardial ischemia using a DL approach on rest CTP datasets is feasible and accurate. This approach may be a useful gatekeeper prior to CTP stress..
Collapse
Affiliation(s)
| | - Mattia Chiesa
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133, Milan, Italy
| | | | - Pierino Spadafora
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Rossella De Santis
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | - Laura Fusini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Andrea Igoren Guaricci
- Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital "Policlinico Consorziale" of Bari, Bari, Italy
| | | | - Mark G Rabbat
- Loyola University of Chicago, Chicago, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Mauro Pepi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Francesco Sardanelli
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133, Milan, Italy.,Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | | |
Collapse
|
22
|
He W, Yu L, Qin W, Wang Y, Wang K, Guo W, Wang S. A modified method of noninvasive computed tomography derived fractional flow reserve based on the microvascular growth space. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106926. [PMID: 35701250 DOI: 10.1016/j.cmpb.2022.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To establish a modified method for optimizing outlet boundary conditions (BC) of computed tomography-derived fractional flow reserve (CT-FFR), considering the myocardium as a growth space for microcirculation. The feasibility and diagnostic performance of the modified method in stable coronary artery disease (CAD) were compared with invasive fractional flow reserve (FFR). METHODS Nineteen patients (19 lesions) underwent coronary computed tomography angiography (CCTA) and following invasive FFR were included. The microcirculation resistance model generated based on patient-specific anatomical structures and physiological principles was used as the outlet BC, considering the myocardium as a growth space. Brachial artery pressure (BAP) plus or minus 10 mmHg was used as the inlet pressure BC to investigate the effect of the circadian rhythm. After simulation, CT-FFR was compared with invasive FFR with a threshold of 0.80. RESULTS Compared with invasive FFR, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of CT-FFR with an optimal threshold of 0.80 were 100%, 100%, 100%, 100%, 100%, respectively. There were a good correlation and consistency between CT-FFR and invasive FFR. Little effect of the circadian fluctuation of BAP was found on the simulation. CONCLUSIONS A modified method for CT-FFR with high diagnostic accuracy compared with invasive FFR was established, considering the whole myocardial as the growth space for microcirculation. Circadian fluctuations in BAP could be ignored when it was used as the inlet BC.
Collapse
Affiliation(s)
- Wei He
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Long Yu
- Department of aeronautics and astronautics, Fudan University, Shanghai, China
| | - Wang Qin
- Department of aeronautics and astronautics, Fudan University, Shanghai, China
| | - Yuan Wang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Keqiang Wang
- Institute of Panvascular Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weifeng Guo
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Shengzhang Wang
- Department of aeronautics and astronautics, Fudan University, Shanghai, China; Institute of Biomedical Engineering Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China; Yiwu Research Institute, Fudan University, Yiwu, China.
| |
Collapse
|
23
|
Argentiero A, Muscogiuri G, Rabbat MG, Martini C, Soldato N, Basile P, Baggiano A, Mushtaq S, Fusini L, Mancini ME, Gaibazzi N, Santobuono VE, Sironi S, Pontone G, Guaricci AI. The Applications of Artificial Intelligence in Cardiovascular Magnetic Resonance-A Comprehensive Review. J Clin Med 2022; 11:jcm11102866. [PMID: 35628992 PMCID: PMC9147423 DOI: 10.3390/jcm11102866] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease remains an integral field on which new research in both the biomedical and technological fields is based, as it remains the leading cause of mortality and morbidity worldwide. However, despite the progress of cardiac imaging techniques, the heart remains a challenging organ to study. Artificial intelligence (AI) has emerged as one of the major innovations in the field of diagnostic imaging, with a dramatic impact on cardiovascular magnetic resonance imaging (CMR). AI will be increasingly present in the medical world, with strong potential for greater diagnostic efficiency and accuracy. Regarding the use of AI in image acquisition and reconstruction, the main role was to reduce the time of image acquisition and analysis, one of the biggest challenges concerning magnetic resonance; moreover, it has been seen to play a role in the automatic correction of artifacts. The use of these techniques in image segmentation has allowed automatic and accurate quantification of the volumes and masses of the left and right ventricles, with occasional need for manual correction. Furthermore, AI can be a useful tool to directly help the clinician in the diagnosis and derivation of prognostic information of cardiovascular diseases. This review addresses the applications and future prospects of AI in CMR imaging, from image acquisition and reconstruction to image segmentation, tissue characterization, diagnostic evaluation, and prognostication.
Collapse
Affiliation(s)
- Adriana Argentiero
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Giuseppe Muscogiuri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60660, USA;
| | - Chiara Martini
- Radiologic Sciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Nicolò Soldato
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Paolo Basile
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Laura Fusini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Maria Elisabetta Mancini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Nicola Gaibazzi
- Department of Cardiology, Azienda Ospedaliero-Universitaria, 43126 Parma, Italy;
| | - Vincenzo Ezio Santobuono
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
- Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
- Correspondence:
| |
Collapse
|
24
|
Zhang J, Li Y, Zheng B, Qiu J, Chen X, Zhou W, Fan Y, Liu M. The Predictive Value of Combining Symptoms, Residual Syntax Score and Non-Invasive Tests in the Diagnosis of Significant Coronary Artery Disease in Elderly Post-PCI Patients. Int J Gen Med 2022; 15:4603-4612. [PMID: 35535147 PMCID: PMC9078441 DOI: 10.2147/ijgm.s357996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To assess the diagnostic efficiency of a combination of symptoms, residual Syntax score (rSS) and non-invasive tests in elderly post-PCI patients. Patients and Methods This was a retrospective study that consecutively enrolled patients ≥60 years old with chronic coronary syndrome and previous stent implantation without lesions requiring further revascularization between March 2013 and June 2020. The patients were scheduled for exercise ECG, CCTA and invasive coronary angiography within 4 weeks. The study then calculated rSS and the sensitivity, specificity, positive and negative predictive values (PPV and NPV) and accuracy of symptoms, rSS, exercise ECG and CCTA, taking computational pressure-flow dynamics derived fractional flow reserve (caFFR) as the standard reference. Results A total of 114 patients were enrolled in this study, including 75 patients with caFFR-positive and 39 patients with caFFR-negative. The caFFR-positive group had more patients with typical angina. Furthermore, the rSS in the caFFR-positive group was higher than that in the caFFR-negative category (7.33 ± 6.56 vs 3.34 ± 4.26, p < 0.001). There was no significant difference in exercise ECG results between the two groups. However, the rate of positive CCTA in the caFFR-positive group was higher than that in the caFFR-negative category (89.33% vs 46.15%, p < 0.001). In addition, after combining symptoms, rSS and CCTA, the sensitivity, specificity, PPV, NPV and accuracy for diagnose were 77.5%, 84.2%, 90.2%, 66.7% and 79.8%, respectively. Conclusion The findings showed that exercise ECG had limited power to diagnose significant CAD in elderly post-PCI patients, but CCTA was more efficient. Moreover, combining symptoms, rSS and CCTA provided more accurate diagnostic performance with feasibility and safety.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Yuxi Li
- Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Bo Zheng
- Department of Cardiology, Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Jianxing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Xiahuan Chen
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Weiwei Zhou
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Yan Fan
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Meilin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| |
Collapse
|
25
|
Lowenstern A, Alexander KP, Pagidipati NJ, Hill CL, Pellikka PA, Cooper LS, Alhanti B, Hoffmann U, Mark DB, Douglas PS. Presenting Symptoms in Patients Undergoing Coronary Artery Disease Evaluation: Association With Noninvasive Test Results and Clinical Outcomes in the PROMISE Trial. Circ Cardiovasc Qual Outcomes 2022; 15:e008298. [PMID: 35369715 PMCID: PMC9117448 DOI: 10.1161/circoutcomes.121.008298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Patients evaluated for coronary artery disease have a range of symptoms and underlying risk. The relationships between patient-described symptoms, clinician conclusions, and subsequent clinical management and outcomes remain incompletely described. METHODS In this secondary analysis, we examined the association between 4 types of presenting symptoms (substernal/left-sided chest pain, other chest/neck/arm pain, dyspnea, and other symptoms) and patient risk, noninvasive test results, clinical management, and outcomes for stable outpatients randomized in the PROMISE (Prospective Multicenter Imaging Study for Evaluation of Chest Pain) trial. Multivariable regression models were used to evaluate differences in noninvasive test result, all-cause death/myocardial infarction/unstable angina hospitalization and cardiovascular death/myocardial infarction by symptom type. RESULTS Among 9996 patients, most presented with chest pain (47.2% substernal, 29.2% other), followed by dyspnea (14.9%), and other symptoms (8.7%). Patients with dyspnea were older (median age 63 versus 60, P≤0.02) with higher baseline risk (78.2% with atherosclerotic cardiovascular disease >7.5% versus 67.6%, P≤0.02). Using patients with substernal chest pain as a reference, there was no difference in noninvasive test positivity across symptom groups (all P>0.05), but test-positive patients with dyspnea (adjusted odds ratio, 0.66 [95% CI, 0.51-0.85]) or other symptoms (adjusted odds ratio, 0.65 [95% CI, 0.47-0.90]) were less likely to be referred for cardiac catheterization. While symptom type alone was not associated with outcomes, symptom presentation with chest pain or dyspnea did modify the association between a positive noninvasive test and clinical outcome (interaction P=0.025 for both all-cause death/myocardial infarction/unstable angina hospitalization and cardiovascular death/MI). CONCLUSIONS Among low-risk outpatients evaluated for coronary artery disease, typicality of symptoms was not closely associated with higher baseline risk but was related to differences in processes of care and the prognostic value of a positive test. Adverse events were not associated with clinician risk estimates or symptoms alone. These unexpected findings highlight the limitation of relying solely on symptom presentation or clinician risk estimation to evaluate patients for suspected coronary artery disease. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT01174550.
Collapse
Affiliation(s)
- Angela Lowenstern
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (A.L., K.P.A., N.J.P., C.L.H., B.A., D.B.M., P.S.D.).,Vanderbilt University Medical Center (A.L.)
| | - Karen P Alexander
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (A.L., K.P.A., N.J.P., C.L.H., B.A., D.B.M., P.S.D.)
| | - Neha J Pagidipati
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (A.L., K.P.A., N.J.P., C.L.H., B.A., D.B.M., P.S.D.)
| | - C Larry Hill
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (A.L., K.P.A., N.J.P., C.L.H., B.A., D.B.M., P.S.D.)
| | | | - Lawton S Cooper
- National Heart, Lung, and Blood Institute, Bethesda, MD (L.S.C.)
| | - Brooke Alhanti
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (A.L., K.P.A., N.J.P., C.L.H., B.A., D.B.M., P.S.D.)
| | - Udo Hoffmann
- Massachusetts General Hospital, Harvard Medical School, Boston (U.H.)
| | - Daniel B Mark
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (A.L., K.P.A., N.J.P., C.L.H., B.A., D.B.M., P.S.D.)
| | - Pamela S Douglas
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (A.L., K.P.A., N.J.P., C.L.H., B.A., D.B.M., P.S.D.)
| |
Collapse
|
26
|
Ties D, van Dorp P, Pundziute G, van der Aalst CM, Gratama JWC, Braam RL, Kuijpers D, Lubbers DD, van der Bilt IA, Westenbrink BD, Wolcherink MJO, Doggen CJ, Išgum I, Nijveldt R, de Koning HJ, Vliegenthart R, Oudkerk M, van der Harst P. Early detection of obstructive coronary artery disease in the asymptomatic high-risk population: objectives and study design of the EARLY-SYNERGY trial. Am Heart J 2022; 246:166-177. [PMID: 35038412 DOI: 10.1016/j.ahj.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/11/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) burden for society is expected to steeply increase over the next decade. Improved feasibility and efficiency of preventive strategies is necessary to flatten the curve. Acute myocardial infarction (AMI) is the main determinant of CAD-related mortality and morbidity, and predominantly occurs in individuals with more advanced stages of CAD causing subclinical myocardial ischemia (obstructive CAD; OCAD). Unfortunately, OCAD can remain subclinical until its destructive presentation with AMI or sudden death. Current primary preventive strategies are not designed to differentiate between non-OCAD and OCAD and the opportunity is missed to treat individuals with OCAD more aggressively. METHODS EARLY-SYNERGY is a multicenter, randomized-controlled clinical trial in individuals with coronary artery calcium (CAC) presence to study (1.) the yield of cardiac magnetic resonance stress myocardial perfusion imaging (CMR-MPI) for early OCAD diagnosis and (2) whether early OCAD diagnosis improves outcomes. Individuals with CAC score ≥300 objectified in 2 population-based trials (ROBINSCA; ImaLife) are recruited for study participation. Eligible candidates are randomized 1:1 to cardiac magnetic resonance stress myocardial perfusion imaging (CMR-MPI) or no additional functional imaging. In the CMR-MPI arm, feedback on imaging results is provided to primary care provider and participant in case of guideline-based actionable findings. Participants are followed-up for clinical events, healthcare utilization and quality of life. CONCLUSIONS EARLY-SYNERGY is the first randomized-controlled clinical trial designed to test the hypothesis that subclinical OCAD is widely present in the general at-risk population and that early differentiation of OCAD from non-OCAD followed by guideline-recommended treatment improves outcomes.
Collapse
|
27
|
Pontone G, Rossi A, Guglielmo M, Dweck MR, Gaemperli O, Nieman K, Pugliese F, Maurovich-Horvat P, Gimelli A, Cosyns B, Achenbach S. Clinical applications of cardiac computed tomography: a consensus paper of the European Association of Cardiovascular Imaging-part II. Eur Heart J Cardiovasc Imaging 2022; 23:e136-e161. [PMID: 35175348 PMCID: PMC8944330 DOI: 10.1093/ehjci/jeab292] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/28/2021] [Indexed: 11/12/2022] Open
Abstract
Cardiac computed tomography (CT) was initially developed as a non-invasive diagnostic tool to detect and quantify coronary stenosis. Thanks to the rapid technological development, cardiac CT has become a comprehensive imaging modality which offers anatomical and functional information to guide patient management. This is the second of two complementary documents endorsed by the European Association of Cardiovascular Imaging aiming to give updated indications on the appropriate use of cardiac CT in different clinical scenarios. In this article, emerging CT technologies and biomarkers, such as CT-derived fractional flow reserve, perfusion imaging, and pericoronary adipose tissue attenuation, are described. In addition, the role of cardiac CT in the evaluation of atherosclerotic plaque, cardiomyopathies, structural heart disease, and congenital heart disease is revised.
Collapse
Affiliation(s)
- Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, Via C. Parea 4, 20138 Milan, Italy
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Marco Guglielmo
- Centro Cardiologico Monzino IRCCS, Via C. Parea 4, 20138 Milan, Italy
| | - Marc R Dweck
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Koen Nieman
- Department of Radiology and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Francesca Pugliese
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Pal Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Alessia Gimelli
- Fondazione CNR/Regione Toscana “Gabriele Monasterio”, Pisa, Italy
| | - Bernard Cosyns
- Department of Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair ziekenhuis Brussel, Brussel, Belgium
| | - Stephan Achenbach
- Department of Cardiology, Friedrich-Alexander-University of Erlangen, Erlangen, Germany
| |
Collapse
|
28
|
Geng W, Gao Y, Zhao N, Yan H, Ma W, An Y, Jia L, Lu B. Dose Reduction of Dynamic Computed Tomography Myocardial Perfusion Imaging by Tube Voltage Change: Investigation in a Swine Model. Front Cardiovasc Med 2022; 9:823974. [PMID: 35310988 PMCID: PMC8927626 DOI: 10.3389/fcvm.2022.823974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background It is unclear whether tube voltage influences the measurement of perfusion parameters. The present study sought to evaluate the influence of tube voltage change on myocardial blood flow (MBF) measurements in dynamic computed tomography myocardial perfusion imaging (CTP). Methods and Results Seven swine [mean weight 55.8 kg ± 1.6 (standard deviation)] underwent rest and stress dynamic CTP with tube voltages of 100 and 70 kV. The image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), radiation dose and MBF value were compared. The 70 kV images had higher CT attenuation and higher image noise (27.9 ± 2.4 vs. 21.5 ± 1.9, P < 0.001) than the 100 kV images, resulting in a higher SNR (20.5 ± 1.6 vs. 15.6 ± 1.8, P < 0.001) and CNR (17.6 ± 1.5 vs. 12.4 ± 1.7, P < 0.001). Compared to the use of conventional 100 kV, 70 kV yielded an approximately 64.6% radiation dose reduction while generating comparable MBF values, both at rest (88.3 ± 14.9 ml/100 g/min vs. 85.6 ± 17.4 ml/100 g/min, P = 0.21) and stress (101.4 ± 21.5 ml/100 g/min vs. 99.6 ± 21.4 ml/100 g/min, P = 0.58) states. Conclusion Dynamic CTP using 70 kV instead of 100 kV does not substantially influence the MBF value but significantly reduces the radiation dose. Additional research is required to investigate the clinical significance of this change.
Collapse
Affiliation(s)
- Wenlei Geng
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Gao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Na Zhao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hankun Yan
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Ma
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yunqiang An
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liujun Jia
- Animal Experimental Center, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Bin Lu,
| |
Collapse
|
29
|
Muscogiuri G, Guglielmo M, Serra A, Gatti M, Volpato V, Schoepf UJ, Saba L, Cau R, Faletti R, McGill LJ, De Cecco CN, Pontone G, Dell’Aversana S, Sironi S. Multimodality Imaging in Ischemic Chronic Cardiomyopathy. J Imaging 2022; 8:jimaging8020035. [PMID: 35200737 PMCID: PMC8877428 DOI: 10.3390/jimaging8020035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Ischemic chronic cardiomyopathy (ICC) is still one of the most common cardiac diseases leading to the development of myocardial ischemia, infarction, or heart failure. The application of several imaging modalities can provide information regarding coronary anatomy, coronary artery disease, myocardial ischemia and tissue characterization. In particular, coronary computed tomography angiography (CCTA) can provide information regarding coronary plaque stenosis, its composition, and the possible evaluation of myocardial ischemia using fractional flow reserve CT or CT perfusion. Cardiac magnetic resonance (CMR) can be used to evaluate cardiac function as well as the presence of ischemia. In addition, CMR can be used to characterize the myocardial tissue of hibernated or infarcted myocardium. Echocardiography is the most widely used technique to achieve information regarding function and myocardial wall motion abnormalities during myocardial ischemia. Nuclear medicine can be used to evaluate perfusion in both qualitative and quantitative assessment. In this review we aim to provide an overview regarding the different noninvasive imaging techniques for the evaluation of ICC, providing information ranging from the anatomical assessment of coronary artery arteries to the assessment of ischemic myocardium and myocardial infarction. In particular this review is going to show the different noninvasive approaches based on the specific clinical history of patients with ICC.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy
- Correspondence: ; Tel.: +39-329-404-9840
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, 3584 Utrecht, The Netherlands;
| | - Alessandra Serra
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy; (M.G.); (R.F.)
| | - Valentina Volpato
- Department of Cardiac, Neurological and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy;
| | - Uwe Joseph Schoepf
- Department of Radiology and Radiological Science, MUSC Ashley River Tower, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, USA; (U.J.S.); (L.J.M.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy; (M.G.); (R.F.)
| | - Liam J. McGill
- Department of Radiology and Radiological Science, MUSC Ashley River Tower, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, USA; (U.J.S.); (L.J.M.)
| | - Carlo Nicola De Cecco
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA;
| | | | - Serena Dell’Aversana
- Department of Radiology, Ospedale S. Maria Delle Grazie—ASL Napoli 2 Nord, 80078 Pozzuoli, Italy;
| | - Sandro Sironi
- School of Medicine and Post Graduate School of Diagnostic Radiology, University of Milano-Bicocca, 20126 Milan, Italy;
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
30
|
Baggiano A, Italiano G, Guglielmo M, Fusini L, Guaricci AI, Maragna R, Giacari CM, Mushtaq S, Conte E, Annoni AD, Formenti A, Mancini ME, Andreini D, Rabbat M, Pepi M, Pontone G. Changing Paradigms in the Diagnosis of Ischemic Heart Disease by Multimodality Imaging. J Clin Med 2022; 11:jcm11030477. [PMID: 35159929 PMCID: PMC8836710 DOI: 10.3390/jcm11030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/24/2021] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Coronary artery disease (CAD) represents the most common cardiovascular disease, with high morbidity and mortality. Historically patients with chest pain of suspected coronary origin have been assessed with functional tests, capable to detect haemodynamic consequences of coronary obstructions through depiction of electrocardiographic changes, myocardial perfusion defects or regional wall motion abnormalities under stress condition. Stress echocardiography (SE), single-photon emission computed tomography (SPECT), positron emission tomography (PET) and cardiovascular magnetic resonance (CMR) represent the functional techniques currently available, and technical developments contributed to increased diagnostic performance of these techniques. More recently, cardiac computed tomography angiography (cCTA) has been developed as a non-invasive anatomical test for a direct visualisation of coronary vessels and detailed description of atherosclerotic burden. Cardiovascular imaging techniques have dramatically enhanced our knowledge regarding physiological aspects and myocardial implications of CAD. Recently, after the publication of important trials, international guidelines recognised these changes, updating indications and level of recommendations. This review aims to summarise current standards with main novelties and specific limitations, and a diagnostic algorithm for up-to-date clinical management is also proposed.
Collapse
Affiliation(s)
- Andrea Baggiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Gianpiero Italiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Marco Guglielmo
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Laura Fusini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Andrea Igoren Guaricci
- Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari, 70124 Bari, Italy;
| | - Riccardo Maragna
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Carlo Maria Giacari
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Saima Mushtaq
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Edoardo Conte
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Daniele Annoni
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Alberto Formenti
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Maria Elisabetta Mancini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Daniele Andreini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Mark Rabbat
- Division of Cardiology, Department of Medicine and Radiology, Loyola University of Chicago, Chicago, IL 60660, USA;
- Division of Cardiology, Department of Medicine, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Mauro Pepi
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.I.); (M.G.); (L.F.); (R.M.); (C.M.G.); (S.M.); (E.C.); (A.D.A.); (A.F.); (M.E.M.); (D.A.); (M.P.)
- Correspondence: ; Tel.: +39-02-5800-2574; Fax: +39-02-5800-2231
| |
Collapse
|
31
|
Paving the Way for Clinical Implementation of Dynamic CT Perfusion. JACC. CARDIOVASCULAR IMAGING 2022; 15:88-90. [PMID: 34991895 DOI: 10.1016/j.jcmg.2021.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022]
|
32
|
Gaibazzi N, Tuttolomondo D, Guaricci AI, De Marco F, Pontone G. Stress-echocardiography or coronary computed tomography in suspected chronic coronary syndrome after the 2019 European Guidelines? A practical guide. J Cardiovasc Med (Hagerstown) 2022; 23:12-21. [PMID: 34366402 DOI: 10.2459/jcm.0000000000001235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stress-echocardiography can rightly be considered one of the champions of cardiac functional imaging, thanks to its real-time imaging, high temporal resolution, high safety and very low cost. When stress-echocardiography is performed at top technical quality, hence taking advantage of ultrasound contrast media for endocardial border delineation at least for suboptimal cases, subjectivity is minimized, and with the routine use of coronary flow reserve measurement (left anterior descending coronary artery, stress/rest ratio reduced or normal, i.e. <>2.0) diagnostic sensitivity is strengthened. The true competitor of any type of functional imaging, stress-echocardiography included, is nowadays coronary computed tomography angiography, which is instead a diagnostic method directly, noninvasively assessing coronary anatomy, apparently the holy grail for any cardiologist. The new 2019 Guidelines on chronic coronary syndrome of the European Society of Cardiology change the existing landscape and clinical practice, while they probably cannot clarify which type of test, functional or anatomic, should be first chosen in different clinical scenarios of suspected chronic coronary syndrome. We review the existing data and the authors' personal view in order to assess how functional stress-echocardiography compares with coronary computed tomography angiography regarding three main aspects: diagnosis of coronary artery disease, guidance of therapy (coronary revascularization versus medical therapy) and risk stratification.
Collapse
Affiliation(s)
| | | | | | - Federico De Marco
- Department of Clinical and Interventional Cardiology, IRCCS Policlinico San Donato, San Donato Milanese
| | | |
Collapse
|
33
|
Nous FMA, Geisler T, Kruk MBP, Alkadhi H, Kitagawa K, Vliegenthart R, Hell MM, Hausleiter J, Nguyen PK, Budde RPJ, Nikolaou K, Kepka C, Manka R, Sakuma H, Malik SB, Coenen A, Zijlstra F, Klotz E, van der Harst P, Artzner C, Dedic A, Pugliese F, Bamberg F, Nieman K. Dynamic Myocardial Perfusion CT for the Detection of Hemodynamically Significant Coronary Artery Disease. JACC Cardiovasc Imaging 2022; 15:75-87. [PMID: 34538630 PMCID: PMC8741746 DOI: 10.1016/j.jcmg.2021.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES In this international, multicenter study, using third-generation dual-source computed tomography (CT), we investigated the diagnostic performance of dynamic stress CT myocardial perfusion imaging (CT-MPI) in addition to coronary CT angiography (CTA) compared to invasive coronary angiography (ICA) and invasive fractional flow reserve (FFR). BACKGROUND CT-MPI combined with coronary CTA integrates coronary artery anatomy with inducible myocardial ischemia, showing promising results for the diagnosis of hemodynamically significant coronary artery disease in single-center studies. METHODS At 9 centers in Europe, Japan, and the United States, 132 patients scheduled for ICA were enrolled; 114 patients successfully completed coronary CTA, adenosine-stress dynamic CT-MPI, and ICA. Invasive FFR was performed in vessels with 25% to 90% stenosis. Data were analyzed by independent core laboratories. For the primary analysis, for each coronary artery the presence of hemodynamically significant obstruction was interpreted by coronary CTA with CT-MPI compared to coronary CTA alone, using an FFR of ≤0.80 and angiographic severity as reference. Territorial absolute myocardial blood flow (MBF) and relative MBF were compared using C-statistics. RESULTS ICA and FFR identified hemodynamically significant stenoses in 74 of 289 coronary vessels (26%). Coronary CTA with ≥50% stenosis demonstrated a per-vessel sensitivity, specificity, and accuracy for the detection of hemodynamically significant stenosis of 96% (95% CI: 91%-100%), 72% (95% CI: 66%-78%), and 78% (95% CI: 73%-83%), respectively. Coronary CTA with CT-MPI showed a lower sensitivity (84%; 95% CI: 75%-92%) but higher specificity (89%; 95% CI: 85%-93%) and accuracy (88%; 95% CI: 84%-92%). The areas under the receiver-operating characteristic curve of absolute MBF and relative MBF were 0.79 (95% CI: 0.71-0.86) and 0.82 (95% CI: 0.74-0.88), respectively. The median dose-length product of CT-MPI and coronary CTA were 313 mGy·cm and 138 mGy·cm, respectively. CONCLUSIONS Dynamic CT-MPI offers incremental diagnostic value over coronary CTA alone for the identification of hemodynamically significant coronary artery disease. Generalized results from this multicenter study encourage broader consideration of dynamic CT-MPI in clinical practice. (Dynamic Stress Perfusion CT for Detection of Inducible Myocardial Ischemia [SPECIFIC]; NCT02810795).
Collapse
Affiliation(s)
- Fay M A Nous
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tobias Geisler
- Department of Cardiology, University of Tuebingen, Tuebingen, Germany
| | - Mariusz B P Kruk
- Coronary Disease and Structural Heart Diseases Department, Institute of Cardiology, Warsaw, Poland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan
| | - Rozemarijn Vliegenthart
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michaela M Hell
- Department of Cardiology, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Hausleiter
- Department of Cardiology, Ludwig-Maximilians University, Munich, Germany
| | - Patricia K Nguyen
- Veterans Affairs Palo Alto Healthcare System, Cardiology Section, Palo Alto, California, USA; Stanford University, Division of Cardiovascular Medicine, Stanford, California, USA; Stanford Cardiovascular Institute, Stanford, California, USA
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Cezary Kepka
- Coronary Disease and Structural Heart Diseases Department, Institute of Cardiology, Warsaw, Poland
| | - Robert Manka
- Department of Cardiology, University Heart Center and Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Sachin B Malik
- Veterans Affairs Palo Alto Healthcare System, Thoracic and Cardiovascular Imaging Section, Palo Alto, California, USA; Stanford University, Division of Cardiovascular Imaging (Affiliated), Stanford, California, USA
| | - Adriaan Coenen
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Felix Zijlstra
- Department of Cardiology, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christoph Artzner
- Department of Cardiology, University of Tuebingen, Tuebingen, Germany
| | - Admir Dedic
- Department of Cardiology, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Francesca Pugliese
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts National Institute for Health Research Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, West Smithfield, London, United Kingdom
| | - Fabian Bamberg
- Department of Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Koen Nieman
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Stanford University School of Medicine and Cardiovascular Institute, Stanford, California, USA.
| |
Collapse
|
34
|
Paul JF, Rohnean A, Giroussens H, Pressat-Laffouilhere T, Wong T. Evaluation of a deep learning model on coronary CT angiography for automatic stenosis detection. Diagn Interv Imaging 2022; 103:316-323. [DOI: 10.1016/j.diii.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
|
35
|
Mid-Diastolic Events (L Events): A Critical Review. J Clin Med 2021; 10:jcm10235654. [PMID: 34884356 PMCID: PMC8658614 DOI: 10.3390/jcm10235654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
Mid-diastolic events (L events) include three phenomena appreciable on echocardiography occurring during diastasis: mid-diastolic transmitral flow velocity (L wave), mid-diastolic mitral valve motion (L motion), and mid-diastolic mitral annular velocity (L’ wave). L wave is a known marker of advanced diastolic dysfunction in different pathological clinical settings such as left ventricle and atrial remodeling, overloaded states, and cardiomyopathies. Patients with L events have poor outcomes with a higher risk of developing heart failure symptoms and arrhythmic complications, including sudden cardiac death. The exact mechanism underlying the genesis of mid-diastolic events is not fully understood, just as the significance of these events in healthy young people or their presence at the tricuspid valve level. We also report an explicative case of a patient with L events studied using speckle tracking imaging of the left atrium and ventricle at the same reference heartbeat supporting the hypothesis of a post-early diastolic relaxation or a “two-step” ventricular relaxation for L wave genesis. Our paper seeks to extend knowledge about the pathophysiological mechanisms on mid-diastolic events and summarizes the current knowledge.
Collapse
|
36
|
Colbert CM, Le AH, Shao J, Currier JW, Ajijola OA, Hu P, Nguyen KL. Ferumoxytol-enhanced magnetic resonance T1 reactivity for depiction of myocardial hypoperfusion. NMR IN BIOMEDICINE 2021; 34:e4518. [PMID: 33830561 PMCID: PMC8287706 DOI: 10.1002/nbm.4518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 06/02/2023]
Abstract
Myocardial T1 reactivity, defined as the relative change in T1 between rest and vasodilator-induced stress, has been proposed as a magnetic resonance imaging (MRI) biomarker of tissue perfusion. We hypothesize that the superparamagnetic iron-oxide nanoparticle, ferumoxytol, sensitizes T1 to changes in the intramyocardial vascular compartment and improves the sensitivity and specificity of T1 reactivity as an imaging biomarker of tissue perfusion. We aim to assess the diagnostic performance of ferumoxytol-enhanced (FE) myocardial T1 reactivity in swine models of myocardial hypoperfusion. We induced acute myocardial hypoperfusion in 13 swine via percutaneous, transcatheter deployment of a 3D printed intracoronary stenosis implant into the left anterior descending coronary artery. We performed native and FE adenosine stress testing using 5(3)3(3)3 MOLLI and SASHA T1 mapping sequences with bSSFP readout on a clinical 3.0 T magnet. MOLLI T1 maps were fitted using both the conventional MOLLI and the Instantaneous Signal Loss (InSiL) T1-fitting algorithms. Regardless of the MOLLI or SASHA pulse sequence or T1-fitting algorithm, ferumoxytol contrast increased the dynamic range of T1 reactivity in both the remote and ischemic myocardial regions. Relative to remote myocardium, native and FE T1 reactivity were blunted in ischemic myocardium (p < 0.05) with InSiL-MOLLI, MOLLI and SASHA. An InSiL-MOLLI-derived FE T1 reactivity threshold of -4.65% had 73.3% sensitivity and 96.2% specificity for prediction of regional wall motion abnormalities (AUC 0.915, 95% CI 0.786-0.979), whereas a SASHA-derived FE T1 reactivity threshold of -5.25% had 75.0% sensitivity and 95.2% specificity (AUC 0.905, 95% CI 0.751-0.979). Ferumoxytol significantly increased the dynamic range of T1 reactivity as a measure of myocardial hypoperfusion in vasodilator stress T1 mapping studies. FE T1 reactivity maps can be used to quantitatively distinguish ischemic and remote myocardium with high specificity in swine models of acute myocardial hypoperfusion.
Collapse
Affiliation(s)
- Caroline M. Colbert
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
| | - Anna H. Le
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
| | - Jiaxin Shao
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Jesse W. Currier
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
| | - Olujimi A. Ajijola
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA
| | - Peng Hu
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| | - Kim-Lien Nguyen
- Physics and Biology in Medicine Graduate Program, David Geffen School of Medicine at UCLA
- Division of Cardiology, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA
| |
Collapse
|
37
|
Contemporary Role of Cardiac Magnetic Resonance in the Management of Patients with Suspected or Known Coronary Artery Disease. ACTA ACUST UNITED AC 2021; 57:medicina57070649. [PMID: 34202588 PMCID: PMC8303732 DOI: 10.3390/medicina57070649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
Cardiac magnetic resonance imaging (CMR) is a useful non-invasive radiation-free imaging modality for the management of patients with coronary artery disease (CAD). CMR cine imaging provides the “gold standard” assessment of ventricular function, late gadolinium enhancement (LGE) provides useful data for the diagnosis and extent of myocardial scar and viability, while stress imaging is an established technique for the detection of myocardial perfusion defects indicating ischemia. Beyond its role in the diagnosis of CAD, CMR allows accurate risk stratification of patients with established CAD. This review aims to summarize the data regarding the role of CMR in the contemporary management of patients with suspected or known coronary artery disease.
Collapse
|
38
|
Adjedj J, Hyafil F, Halna du Fretay X, Dupouy P, Juliard J, Ou P, Laissy J, Muller O, Wijns W, Aubry P. Physiological Evaluation of Anomalous Aortic Origin of a Coronary Artery Using Computed Tomography-Derived Fractional Flow Reserve. J Am Heart Assoc 2021; 10:e018593. [PMID: 33728970 PMCID: PMC8174353 DOI: 10.1161/jaha.120.018593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background With the emergence of coronary computed tomography (CT) angiography, anomalous aortic origin of a coronary artery (ANOCOR) is more frequently diagnosed. Fractional flow reserve derived from CT (FFRCT) is a noninvasive functional test providing anatomical and functional evaluation of the overall coronary tree. These unique features of anatomical and functional evaluation derived from CT could help for the management of patients with ANOCOR. We aimed to retrospectively evaluate the physiological and clinical impact of FFRCT analysis in the ANOCOR registry population. Methods and Results The ANOCOR registry included patients with ANOCOR detected during invasive coronary angiography or coronary CT angiography between January 2010 and January 2013, with a planned 5‐year follow‐up. We retrospectively performed FFRCT analysis in patients with coronary CT angiography of adequate quality. Follow‐up was performed with a clinical composite end point (cardiac death, myocardial infarction, and unplanned revascularization). We obtained successful FFRCT analyses and 5‐year clinical follow‐up in 54 patients (average age, 60±13 years). Thirty‐eight (70%) patients had conservative treatment, and 16 (30%) patients had coronary revascularization after coronary CT angiography. The presence of an ANOCOR course was associated with a moderate reduction of FFRCT value from 1.0 at the ostium to 0.90±0.10 downstream the ectopic course and 0.82±0.11 distally. No significant difference in FFRCT values was identified between at‐risk and not at‐risk ANOCOR. After a 5‐year follow‐up, only one unplanned percutaneous revascularization was reported. Conclusions The presence of ANOCOR was associated with a moderate hemodynamic decrease of FFRCT values and associated with a low risk of cardiovascular events after a 5‐year follow‐up in this middle‐aged population.
Collapse
Affiliation(s)
- Julien Adjedj
- Cardiology DepartmentArnault Tzanck InstituteSaint Laurent Du VarFrance
- Cardiology DepartmentLausanne University HospitalLausanneSwitzerland
| | - Fabien Hyafil
- Department of Nuclear MedicineDepartement medico Universitaire IMAGINAAssistance Publique Hopitaux de ParisHopital Européen Georges PompidouUniversity of ParisFrance
| | | | - Patrick Dupouy
- Interventional Imaging Cardiovascular UnitAntony Private HospitalAntonyFrance
| | - Jean‐Michel Juliard
- Cardiology DepartmentBichat–Claude‐Bernard HospitalAssistance Publique–Hôpitaux de ParisParisFrance
| | - Phalla Ou
- Radiology DepartmentBichat–Claude‐Bernard HospitalAssistance Publique–Hôpitaux de ParisParisFrance
| | - Jean‐Pierre Laissy
- Radiology DepartmentLariboisière HospitalAssistance Publique–Hôpitaux de ParisParisFrance
| | - Olivier Muller
- Cardiology DepartmentArnault Tzanck InstituteSaint Laurent Du VarFrance
| | - William Wijns
- The Lambe Institute for Translational Medicine and CuramNational University of IrelandGalwayIreland
- Saolta University Healthcare GroupGalwayIreland
| | - Pierre Aubry
- Cardiology DepartmentBichat–Claude‐Bernard HospitalAssistance Publique–Hôpitaux de ParisParisFrance
| | | |
Collapse
|
39
|
Rodriguez-Granillo GA, Cirio JJ, Ciardi C, Caballero ML, Diluca P, Castrillon R, Ceron M, Scrivano E, Lylyk P. Cardiovascular thrombotic complications in acute ischemic stroke assessed by chest spectral computed tomography during COVID-19. Minerva Cardiol Angiol 2021; 69:606-618. [PMID: 33703860 DOI: 10.23736/s2724-5683.21.05547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During the pandemic context, diagnostic algorithms had to be adapted considering the decimated medical personnel, local technical resources, and the likelihood of contamination. Given the higher probability of thrombotic complications related to COVID-19 and the availability of a dual-layer spectral computed tomography (CT) scanner, we have recently adopted the use of low-dose, non-gated, chest CT scans performed five minutes after contrast administration among patients admitted with acute ischemic stroke (AIS) undergoing cerebrovascular CT angiography. Dual-layer spectral CT comprises a single X-ray source and two-layer detector with different photon-absorption capabilities. In addition to conventional images, the two distinct energy datasets obtained enable multiparametric spectral analysis without need to change the original scanning protocol. The two spectral features that emerge as most useful for patients with AIS are virtual monoenergetic imaging and iodine-based results. Aside from the evaluation of lung parenchyma, this novel strategy enables ruling out cardioembolic sources and simultaneously providing evidence of pulmonary and myocardial injury in a single session and immediately after CT cerebrovascular angiography. Furthermore, it involves a non-invasive, seemingly accurate, unsophisticated, safer (very low radiation dose and no contrast administration), and cheaper tool for ruling out cardioembolic sources compared to transesophageal echocardiogram and cardiac CT. Accordingly, we sought to standardize the technical aspects and overview the usefulness of delayed-phase, low-dose chest spectral CT in patients admitted with AIS.
Collapse
Affiliation(s)
- Gaston A Rodriguez-Granillo
- Department of Cardiovascular Imaging, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina - .,National Council of Scientific and Technical Investigations - Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires, Argentina -
| | - Juan J Cirio
- Stroke Unit, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Celina Ciardi
- Stroke Unit, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Maria L Caballero
- Stroke Unit, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Pablo Diluca
- Department of Radiology, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Ricardo Castrillon
- Department of Radiology, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Marcos Ceron
- Department of Cardiovascular Imaging, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Esteban Scrivano
- Department of Interventional Radiology, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| | - Pedro Lylyk
- Department of Interventional Radiology, ENERI Medical Institute, La Sagrada Familia Clinic, Buenos Aires, Argentina
| |
Collapse
|
40
|
Baessato F, Guglielmo M, Muscogiuri G, Baggiano A, Fusini L, Scafuri S, Babbaro M, Mollace R, Collevecchio A, Guaricci AI, Pontone G. Stress CMR in Known or Suspected CAD: Diagnostic and Prognostic Role. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6678029. [PMID: 33511208 PMCID: PMC7822671 DOI: 10.1155/2021/6678029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The recently published 2019 guidelines on chronic coronary syndromes (CCS) focus on the need for noninvasive imaging modalities to accurately establish the diagnosis of coronary artery disease (CAD) and assess the risk of clinical scenario occurrence. Appropriate patient management should rely on controlling symptoms, improving prognosis, and guiding each therapeutic strategy as well as monitoring disease progress. Among the noninvasive imaging modalities, cardiovascular magnetic resonance (CMR) has gained broad acceptance in past years due to its unique features in providing a complete assessment of CAD through data on cardiac anatomy and function and myocardial viability, with high spatial and temporal resolution and without ionizing radiation. In detail, evaluation of the presence and extent of myocardial ischemia through stress CMR (S-CMR) has shown a high rule-in power in detecting functionally significant coronary artery stenosis in patients suspected of CCS. Moreover, S-CMR technique may add significant prognostic value, as demonstrated by different studies which have progressively evidenced the valuable power of this multiparametric imaging modality in predicting adverse cardiac events. The latest scientific progress supports a greater expansion of S-CMR with improvement of quantitative myocardial perfusion analysis, myocardial strain, and native mapping within the same examination. Although further study is warranted, these techniques, which are currently mostly restricted to the research field, are likely to become increasingly prevalent in the clinical setting with the scope of increasing accuracy in the selection of patients to be sent to invasive revascularization. This review investigates the diagnostic and prognostic role of S-CMR in the context of CAD, by analysing a strong, long-standing, scientific evidence together with an appraisal of new advanced techniques which may potentially enrich CAD management in the next future.
Collapse
Affiliation(s)
- Francesca Baessato
- Department of Cardiology, San Maurizio Regional Hospital, Bolzano, Italy
| | - Marco Guglielmo
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giuseppe Muscogiuri
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Andrea Baggiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Fusini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Stefano Scafuri
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Mario Babbaro
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Rocco Mollace
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Ada Collevecchio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Andrea I. Guaricci
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital Policlinico of Bari, Bari, Italy
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
41
|
Muscogiuri G, Van Assen M, Tesche C, De Cecco CN, Chiesa M, Scafuri S, Guglielmo M, Baggiano A, Fusini L, Guaricci AI, Rabbat MG, Pontone G. Artificial Intelligence in Coronary Computed Tomography Angiography: From Anatomy to Prognosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6649410. [PMID: 33381570 PMCID: PMC7762640 DOI: 10.1155/2020/6649410] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Cardiac computed tomography angiography (CCTA) is widely used as a diagnostic tool for evaluation of coronary artery disease (CAD). Despite the excellent capability to rule-out CAD, CCTA may overestimate the degree of stenosis; furthermore, CCTA analysis can be time consuming, often requiring advanced postprocessing techniques. In consideration of the most recent ESC guidelines on CAD management, which will likely increase CCTA volume over the next years, new tools are necessary to shorten reporting time and improve the accuracy for the detection of ischemia-inducing coronary lesions. The application of artificial intelligence (AI) may provide a helpful tool in CCTA, improving the evaluation and quantification of coronary stenosis, plaque characterization, and assessment of myocardial ischemia. Furthermore, in comparison with existing risk scores, machine-learning algorithms can better predict the outcome utilizing both imaging findings and clinical parameters. Medical AI is moving from the research field to daily clinical practice, and with the increasing number of CCTA examinations, AI will be extensively utilized in cardiac imaging. This review is aimed at illustrating the state of the art in AI-based CCTA applications and future clinical scenarios.
Collapse
Affiliation(s)
| | - Marly Van Assen
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Christian Tesche
- Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany
- Department of Internal Medicine, St. Johannes-Hospital, Dortmund, Germany
| | - Carlo N. De Cecco
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | | - Stefano Scafuri
- Division of Interventional Structural Cardiology, Cardiothoracovascular Department, Careggi University Hospital, Florence, Italy
| | | | | | - Laura Fusini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Andrea I. Guaricci
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital “Policlinico Consorziale” of Bari, Bari, Italy
| | - Mark G. Rabbat
- Loyola University of Chicago, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | | |
Collapse
|