1
|
Cieplucha A, Budts W, Gewillig M, Van De Bruaene A. Fontan-associated Liver Disease in Adults: What a Cardiologist Needs to Know. A Comprehensive Review for Clinical Practitioners. US CARDIOLOGY REVIEW 2022. [DOI: 10.15420/usc.2022.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nowadays most patients with a univentricular heart after Fontan repair survive until adulthood. One of the hallmarks of Fontan circulation is
permanently elevated central venous pressure, which leads to congestive hepatopathy. Subsequently, liver fibrosis, cirrhosis, or hepatocellular carcinoma may occur, all of them constituting an entity called Fontan-associated liver disease (FALD). Given that these complications convey poor
prognosis, the need for life-long hepatic surveillance is not in doubt. Many serum biomarkers and sophisticated imaging techniques have been proposed to avoid invasive liver biopsy in this cohort, but none proved to be a relevant surrogate of liver fibrosis seen in histopathological specimens. The surveillance models proposed to date require an extensive diagnostic work-up, which can be problematic, particularly in resource-depleted countries. Moreover, the question of combined heart–liver transplant is gaining more attention in the Fontan cohort. The aim of this study is to provide practical information on the pathophysiology of FALD and to propose a simplified framework for the routine assessment of liver status in Fontan patients that would be helpful in the decision-making process.
Collapse
Affiliation(s)
- Aleksandra Cieplucha
- First Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Werner Budts
- Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Marc Gewillig
- Division of Pediatric Cardiology, University Hospitals Leuven, Belgium
| | | |
Collapse
|
2
|
Van De Bruaene A, Claessen G, Salaets T, Gewillig M. Late Fontan Circulatory Failure. What Drives Systemic Venous Congestion and Low Cardiac Output in Adult Fontan Patients? Front Cardiovasc Med 2022; 9:825472. [PMID: 35360011 PMCID: PMC8964135 DOI: 10.3389/fcvm.2022.825472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
The Fontan circulation provides definite palliation for children born with a single anatomical or functional ventricle by diverting systemic venous blood directly to the pulmonary arteries, effectively rendering systemic venous return into portal vessels to the lung. Although this restores pulmonary blood flow and avoids the mixture of oxygenated and deoxygenated blood, it also results in elevated systemic venous pressures and low cardiac output. These are the two hallmarks of any Fontan circulation and the cause of Fontan circulatory failure later in life. We highlight the determinants of systemic venous return, its changed relationship with the pulmonary circulation, how it affects preload, and the changed role of the heart (myocardium, valves, and heart rate). By critically evaluating the components of the Fontan circulation, we hope to give some clues in how to optimize the Fontan circulation and avenues for future research.
Collapse
Affiliation(s)
- Alexander Van De Bruaene
- Division of Cardiology, Department of Cardiovascular Sciences, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- *Correspondence: Alexander Van De Bruaene
| | - Guido Claessen
- Division of Cardiology, Department of Cardiovascular Sciences, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Thomas Salaets
- Division of Pediatric Cardiology, Department of Cardiovascular Sciences, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marc Gewillig
- Division of Pediatric Cardiology, Department of Cardiovascular Sciences, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
van der Ven JPG, Bossers SSM, van den Bosch E, Dam N, Kuipers IM, van Iperen GG, Kroft LJM, Kapusta L, Ten Harkel ADJ, Helbing WA. Dobutamine stress testing for the evaluation of atrial and diastolic ventricular function in Fontan patients. Open Heart 2021; 8:openhrt-2020-001487. [PMID: 33712485 PMCID: PMC7959216 DOI: 10.1136/openhrt-2020-001487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022] Open
Abstract
Objective To assess the atrial and ventricular diastolic function response to dobutamine stress in Fontan patients, and to relate these measurements to exercise capacity and events during the follow-up. Methods We performed a secondary analysis of a cross-sectional multicentre study of Fontan patients with intra-atrial lateral tunnel (ILT) or extracardiac conduit (ECC) modification. Subjects underwent cardiac MRI during rest and low-dose dobutamine stress, and cardiopulmonary exercise testing. Atrial and diastolic ventricular function parameters were derived from volume-time curves. Medical records were abstracted for a composite end-point of death, listing for transplant, arrhythmia and reintervention. Spearman’s r correlation tests and Cox proportional hazards models were used to assess the relation between the dobutamine response for atrial and diastolic ventricular function and outcomes, including exercise capacity. Results We included 57 patients (26 ECC; 31 ILT) aged 12.8 (IQR (10.3–15.5)) years. During dobutamine stress atrial cyclic volume change increased (3.0 (0.4–5.9) mL/m2, p<0.001), as did early (1.9 (−1.6 to 3.6) mL/m2, p=0.001) and late emptying volume (2.2 (0.2–4.4) mL/m2, p<0.001). Ventricular early filling decreased (−1.6 (−5.7 to 0.7) mL/m2, p=0.046) and ventricular late filling increased (1.0 (−0.4 to 3.4) mL/m2, p<0.001) while stroke volume remained similar. Only for patients with the ECC modification, atrial early emptying volume increase correlated with peak oxygen uptake (ρ=0.66, p=0.002). No other parameter related to exercise capacity. During a median 7.1-year follow-up, 22 patients reached the composite endpoint. No parameter predicted events during the follow-up. Conclusions Dobutamine stress augmented atrial reservoir and pump function for Fontan patients. Atrial early emptying reserve related to exercise capacity in ECC patients. No other atrial or diastolic ventricular function parameter related to outcomes.
Collapse
Affiliation(s)
- Jelle P G van der Ven
- Pediatric Cardiology, Erasmus MC Sophia Children Hospital, Rotterdam, Zuid-Holland, The Netherlands.,Netherlands Heart Institute, Utrecht, Utrecht, The Netherlands
| | - Sjoerd S M Bossers
- Pediatric Cardiology, Erasmus MC Sophia Children Hospital, Rotterdam, Zuid-Holland, The Netherlands
| | - Eva van den Bosch
- Pediatric Cardiology, Erasmus MC Sophia Children Hospital, Rotterdam, Zuid-Holland, The Netherlands.,Netherlands Heart Institute, Utrecht, Utrecht, The Netherlands
| | - Niels Dam
- Pediatric Cardiology, Erasmus MC Sophia Children Hospital, Rotterdam, Zuid-Holland, The Netherlands
| | - Irene M Kuipers
- Department of Pediatrics, Division of Cardiology, Amsterdam UMC Locatie AMC, Amsterdam, North Holland, The Netherlands
| | - Gabrielle G van Iperen
- Department of Pediatrics, Division of Cardiology, UMC Utrecht, Utrecht, Utrecht, The Netherlands
| | - Lucia J M Kroft
- Department of Radiology, LUMC, Leiden, Zuid-Holland, The Netherlands
| | - Livia Kapusta
- Department of Pediatrics, Division of Cardiology, Radboudumc, Nijmegen, Gelderland, The Netherlands.,Pediatric Cardiology Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Arend D J Ten Harkel
- Department of Paediatric Cardiology, LUMC, Leiden, Zuid-Holland, The Netherlands
| | - Willem A Helbing
- Paediatric Cardiology and Radiology, Erasmus MC Sophia Children Hospital, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
4
|
Craven TP, Tsao CW, La Gerche A, Simonetti OP, Greenwood JP. Exercise cardiovascular magnetic resonance: development, current utility and future applications. J Cardiovasc Magn Reson 2020; 22:65. [PMID: 32907587 PMCID: PMC7488086 DOI: 10.1186/s12968-020-00652-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Stress cardiac imaging is the current first line investigation for coronary artery disease diagnosis and decision making and an adjunctive tool in a range of non-ischaemic cardiovascular diseases. Exercise cardiovascular magnetic resonance (Ex-CMR) has developed over the past 25 years to combine the superior image qualities of CMR with the preferred method of exercise stress. Presently, numerous exercise methods exist, from performing stress on an adjacent CMR compatible treadmill to in-scanner exercise, most commonly on a supine cycle ergometer. Cardiac conditions studied by Ex-CMR are broad, commonly investigating ischaemic heart disease and congenital heart disease but extending to pulmonary hypertension and diabetic heart disease. This review presents an in-depth assessment of the various Ex-CMR stress methods and the varied pulse sequence approaches, including those specially designed for Ex-CMR. Current and future developments in image acquisition are highlighted, and will likely lead to a much greater clinical use of Ex-CMR across a range of cardiovascular conditions.
Collapse
Affiliation(s)
- Thomas P Craven
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| | - Connie W Tsao
- Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, RW-453, Boston, MA, 02215, USA
| | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia
- National Centre for Sports Cardiology, St Vincent's Hospital, Fitzroy, Australia
| | | | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Respiratory signal and human stress: non-contact detection of stress with a low-cost depth sensing camera. INT J MACH LEARN CYB 2020. [DOI: 10.1007/s13042-020-01074-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wei ZA, Huddleston C, Trusty PM, Singh-Gryzbon S, Fogel MA, Veneziani A, Yoganathan AP. Analysis of Inlet Velocity Profiles in Numerical Assessment of Fontan Hemodynamics. Ann Biomed Eng 2019; 47:2258-2270. [PMID: 31236791 DOI: 10.1007/s10439-019-02307-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022]
Abstract
Computational fluid dynamic (CFD) simulations are widely utilized to assess Fontan hemodynamics that are related to long-term complications. No previous studies have systemically investigated the effects of using different inlet velocity profiles in Fontan simulations. This study implements real, patient-specific velocity profiles for numerical assessment of Fontan hemodynamics using CFD simulations. Four additional, artificial velocity profiles were used for comparison: (1) flat, (2) parabolic, (3) Womersley, and (4) parabolic with inlet extensions [to develop flow before entering the total cavopulmonary connection (TCPC)]. The differences arising from the five velocity profiles, as well as discrepancies between the real and each of the artificial velocity profiles, were quantified by examining clinically important metrics in TCPC hemodynamics: power loss (PL), viscous dissipation rate (VDR), hepatic flow distribution, and regions of low wall shear stress. Statistically significant differences were observed in PL and VDR between simulations using real and flat velocity profiles, but differences between those using real velocity profiles and the other three artificial profiles did not reach statistical significance. These conclusions suggest that the artificial velocity profiles (2)-(4) are acceptable surrogates for real velocity profiles in Fontan simulations, but parabolic profiles are recommended because of their low computational demands and prevalent applicability.
Collapse
Affiliation(s)
- Zhenglun Alan Wei
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Suite 232, Atlanta, GA, 30313-2412, USA
| | - Connor Huddleston
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Phillip M Trusty
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Suite 232, Atlanta, GA, 30313-2412, USA
| | - Shelly Singh-Gryzbon
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Suite 232, Atlanta, GA, 30313-2412, USA
| | - Mark A Fogel
- Department of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alessandro Veneziani
- Department of Mathematics, Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Ajit P Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Suite 232, Atlanta, GA, 30313-2412, USA.
| |
Collapse
|
7
|
Van De Bruaene A, Kutty S. The peculiar challenges of breathing and exercising with a Fontan circulation. Am J Physiol Heart Circ Physiol 2019; 316:H311-H313. [PMID: 30499717 DOI: 10.1152/ajpheart.00762.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Shelby Kutty
- Taussig Heart Center, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
8
|
Tree M, Wei ZA, Trusty PM, Raghav V, Fogel M, Maher K, Yoganathan A. Using a Novel In Vitro Fontan Model and Condition-Specific Real-Time MRI Data to Examine Hemodynamic Effects of Respiration and Exercise. Ann Biomed Eng 2018; 46:135-147. [PMID: 29067563 PMCID: PMC5756106 DOI: 10.1007/s10439-017-1943-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
Several studies exist modeling the Fontan connection to understand its hemodynamic ties to patient outcomes (Chopski in: Experimental and Computational Assessment of Mechanical Circulatory Assistance of a Patient-Specific Fontan Vessel Configuration. Dissertation, 2013; Khiabani et al. in J Biomech 45:2376-2381, 2012; Taylor and Figueroa in Annu Rev Biomed 11:109-134, 2009; Vukicevic et al. in ASAIO J 59:253-260, 2013). The most patient-accurate of these studies include flexible, patient-specific total cavopulmonary connections. This study improves Fontan hemodynamic modeling by validating Fontan model flexibility against a patient-specific bulk compliance value, and employing real-time phase contrast magnetic resonance flow data. The improved model was employed to acquire velocity field information under breath-held, free-breathing, and exercise conditions to investigate the effect of these conditions on clinically important Fontan hemodynamic metrics including power loss and viscous dissipation rate. The velocity data, obtained by stereoscopic particle image velocimetry, was visualized for qualitative three-dimensional flow field comparisons between the conditions. Key hemodynamic metrics were calculated from the velocity data and used to quantitatively compare the flow conditions. The data shows a multi-factorial and extremely patient-specific nature to Fontan hemodynamics.
Collapse
Affiliation(s)
- Michael Tree
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhenglun Alan Wei
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Institute of Computational Science and Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | - Phillip M Trusty
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vrishank Raghav
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark Fogel
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin Maher
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ajit Yoganathan
- Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
9
|
Puelz C, Acosta S, Rivière B, Penny DJ, Brady KM, Rusin CG. A computational study of the Fontan circulation with fenestration or hepatic vein exclusion. Comput Biol Med 2017; 89:405-418. [PMID: 28881280 DOI: 10.1016/j.compbiomed.2017.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
Fontan patients may undergo additional surgical modifications to mitigate complications like protein-losing enteropathy, liver cirrhosis, and other issues in their splanchnic circulation. Recent case reports show promise for several types of modifications, but the subtle effects of these surgeries on the circulation are not well understood. In this paper, we employ mathematical modeling of blood flow to systematically quantify the impact of these surgical changes on extracardiac Fontan hemodynamics. We investigate two modifications: (1) the fenestrated Fontan and (2) the Fontan with hepatic vein exclusion. Closed-loop hemodynamic models are used, which consist of one-dimensional networks for the major vessels and zero-dimensional models for the heart and organ beds. Numerical results suggest the hepatic vein exclusion has the greatest overall impact on the hemodynamics, followed by the largest sized fenestration. In particular, the hepatic vein exclusion drastically lowers portal venous pressure while the fenestration decreases pulmonary artery pressure. Both modifications increase flow to the intestines, a finding consistent with their utility in clinical practice for combating complications in the splanchnic circulation.
Collapse
Affiliation(s)
- Charles Puelz
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA.
| | - Sebastián Acosta
- Department of Pediatrics-Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Béatrice Rivière
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - Daniel J Penny
- Department of Pediatrics-Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Ken M Brady
- Department of Anesthesiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Craig G Rusin
- Department of Pediatrics-Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
10
|
Tree M, Wei ZA, Munz B, Maher K, Deshpande S, Slesnick T, Yoganathan A. A Method for In Vitro TCPC Compliance Verification. J Biomech Eng 2017; 139:2621590. [DOI: 10.1115/1.4036474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 01/29/2023]
Abstract
The Fontan procedure is a common palliative intervention for sufferers of single ventricle congenital heart defects that results in an anastomosis of the venous return to the pulmonary arteries called the total cavopulmonary connection (TCPC). Local TCPC and global Fontan circulation hemodynamics are studied with in vitro circulatory models because of hemodynamic ties to Fontan patient long-term complications. The majority of in vitro studies, to date, employ a rigid TCPC model. Recently, a few studies have incorporated flexible TCPC models, but provide no justification for the model material properties. The method set forth in this study successfully utilizes patient-specific flow and pressure data from phase contrast magnetic resonance images (PCMRI) (n = 1) and retrospective pulse-pressure data from an age-matched patient cohort (n = 10) to verify the compliance of an in vitro TCPC model. These data were analyzed, and the target compliance was determined as 1.36 ± 0.78 mL/mm Hg. A method of in vitro compliance testing and computational simulations was employed to determine the in vitro flexible TCPC model material properties and then use those material properties to estimate the wall thickness necessary to match the patient-specific target compliance. The resulting in vitro TCPC model compliance was 1.37 ± 0.1 mL/mm Hg—a value within 1% of the patient-specific compliance. The presented method is useful to verify in vitro model accuracy of patient-specific TCPC compliance and thus improve patient-specific hemodynamic modeling.
Collapse
Affiliation(s)
- Mike Tree
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Zhenglun Alan Wei
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Brady Munz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kevin Maher
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30332
| | - Shriprasad Deshpande
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30332
| | - Timothy Slesnick
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30332
| | - Ajit Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| |
Collapse
|