1
|
Ranjbarvaziri S, Zeng A, Wu I, Greer-Short A, Farshidfar F, Budan A, Xu E, Shenwai R, Kozubov M, Li C, Van Pell M, Grafton F, MacKay CE, Song X, Priest JR, Argast G, Mandegar MA, Hoey T, Yang J. Targeting HDAC6 to treat heart failure with preserved ejection fraction in mice. Nat Commun 2024; 15:1352. [PMID: 38409164 PMCID: PMC10897156 DOI: 10.1038/s41467-024-45440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) poses therapeutic challenges due to the limited treatment options. Building upon our previous research that demonstrates the efficacy of histone deacetylase 6 (HDAC6) inhibition in a genetic cardiomyopathy model, we investigate HDAC6's role in HFpEF due to their shared mechanisms of inflammation and metabolism. Here, we show that inhibiting HDAC6 with TYA-018 effectively reverses established heart failure and its associated symptoms in male HFpEF mouse models. Additionally, in male mice lacking Hdac6 gene, HFpEF progression is delayed and they are resistant to TYA-018's effects. The efficacy of TYA-018 is comparable to a sodium-glucose cotransporter 2 (SGLT2) inhibitor, and the combination shows enhanced effects. Mechanistically, TYA-018 restores gene expression related to hypertrophy, fibrosis, and mitochondrial energy production in HFpEF heart tissues. Furthermore, TYA-018 also inhibits activation of human cardiac fibroblasts and enhances mitochondrial respiratory capacity in cardiomyocytes. In this work, our findings show that HDAC6 impacts on heart pathophysiology and is a promising target for HFpEF treatment.
Collapse
Affiliation(s)
| | - Aliya Zeng
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Iris Wu
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Ana Budan
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Emma Xu
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Reva Shenwai
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | - Cindy Li
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | | | - Xiaomei Song
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | | | - Timothy Hoey
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Jin Yang
- Tenaya Therapeutics, South San Francisco, CA, USA.
| |
Collapse
|
2
|
Ribeiro V, Martins SG, Lopes AS, Thorsteinsdóttir S, Zilhão R, Carlos AR. NFIXing Cancer: The Role of NFIX in Oxidative Stress Response and Cell Fate. Int J Mol Sci 2023; 24:ijms24054293. [PMID: 36901722 PMCID: PMC10001739 DOI: 10.3390/ijms24054293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
NFIX, a member of the nuclear factor I (NFI) family of transcription factors, is known to be involved in muscle and central nervous system embryonic development. However, its expression in adults is limited. Similar to other developmental transcription factors, NFIX has been found to be altered in tumors, often promoting pro-tumorigenic functions, such as leading to proliferation, differentiation, and migration. However, some studies suggest that NFIX can also have a tumor suppressor role, indicating a complex and cancer-type dependent role of NFIX. This complexity may be linked to the multiple processes at play in regulating NFIX, which include transcriptional, post-transcriptional, and post-translational processes. Moreover, other features of NFIX, including its ability to interact with different NFI members to form homodimers or heterodimers, therefore allowing the transcription of different target genes, and its ability to sense oxidative stress, can also modulate its function. In this review, we examine different aspects of NFIX regulation, first in development and then in cancer, highlighting the important role of NFIX in oxidative stress and cell fate regulation in tumors. Moreover, we propose different mechanisms through which oxidative stress regulates NFIX transcription and function, underlining NFIX as a key factor for tumorigenesis.
Collapse
Affiliation(s)
- Vanessa Ribeiro
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Susana G. Martins
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Sofia Lopes
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Centro Hospitalar de Lisboa Ocidental (CHLO), 1449-005 Lisbon, Portugal
| | - Sólveig Thorsteinsdóttir
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Rita Zilhão
- cE3c-CHANGE, Department of Plant Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Rita Carlos
- cE3c-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
3
|
Liu H, Mo H, Yang C, Mei X, Song X, Lu W, Xiao H, Yan J, Wang X, Yan J, Luo T, Lin Y, Wen D, Chen G, Chen A, Ling Y. A novel function of ATF3 in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion. Free Radic Biol Med 2022; 189:122-135. [PMID: 35843476 DOI: 10.1016/j.freeradbiomed.2022.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Ferroptosis, a newly identified type of programmed cell death type, has been proven to contribute to the progression of myocardial ischemia/reperfusion (I/R) injury. However, little is known about ferroptosis regulation in I/R injury. OBJECTIVES We identified activating transcription factor 3 (ATF3) as a vital regulator of I/R induced ferroptosis and investigated the effects and potential mechanism of ATF3 in cardiac ferroptosis. METHODS In this study, the dynamic RNA-sequencing (RNA-seq) analysis were performed on mouse hearts exposed to different I/R schedules to identify that ATF3 represents an important modulatory molecule in myocardial I/R injury. Then knockout, rescue and overexpression methods were used in mice and neonatal mouse cells (NMCs) to illustrate the effect of ATF3 on myocardial I/R injury. Loss/gain of function techniques were used both in vivo and in vitro to explore the effects of ATF3 on ferroptosis in I/R injury. Furthermore, chromatin immunoprecipitation sequence (ChIP-seq) analysis was performed in the AC16 human cardiomyocyte cell line to investigate potential genes regulated by ATF3. RESULTS ATF3 expression reached highest level at early stage of reperfusion, knockout of ATF3 significantly aggravated I/R injury, which could be rescued by ATF3 re-expression. Knockout and the re-expression of ATF3 changed the transcription levels of multiple ferroptosis genes. In addition, results showed that overexpression of ATF3 inhibits cardiomyocyte ferroptosis triggered by erastin and RSL3. Lastly, ChIP-seq and dual luciferase activity analysis revealed ATF3 could bind to the transcription start site of Fanconi anaemia complementation group D2 (FANCD2) and increased the FANCD2 promoter activity. Furthermore, we first demonstrated that overexpression of FANCD2 exerts significant anti-ferroptosis and cardioprotective effect on AC16 cell H/R injury. CONCLUSION ATF3 inhibits cardiomyocyte ferroptotic death in I/R injury, which might be related with regulating FANCD2. Our study provides new insight into the molecular target for the therapy of myocardial I/R injury.
Collapse
Affiliation(s)
- Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Huaqiang Mo
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xiheng Mei
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Weizhe Lu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Hua Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Jianyun Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yuhao Lin
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Daojun Wen
- Department of Cardiology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Guiming Chen
- Shenzhen Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.
| | - Aihua Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China.
| | - Yuanna Ling
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China; Department of Nuclear Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China.
| |
Collapse
|