1
|
Mariano A, Bovio CL, Criscuolo V, Santoro F. Bioinspired micro- and nano-structured neural interfaces. NANOTECHNOLOGY 2022; 33:492501. [PMID: 35947922 DOI: 10.1088/1361-6528/ac8881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The development of a functional nervous system requires neurons to interact with and promptly respond to a wealth of biochemical, mechanical and topographical cues found in the neural extracellular matrix (ECM). Among these, ECM topographical cues have been found to strongly influence neuronal function and behavior. Here, we discuss how the blueprint of the architectural organization of the brain ECM has been tremendously useful as a source of inspiration to design biomimetic substrates to enhance neural interfaces and dictate neuronal behavior at the cell-material interface. In particular, we focus on different strategies to recapitulate cell-ECM and cell-cell interactions. In order to mimic cell-ECM interactions, we introduce roughness as a first approach to provide informative topographical biomimetic cues to neurons. We then examine 3D scaffolds and hydrogels, as softer 3D platforms for neural interfaces. Moreover, we will discuss how anisotropic features such as grooves and fibers, recapitulating both ECM fibrils and axonal tracts, may provide recognizable paths and tracks that neuron can follow as they develop and establish functional connections. Finally, we show how isotropic topographical cues, recapitulating shapes, and geometries of filopodia- and mushroom-like dendritic spines, have been instrumental to better reproduce neuron-neuron interactions for applications in bioelectronics and neural repair strategies. The high complexity of the brain architecture makes the quest for the fabrication of create more biologically relevant biomimetic architectures in continuous and fast development. Here, we discuss how recent advancements in two-photon polymerization and remotely reconfigurable dynamic interfaces are paving the way towards to a new class of smart biointerfaces forin vitroapplications spanning from neural tissue engineering as well as neural repair strategies.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
| | - Claudia Latte Bovio
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
- Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, I-80125, Naples, Italy
| | - Valeria Criscuolo
- Faculty of Electrical Engineering and IT, RWTH Aachen, D-52074, Germany
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, I-80125 Naples, Italy
- Faculty of Electrical Engineering and IT, RWTH Aachen, D-52074, Germany
- Institute for Biological Information Processing-Bioelectronics, Forschungszentrum Juelich, D-52428, Germany
| |
Collapse
|
2
|
Rapti G, Li C, Shan A, Lu Y, Shaham S. Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nat Neurosci 2017; 20:1350-1360. [PMID: 28846083 PMCID: PMC5614858 DOI: 10.1038/nn.4630] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a Chimaerin (CHIN-1)- Furin (KPC-1) double-mutant that severely disrupts assembly. CHIN-1 and KPC-1 function noncanonically, in glia and pioneer neurons, for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo (CELSR) in follower-axon navigation. Taken together, our studies reveal previously undescribed glial roles in pioneer-axon guidance, suggesting conserved principles of brain assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Chang Li
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Alan Shan
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
3
|
Tavares L, Pereira E, Correia A, Santos MA, Amaral N, Martins T, Relvas JB, Pereira PS. Drosophila PS2 and PS3 integrins play distinct roles in retinal photoreceptors-glia interactions. Glia 2015; 63:1155-65. [PMID: 25731761 DOI: 10.1002/glia.22806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/28/2015] [Indexed: 11/09/2022]
Abstract
Cellular migration and differentiation are important developmental processes that require dynamic cellular adhesion. Integrins are heterodimeric transmembrane receptors that play key roles in adhesion plasticity. Here, we explore the developing visual system of Drosophila to study the roles of integrin heterodimers in glia development. Our data show that αPS2 is essential for retinal glia migration from the brain into the eye disc and that glial cells have a role in the maintenance of the fenestrated membrane (Laminin-rich ECM layer) in the disc. Interestingly, the absence of glial cells in the eye disc did not affect the targeting of retinal axons to the optic stalk. In contrast, αPS3 is not required for retinal glia migration, but together with Talin, it functions in glial cells to allow photoreceptor axons to target the optic stalk. Thus, we present evidence that αPS2 and αPS3 integrin have different and specific functions in the development of retinal glia.
Collapse
Affiliation(s)
- Lígia Tavares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Substrate topography determines neuronal polarization and growth in vitro. PLoS One 2013; 8:e66170. [PMID: 23785482 PMCID: PMC3681759 DOI: 10.1371/journal.pone.0066170] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
The establishment of neuronal connectivity depends on the correct initial polarization of the young neurons. In vivo, developing neurons sense a multitude of inputs and a great number of molecules are described that affect their outgrowth. In vitro, many studies have shown the possibility to influence neuronal morphology and growth by biophysical, i.e. topographic, signaling. In this work we have taken this approach one step further and investigated the impact of substrate topography in the very early differentiation stages of developing neurons, i.e. when the cell is still at the round stage and when the first neurite is forming. For this purpose we fabricated micron sized pillar structures with highly reproducible feature sizes, and analyzed neurons on the interface of flat and topographic surfaces. We found that topographic signaling was able to attract the polarization markers of mouse embryonic neurons -N-cadherin, Golgi-centrosome complex and the first bud were oriented towards topographic stimuli. Consecutively, the axon was also preferentially extending along the pillars. These events seemed to occur regardless of pillar dimensions in the range we examined. However, we found differences in neurite length that depended on pillar dimensions. This study is one of the first to describe in detail the very early response of hippocampal neurons to topographic stimuli.
Collapse
|
5
|
Wilson CH, Hartline DK. Novel organization and development of copepod myelin. i. ontogeny. J Comp Neurol 2011; 519:3259-80. [DOI: 10.1002/cne.22695] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Abstract
In the body, cells encounter a complex milieu of signals, including topographical cues, in the form of the physical features of their surrounding environment. Imposed topography can affect cells on surfaces by promoting adhesion, spreading, alignment, morphological changes, and changes in gene expression. Neural response to topography is complex, and it depends on the dimensions and shapes of physical features. Looking toward repair of nerve injuries, strategies are being explored to engineer guidance conduits with precise surface topographies. How neurons and other cell types sense and interpret topography remains to be fully elucidated. Studies reviewed here include those of topography on cellular organization and function as well as potential cellular mechanisms of response.
Collapse
Affiliation(s)
- Diane Hoffman-Kim
- Center for Biomedical Engineering and Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
7
|
Abstract
Neurons and glial cells show mutual interdependence in many developmental and functional aspects of their biology. To establish their intricate relationships with neurons, glial cells must migrate over what are often long distances. In the CNS glial cells generally migrate as single cells, whereas PNS glial cells tend to migrate as cohorts of cells. How are their journeys initiated and directed, and what stops the migratory phase once glial cells are aligned with their neuronal counterparts? A deeper understanding of glial migration and the underlying neuron-glia interactions may contribute to the development of therapeutics for demyelinating diseases or glial tumours.
Collapse
|
8
|
Stork T, Thomas S, Rodrigues F, Silies M, Naffin E, Wenderdel S, Klämbt C. Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper. Development 2009; 136:1251-61. [PMID: 19261699 DOI: 10.1242/dev.032847] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ensheathment of axons by glial membranes is a key feature of complex nervous systems ensuring the separation of single axons or axonal fascicles. Nevertheless, the molecules that mediate the recognition and specific adhesion of glial and axonal membranes are largely unknown. We use the Drosophila midline of the embryonic central nervous system as a model to investigate these neuron glia interactions. During development, the midline glial cells acquire close contact to commissural axons and eventually extend processes into the commissures to wrap individual axon fascicles. Here, we show that this wrapping of axons depends on the interaction of the neuronal transmembrane protein Neurexin IV with the glial Ig-domain protein Wrapper. Although Neurexin IV has been previously described to be an essential component of epithelial septate junctions (SJ), we show that its function in mediating glial wrapping at the CNS midline is independent of SJ formation. Moreover, differential splicing generates two different Neurexin IV isoforms. One mRNA is enriched in septate junction-forming tissues, whereas the other mRNA is expressed by neurons and recruited to the midline by Wrapper. Although both Neurexin IV isoforms are able to bind Wrapper, the neuronal isoform has a higher affinity for Wrapper. We conclude that Neurexin IV can mediate different adhesive cell-cell contacts depending on the isoforms expressed and the context of its interaction partners.
Collapse
Affiliation(s)
- Tobias Stork
- Institut für Neurobiologie, Universität Münster, Badestrasse 9, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
McKay JP, Nightingale B, Pollock JA. Helmsman is expressed in both trachea and photoreceptor development: partial inactivation alters tracheal morphology and visually guided behavior. J Neurogenet 2008; 22:1. [PMID: 18428030 DOI: 10.1080/01677060801893276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have identified helmsman (hlm), which is expressed in the fruit fly photoreceptor cells during neural network development. Hlm is also expressed in the elongating cells of the embryonic trachea. Both photoreceptor neurons and embryonic trachea cells elongate in precise, targeted growth for cell-to-cell specific recognition. Expression of antisense hlm-interfering RNA during embryogenesis arrests elongation of the developing tracheal cells and blocks maturation. Expression of hlm-interfering RNA during visual system formation results in reduced visual acuity and poor performance in optomotor response, indicative of abnormal neural network development. Hlm is a unique cell surface protein with complement-like protein interaction motifs. We have also cloned hlm from Lucilia cuprina (Australian blowfly), which is approximately 100 million years divergent from Drosophila, and find a remarkable 90% protein identity over the entire 558 amino acid protein. Analysis of the hlm sequence found in other species indicates a significant evolutionary pressure to maintain the hlm protein sequence. Our interpretation is that hlm is involved in cell maturation in both the elongating trachea and elongating photoreceptor cells. Cell adhesion and cell signaling, which are known to use immunoglobulin-like cell adhesion molecules, may use molecular systems analogous to complement to create protein complexes to regulate growth.
Collapse
Affiliation(s)
- James P McKay
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
10
|
The C. elegans M3 neuron guides the growth cone of its sister cell M2 via the Krüppel-like zinc finger protein MNM-2. Dev Biol 2007; 311:185-99. [PMID: 17916347 DOI: 10.1016/j.ydbio.2007.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/14/2007] [Accepted: 08/20/2007] [Indexed: 11/21/2022]
Abstract
The invariant cell-cell interactions occurring during C. elegans development offer unique opportunities to discover how growing axons may receive guidance cues from neighboring cells. The mnm-2 mutant was isolated because of its defects in the axon trajectory of the bilateral M2 pharyngeal neurons in C. elegans. We found that mnm-2 enhances the effects of many growth cone guidance mutations on these axons, suggesting that it performs a novel function during axon guidance. We cloned mnm-2 and found that it encodes a protein with three C2H2 zinc finger domains related to the Krüppel-like Factor protein family. mnm-2 is expressed only transiently in the M2 neuron, but exhibits a sustained expression in its sister cell, the M3 neuron. Strikingly, the expression of mnm-2 is not sustained in the M3 cell of the mnm-2 mutant, indicating that this gene positively regulates itself in that cell. Electropharyngeograms also indicate that the M3 cell is functionally impaired in the mnm-2 mutant. We used an M3-specific promoter to show that the M2 axon defect can be rescued by expression of mnm-2 in its sister cell M3. The same promoter was used to express the pro-apoptotic gene egl-1 to kill the M3 cell, which resulted in an M2 axon guidance defect similar to that found in the mnm-2 mutant. Our results suggest an M2 axon guidance model in which the M3 cell provides an important signal to the growth cone of its sister M2 and that this signal and the proper differentiation of M3 both depend on mnm-2 expression. This mechanism of axon guidance regulation allows fine-tuning of trajectories between sister cells.
Collapse
|
11
|
Sánchez-Soriano N, Tear G, Whitington P, Prokop A. Drosophila as a genetic and cellular model for studies on axonal growth. Neural Dev 2007; 2:9. [PMID: 17475018 PMCID: PMC1876224 DOI: 10.1186/1749-8104-2-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 05/02/2007] [Indexed: 11/10/2022] Open
Abstract
One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Guy Tear
- MRC Centre for Developmental Neurobiology, Guy's Campus, King's College, London, UK
| | - Paul Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | - Andreas Prokop
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Sun X, Morozova T, Sonnenfeld M. Glial and neuronal functions of the Drosophila homolog of the human SWI/SNF gene ATR-X (DATR-X) and the jing zinc-finger gene specify the lateral positioning of longitudinal glia and axons. Genetics 2006; 173:1397-415. [PMID: 16648585 PMCID: PMC1526706 DOI: 10.1534/genetics.106.057893] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal-glial communication is essential for constructing the orthogonal axon scaffold in the developing Drosophila central nervous system (CNS). Longitudinal glia (LG) guide extending commissural and longitudinal axons while pioneer and commissural neurons maintain glial survival and positioning. However, the transcriptional regulatory mechanisms controlling these processes are not known. Previous studies showed that the midline function of the jing C2H2-type zinc-finger transcription factor was only partially required for axon scaffold formation in the Drosophila CNS. We therefore screened for gain-of-function enhancers of jing gain of function in the eye and identified the Drosophila homolog of the disease gene of human alpha-thalassemia/mental retardation X-linked (ATR-X) as well as other genes with potential roles in gene expression, translation, synaptic transmission, and cell cycle. jing and DATR-X reporter genes are expressed in both CNS neurons and glia, including the LG. Coexpression of jing and DATR-X in embryonic neurons synergistically affects longitudinal connective formation. During embryogenesis, jing and DATR-X have autonomous and nonautonomous roles in the lateral positioning of LG, neurons, and longitudinal axons as shown by cell-specific knockdown of gene expression. jing and DATR-X are also required autonomously for glial survival. jing and DATR-X mutations show synergistic effects during longitudinal axon formation suggesting that they are functionally related. These observations support a model in which downstream gene expression controlled by a potential DATR-X-Jing complex facilitates cellular positioning and axon guidance, ultimately allowing for proper connectivity in the developing Drosophila CNS.
Collapse
Affiliation(s)
- Xuetao Sun
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | |
Collapse
|
13
|
Abstract
Glial cells have diverse functions that are necessary for the proper development and function of complex nervous systems. Various insects, primarily the fruit fly Drosophila melanogaster and the moth Manduca sexta, have provided useful models of glial function during development. The present review will outline evidence of glial contributions to embryonic, visual, olfactory and wing development. We will also outline evidence for non-developmental functions of insect glia including blood-brain-barrier formation, homeostatic functions and potential contributions to synaptic function. Where relevant, we will also point out similarities between the functions of insect glia and their vertebrate counterparts.
Collapse
Affiliation(s)
- Robert J Parker
- Department of Zoology, University of British Columbia, 6270 University Blvd. Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
14
|
Abstract
In all complex organisms, glial cells are pivotal for neuronal development and function. Insects are characterized by having only a small number of these cells, which nevertheless display a remarkable molecular diversity. An intricate relationship between neurons and glia is initially required for glial migration and during axonal patterning. Recent data suggest that in organisms such as Drosophila, a prime role of glial cells lies in setting boundaries to guide and constrain axonal growth.
Collapse
Affiliation(s)
- Gundula Edenfeld
- Institut für Neurobiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | | | | |
Collapse
|
15
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
16
|
Parker RJ, Auld VJ. Signaling in glial development: differentiation migration and axon guidance. Biochem Cell Biol 2004; 82:694-707. [PMID: 15674437 DOI: 10.1139/o04-119] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glial cells have diverse functions that are necessary for the proper development and function of complex nervous systems. During development, a variety of reciprocal signaling interactions between glia and neurons dictate all parts of nervous system development. Glia may provide attractive, repulsive, or contact-mediated cues to steer neuronal growth cones and ensure that neurons find their appropriate synaptic targets. In fact, both neurons and glia may act as migrational substrates for one another at different times during development. Also, the exchange of trophic signals between glia and neurons is essential for the proper bundling, fasciculation, and ensheathement of axons as well as the differentiation and survival of both cell types. The growing number of links between glial malfunction and human disease has generated great interest in glial biology. Because of its relative simplicity and the many molecular genetic tools available, Drosophila is an excellent model organism for studying glial development. This review will outline the roles of glia and their interactions with neurons in the embryonic nervous system of the fly.Key words: glia, axon guidance, migration, EGF receptor.
Collapse
Affiliation(s)
- Robert J Parker
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
17
|
de Jong S, Cavallo JA, Rios CD, Dworak HA, Sink H. Target recognition and synaptogenesis by motor axons: responses to the sidestep protein. Int J Dev Neurosci 2004; 23:397-410. [PMID: 15927764 DOI: 10.1016/j.ijdevneu.2004.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 10/08/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022] Open
Abstract
Sidestep (Side) is a pivotal molecular player in embryonic motor axon pathfinding. But questions about its functional repertoire remain: (i) can Side permanently overturn targeting preferences? (ii) does it promote synaptogenesis, and (iii) can Side facilitate synaptic stabilization? To address these questions, Side was temporally and spatially misexpressed and the visible consequences for neuromuscular junction morphology were assessed. When Side was misexpressed either broadly or selectively in muscles during targeting in a wildtype background motor axon targeting preferences were permanently overturned. However the misexpression of Side in all muscles post-targeting neither changed synapse morphology, nor compensated for a lack of the synapse-stabilizing protein Fasciclin II (FasII). Rather Side appears to be dependent on FasII, instead of on intrinsic ability, for sustaining targeting changes. We propose that Side helps to bring motor axons to their correct muscle targets and promotes synaptogenesis, then FasII serves to stabilize the synaptic contacts.
Collapse
Affiliation(s)
- Samanta de Jong
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|