1
|
Cheng L, Shi C, Nakamura S, Esaki N, Ichiba Y, Tanaka M, Sakai K, Matsui T. Adiponectin-Receptor Agonistic Dipeptide Tyr-Pro Stimulates the Acetylcholine Nervous System in NE-4C Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7121-7129. [PMID: 38511275 DOI: 10.1021/acs.jafc.3c07821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The dipeptide Tyr-Pro has physiological potential for intact transportability into the brain parenchyma, prevention of cognitive impairment, and an adiponectin receptor 1 (AdipoR1) agonistic effect. The present study aimed to understand the effect of Tyr-Pro on the acetylcholine (ACh) nervous system and its underlying mechanism in NE-4C nerve cells. Concentration-dependent ACh production was induced by stimulation with Tyr-Pro and AdipoRon (an AdipoR1 agonist), along with the expression of AdipoR1 and choline acetyltransferase (ChAT) in NE-4C cells. By knocking down AdipoR1 in the cells, Tyr-Pro promoted ChAT expression, along with the activations of AMPK and ERK 1/2. Tyr-Pro did not alter acetylcholinesterase or ACh receptors, indicating that the dipeptide might operate as an ACh accelerator in nerve cells. This study provides the first evidence that the AdipoR1 agonistic Tyr-Pro is a promising dipeptide responsible for the stimulation of the ACh nervous system by AdipoR1-induced ChAT activation.
Collapse
Affiliation(s)
- Lihong Cheng
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Caiyue Shi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Saya Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nana Esaki
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuka Ichiba
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenta Sakai
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Oh HN, Park S, Lee S, Chun HS, Shin WH, Kim WK. In vitro neurotoxicity evaluation of biocidal disinfectants in a human neuron-astrocyte co-culture model. Toxicol In Vitro 2022; 84:105449. [PMID: 35872077 DOI: 10.1016/j.tiv.2022.105449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Biocidal disinfectants (BDs) that kill microorganisms or pathogens are widely used in hospitals and other healthcare fields. Recently, the use of BDs has rapidly increased as personal hygiene has become more apparent owing to the pandemic, namely the coronavirus outbreak. Despite frequent exposure to BDs, toxicity data of their potential neurotoxicity (NT) are lacking. In this study, a human-derived SH-SY5Y/astrocyte was used as a co-culture model to evaluate the chemical effects of BDs. Automated high-content screening was used to evaluate the potential NT of BDs through neurite growth analysis. A set of 12 BD substances classified from previous reports were tested. Our study confirms the potential NT of benzalkonium chloride (BKC) and provides the first evidence of the potential NT of poly(hexamethylenebicyanoguanide-hexamethylenediamine) hydrochloride (PHMB). BKC and PHMB showed significant NT at concentrations without cytotoxicity. This test system for analyzing the potential NT of BDs may be useful in early screening studies for NT prior to starting in vivo studies.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seungmin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Hang-Suk Chun
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Auzmendi-Iriarte J, Matheu A. Impact of Chaperone-Mediated Autophagy in Brain Aging: Neurodegenerative Diseases and Glioblastoma. Front Aging Neurosci 2021; 12:630743. [PMID: 33633561 PMCID: PMC7901968 DOI: 10.3389/fnagi.2020.630743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Brain aging is characterized by a time-dependent decline of tissue integrity and function, and it is a major risk for neurodegenerative diseases and brain cancer. Chaperone-mediated autophagy (CMA) is a selective form of autophagy specialized in protein degradation, which is based on the individual translocation of a cargo protein through the lysosomal membrane. Regulation of processes such as proteostasis, cellular energetics, or immune system activity has been associated with CMA, indicating its pivotal role in tissue homeostasis. Since first studies associating Parkinson’s disease (PD) to CMA dysfunction, increasing evidence points out that CMA is altered in both physiological and pathological brain aging. In this review article, we summarize the current knowledge regarding the impact of CMA during aging in brain physiopathology, highlighting the role of CMA in neurodegenerative diseases and glioblastoma, the most common and aggressive brain tumor in adults.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation, Bilbao, Spain
| |
Collapse
|
4
|
Zhang B, Li Q, Jia S, Li F, Li Q, Li J. LincRNA-EPS in biomimetic vesicles targeting cerebral infarction promotes inflammatory resolution and neurogenesis. J Transl Med 2020; 18:110. [PMID: 32122362 PMCID: PMC7052981 DOI: 10.1186/s12967-020-02278-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Inflammatory damage following stroke aggravates brain damage, resulting in long-term neurological sequelae. The purpose of this study was to identify ways to reduce inflammatory reactions and to accelerate neuron regeneration after cerebral apoplexy. METHODS We formulated a biomimetic vesicle, the leukosome, constituted by liposome, artificial long intergenic noncoding RNA (lincRNA)-EPS, and membrane proteins derived from macrophages and their physical-chemical characteristics were evaluated. Migration distance and cytotoxic levels were measured to determine the effect of lncEPS-leukosomes on lipopolysaccharide-activated microglia. An in vivo transient middle cerebral artery occlusion/reperfusion (tMCAO) model was established in mice, which were treated with lncEPS-leukosomes. Vesicle seepage, infiltration of inflammatory cells, cytotoxic levels in the cerebrospinal fluid, and neural stem cell (NSC) density were measured. RESULTS Biomimetic vesicles with a homogeneous size increased lincRNA-EPS levels in activated microglia by 77.9%. In vitro studies showed that lincRNA-EPS inhibited the migration and cytotoxic levels of activated microglia by 63.2% and 43.6%, respectively, which promoted NSC proliferation and anti-apoptotic ability. In vivo data showed that leukosomes targeted to inflamed sites and lncEPS-leukosomes decreased the infiltration of inflammatory cells and cytotoxic levels by 81.3% and 48.7%, respectively. In addition, lncEPS-leukosomes improved neuron density in the ischemic core and boundary zone after tMCAO. CONCLUSIONS The biomimetic vesicles formulated in this study targeted inflammatory cells and accelerated neuron regeneration by promoting inflammation resolution. This study may provide a promising treatment approach for accelerated neuron regeneration after cerebral apoplexy.
Collapse
Affiliation(s)
- Benping Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Qian Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Feng Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Qingsong Li
- Departments of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Jiebing Li
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150086, Heilongjiang, People's Republic of China.
| |
Collapse
|
5
|
|
6
|
Chen KS, Bridges CR, Lynton Z, Lim JWC, Stringer BW, Rajagopal R, Wong KT, Ganesan D, Ariffin H, Day BW, Richards LJ, Bunt J. Transcription factors NFIA and NFIB induce cellular differentiation in high-grade astrocytoma. J Neurooncol 2019; 146:41-53. [PMID: 31760595 DOI: 10.1007/s11060-019-03352-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Malignant astrocytomas are composed of heterogeneous cell populations. Compared to grade IV glioblastoma, low-grade astrocytomas have more differentiated cells and are associated with a better prognosis. Therefore, inducing cellular differentiation to alter the behaviour of high-grade astrocytomas may serve as a therapeutic strategy. The nuclear factor one (NFI) transcription factors are essential for normal astrocytic differentiation. Here, we investigate whether family members NFIA and NFIB act as effectors of cellular differentiation in glioblastoma. METHODS We analysed expression of NFIA and NFIB in mRNA expression data of high-grade astrocytoma and with immunofluorescence co-staining. Furthermore, we induced NFI expression in patient-derived subcutaneous glioblastoma xenografts via in vivo electroporation. RESULTS The expression of NFIA and NFIB is reduced in glioblastoma as compared to lower grade astrocytomas. At a cellular level, their expression is associated with differentiated and mature astrocyte-like tumour cells. In vivo analyses consistently demonstrate that expression of either NFIA or NFIB is sufficient to promote tumour cell differentiation in glioblastoma xenografts. CONCLUSION Our findings indicate that both NFIA and NFIB may have an endogenous pro-differentiative function in astrocytomas, similar to their role in normal astrocyte differentiation. Overall, our study establishes a basis for further investigation of targeting NFI-mediated differentiation as a potential differentiation therapy.
Collapse
Affiliation(s)
- Kok-Siong Chen
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Caitlin R Bridges
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zorana Lynton
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
- The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jonathan W C Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Brett W Stringer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Revathi Rajagopal
- Department of Paediatrics, University of Malaya, 59100, Kuala Lumpur, Malaysia
| | - Kum-Thong Wong
- Department of Pathology, University of Malaya, 59100, Kuala Lumpur, Malaysia
| | - Dharmendra Ganesan
- Division of Neurosurgery, University of Malaya Medical Centre, 59100, Kuala Lumpur, Malaysia
| | - Hany Ariffin
- Department of Paediatrics, University of Malaya, 59100, Kuala Lumpur, Malaysia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, The Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Rd Brisbane, Brisbane, QLD, 4072, Australia.
| | - Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Rd Brisbane, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Hou L, Ding C, Chen Z, Liu Y, Shi H, Zou C, Zhang H, Lu Z, Zheng D. Serum Retinoic Acid Level and The Risk of Poststroke Cognitive Impairment in Ischemic Stroke Patients. J Stroke Cerebrovasc Dis 2019; 28:104352. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 12/01/2022] Open
|
8
|
Rapid Enkephalin Delivery Using Exosomes to Promote Neurons Recovery in Ischemic Stroke by Inhibiting Neuronal p53/Caspase-3. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4273290. [PMID: 30949500 PMCID: PMC6425296 DOI: 10.1155/2019/4273290] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/01/2019] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
No pharmacological treatment is currently available to protect brain from neuronal damage after ischemic stroke. Recent studies found that enkephalin may play an important role in neuron regeneration. We assembled a homogeneous size vesicle constituted by transferrin, exosomes, and enkephalin. Immunofluorescence assay showed that transferrin was combined with the exosomes and enkephalin was packaged into the vesicle; thus this complex was called tar-exo-enkephalin. In vitro studies were performed using rat primary hippocampal neurons and the results showed that enkephalin decreased p53 and caspase-3 levels to 47.6% and 67.2%, respectively, compared to neurons treated with glutamate, thus inhibiting neuron apoptosis caused by glutamate. An in vivo experiment in rats was also carried out using a transient middle cerebral artery occlusion (tMCAO)/reperfusion model and tar-exo-enkephalin treatment was performed after tMCAO. The results showed that tar-exo-enkephalin crossed the blood brain barrier (BBB) and decreased the levels of LDH, p53, caspase-3, and NO by 41.9, 52.6, 45.5, and 57.9% compared to the tMCAO rats, respectively. In addition, tar-exo-enkephalin improved brain neuron density and neurological score after tMCAO. These findings suggest that the use of exogenous enkephalin might promote neurological recovery after stroke.
Collapse
|
9
|
Zhao H, Zuo X, Ren L, Li Y, Tai H, Du J, Xie X, Zhang X, Han Y, Wu Y, Yang C, Xu Z, Hong H, Li S, Su B. Combined use of bFGF/EGF and all-trans-retinoic acid cooperatively promotes neuronal differentiation and neurite outgrowth in neural stem cells. Neurosci Lett 2018; 690:61-68. [PMID: 30300683 DOI: 10.1016/j.neulet.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023]
Abstract
Neural stem cells (NSCs) as sources of new neurons in brain injuries or diseases are required to not only elicit neurons for neuronal repair, but also to enhance neurite outgrowth for neuronal network reestablishment. Various trophic or chemotropic factors have been shown to cooperatively improve NSC neurogenesis. However, effects of combined treatment of all-trans-retinoic acid (RA) with GF (Basic fibroblast growth factor and epidermal growth factor, bFGF/EGF) on neurogenesis of NSCs are poorly understood. To address this question, NSCs were isolated from the forebrains of embryonic mice, and treated with GF and RA either alone or in combination for differentiation in vitro. Neurons and astrocytes differentiated from NSCs were stained for MAP2 and GFAP separately by immunofluorescence. The results indicated that GF displayed superior efficacy in promoting neuronal differentiation, and RA showed better efficacy in advancing neurite outgrowth by increasing both neurite length and number. In addition, higher differentiation efficiency of neurons to astrocytes in RA or GF, or both acted at the early stage. However, more importantly, compared with RA alone, GF and RA in combination enhanced neuronal differentiation. Moreover, the combined use of GF and RA increased the length and number of neurites compared with GF, as well as the relative expression level of Smurf1. In addition, astrocytes induced by GF, RA, or both exhibited a radial glia-like morphology with long processes differing from serum effects, which might in part attribute to the total numbers of neurons. These findings for the first time unveil the roles of combined use of GF and RA on the neurogenesis of NSCs, suggesting that the use of this combination could be a comprehensive strategy for the functional repair of the nervous system through promoting neuronal differentiation, and advancing neurite outgrowth.
Collapse
Affiliation(s)
- Haixia Zhao
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xuan Zuo
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Liyi Ren
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yunzhu Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Haoran Tai
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jipei Du
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xuemin Xie
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Xiaoqing Zhang
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yuping Han
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yongmei Wu
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Chan Yang
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Zhen Xu
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Huarong Hong
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Shurong Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Chengdu Medical College, Chengdu 610500, Sichuan, China.
| | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610500, Sichuan, China; Chengdu Medical College Infertility Hospital, Chengdu 610000, Sichuan, China.
| |
Collapse
|
10
|
Jády AG, Nagy ÁM, Kőhidi T, Ferenczi S, Tretter L, Madarász E. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes. Stem Cells Dev 2016; 25:995-1005. [PMID: 27116891 PMCID: PMC4931359 DOI: 10.1089/scd.2015.0388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H(+) production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In "starving" neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons.
Collapse
Affiliation(s)
- Attila Gy Jády
- 1 Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine of Hungarian Academy of Sciences , Budapest, Hungary .,2 Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University , Budapest, Hungary
| | - Ádám M Nagy
- 3 Department of Medical Biochemistry, Semmelweis University , Budapest, Hungary
| | - Tímea Kőhidi
- 1 Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine of Hungarian Academy of Sciences , Budapest, Hungary
| | - Szilamér Ferenczi
- 4 Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine of Hungarian Academy of Sciences , Budapest, Hungary
| | - László Tretter
- 3 Department of Medical Biochemistry, Semmelweis University , Budapest, Hungary
| | - Emília Madarász
- 1 Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine of Hungarian Academy of Sciences , Budapest, Hungary
| |
Collapse
|
11
|
Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and Neuropsychiatric Disorders. Neuromolecular Med 2015; 17:404-22. [PMID: 26374113 DOI: 10.1007/s12017-015-8369-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/22/2015] [Indexed: 12/31/2022]
Abstract
The adult central nervous system is commonly known to have a very limited regenerative capacity. The presence of functional stem cells in the brain can therefore be seen as a paradox, since in other organs these are known to counterbalance cell loss derived from pathological conditions. This fact has therefore raised the possibility to stimulate neural stem cell differentiation and proliferation or survival by either stem cell replacement therapy or direct administration of neurotrophic factors or other proneurogenic molecules, which in turn has also originated regenerative medicine for the treatment of otherwise incurable neurodegenerative and neuropsychiatric disorders that take a huge toll on society. This may be facilitated by the fact that many of these disorders converge on similar pathophysiological pathways: excitotoxicity, oxidative stress, neuroinflammation, mitochondrial failure, excessive intracellular calcium and apoptosis. This review will therefore focus on the most promising achievements in promoting neuroprotection and neuroregeneration reported to date.
Collapse
|
12
|
Eftekhar-Vaghefi SH, Zahmatkesh L, Salehinejad P, Totonchi S, Shams-Ara A. Evaluation of neurogenic potential of human umbilical cord mesenchymal cells; a time- and concentration-dependent manner. IRANIAN BIOMEDICAL JOURNAL 2015; 19:82-90. [PMID: 25864812 PMCID: PMC4412918 DOI: 10.6091/ibj.1452.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: Retinoic acid as one of the most important regulators for cell differentiation was examined in this study for differentiation of human umbilical mesenchymal cells (hUCM). Methods: After isolation, hUCM were evaluated for mesenchymal stem cell properties by flow cytometry and alkaline phosphatase assay. Also, doubling time of the cells and their differentiation potential into adipogenic and osteogenic cells were tested. hUCM were then cultured with different concentrations of retinoic acid, and on days 1, 7, and 12, the percentage of differentiated cells was determined by immunostaining for nestin, anti-microtubule associated protein 2 (MAP2), glutamic acid decarboxylase (GAD), and gamma-aminobutyric acid (GABA) markers. Results: The isolated cells were negative for the hematopoietic markers and positive for the mesenchymal markers. They showed the population doubling time 60 ± 3 hours and differentiated into osteogenic and adipogenic cells. A descending trend in nestin and an ascending trend in MAP2, GAD, and GABA expression were observed from the first day until the last day between different concentrations of retinoic acid. Conclusion: hUCM cells may have the potential to differentiate into neural cells in the presence of different incubation period and concentration of retinoic acid.
Collapse
Affiliation(s)
| | - Leila Zahmatkesh
- Dept. of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman , Iran
| | - Parvin Salehinejad
- Dept. of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman , Iran
| | - Shahin Totonchi
- School of Medicine,
Yazd University of Medical Sciences, Yazd, Iran
| | - Ali Shams-Ara
- Dept. of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman , Iran
| |
Collapse
|
13
|
In vitro characteristics of Valproic acid and all-trans-retinoic acid and their combined use in promoting neuronal differentiation while suppressing astrocytic differentiation in neural stem cells. Brain Res 2015; 1596:31-47. [DOI: 10.1016/j.brainres.2014.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/18/2014] [Accepted: 11/13/2014] [Indexed: 01/19/2023]
|
14
|
Neural differentiation of human umbilical cord matrix-derived mesenchymal cells under special culture conditions. Cytotechnology 2014; 67:449-60. [PMID: 25344875 DOI: 10.1007/s10616-014-9703-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/12/2014] [Indexed: 01/15/2023] Open
Abstract
Many neural disorders are characterized by the loss of one or several types of neural cells. Human umbilical cord-derived mesenchymal cells (hUCMs) are capable of differentiating into neuron, astroglia-like and oligodendrocyte cell types. However, a reliable means of inducing the selective differentiation of hUCMs into neural cells in vitro has not yet been established. For induction of neural differentiation, hUCMs were seeded onto sterile glass slides and six various cocktails using a base medium (DMEM/LG) supplemented with 10 % FBS, retinoic acid (RA), dimethyl sulfoxide (DMSO), epidermal growth factor (EGF) and fibroblast growth factor (FGF) were used to compare their effect on neuronal, astrocyte and oligodandrocyte differentiation. The hUCMs were positive for mesenchymal markers, while they were negative for hematopoietic markers. Differentiation to adipogenic and osteogenic lineage was detected in these cells. Our data revealed that the cocktail consisting of DMEM/LG, FBS, RA, FGF, and EGF (DF/R/Fg/E group) induced hUCM cells to express the highest percentage of nestin, ß-tubulin III, neurofilament, and CNPase. The DF/Ds/Fg/E group led to the highest percentage of GFAP expression. While the expression levels of NF, GFAP, and CNPase were the lowest in the DF group. The least percentage of nestin and ß-tubulin III expression was observed in the DF/Ds group. We may conclude that FGF and EGF are important inducers for differentiation of hUCMs into neuron, astrocyte and oligodendrocyte. RA can induce hUCMs to differentiate into neuron and oligodendrocyte while for astrocyte differentiation DMSO had a pivotal role.
Collapse
|
15
|
Combined use of NGF/BDNF/bFGF promotes proliferation and differentiation of neural stem cells in vitro. Int J Dev Neurosci 2014; 38:74-8. [DOI: 10.1016/j.ijdevneu.2014.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/03/2014] [Accepted: 08/03/2014] [Indexed: 02/06/2023] Open
|
16
|
Izak-Nau E, Kenesei K, Murali K, Voetz M, Eiden S, Puntes VF, Duschl A, Madarász E. Interaction of differently functionalized fluorescent silica nanoparticles with neural stem- and tissue-type cells. Nanotoxicology 2013; 8 Suppl 1:138-48. [PMID: 24344716 DOI: 10.3109/17435390.2013.864427] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Engineered amorphous silica nanoparticles (SiO2 NPs), due to simple and low cost production, are increasingly used in commercial products and produced on an industrial scale. Despite the potential benefits, there is a concern that exposure to certain types of SiO2 NPs may lead to adverse health effects. As some NPs can cross the blood--brain barrier and may, in addition, reach the central nervous system through the nasal epithelium, this study addresses the responses of different neural tissue-type cells including neural stem cells, neurons, astrocytes and microglia cells to increasing doses of 50 nm fluorescent core/shell SiO2 NPs with different [-NH2, -SH and polyvinylpyrrolidone (PVP)] surface chemistry. The SiO2 NPs are characterized using a variety of physicochemical methods. Assays of cytotoxicity and cellular metabolism indicates that SiO2 NPs cause cell death only at high particle doses, except PVP-coated SiO2 NPs which do not harm cells even at very high concentrations. All SiO2 NPs, except those coated with PVP, form large agglomerates in physiological solutions and adsorb a variety of proteins. Except PVP-NPs, all SiO2 NPs adhere strongly to cell surfaces, but internalization differs depending on neural cell type. Neural stem cells and astrocytes internalize plain SiO2, SiO2-NH2 and SiO2-SH NPs, while neurons do not take up any NPs. The data indicates that the PVP coat, by lowering the particle-biomolecular component interactions, reduces the biological effects of SiO2 NPs on the investigated neural cells.
Collapse
|
17
|
Orsolits B, Borsy A, Madarász E, Mészáros Z, Kőhidi T, Markó K, Jelitai M, Welker E, Környei Z. Retinoid machinery in distinct neural stem cell populations with different retinoid responsiveness. Stem Cells Dev 2013; 22:2777-93. [PMID: 23734950 DOI: 10.1089/scd.2012.0422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retinoic acid (RA) is present at sites of neurogenesis in both the embryonic and adult brain. While it is widely accepted that RA signaling is involved in the regulation of neural stem cell differentiation, little is known about vitamin A utilization and biosynthesis of active retinoids in the neurogenic niches, or about the details of retinoid metabolism in neural stem cells and differentiating progenies. Here we provide data on retinoid responsiveness and RA production of distinct neural stem cell/neural progenitor populations. In addition, we demonstrate differentiation-related changes in the expression of genes encoding proteins of the retinoid machinery, including components responsible for uptake (Stra6) and storage (Lrat) of vitamin A, transport of retinoids (Rbp4, CrbpI, CrabpI-II), synthesis (Rdh10, Raldh1-4), degradation of RA (Cyp26a1-c1) and RA signaling (Rarα,β,γ, Rxrα,β,γ). We show that both early embryonic neuroectodermal (NE-4C) stem cells and late embryonic or adult derived radial glia like progenitors (RGl cells) are capable to produce bioactive retinoids but respond differently to retinoid signals. However, while neuronal differentiation of RGl cells can not be induced by RA, neuron formation by NE-4C cells is initiated by both RA and RA-precursors (retinol or retinyl acetate). The data indicate that endogenous RA production, at least in some neural stem cell populations, may result in autocrine regulation of neuronal differentiation.
Collapse
Affiliation(s)
- Barbara Orsolits
- 1 Institute of Experimental Medicine , Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nanofiber-mediated release of retinoic acid and brain-derived neurotrophic factor for enhanced neuronal differentiation of neural progenitor cells. Drug Deliv Transl Res 2013; 5:89-100. [DOI: 10.1007/s13346-013-0131-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Santos T, Ferreira R, Maia J, Agasse F, Xapelli S, Cortes L, Bragança J, Malva JO, Ferreira L, Bernardino L. Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain. ACS NANO 2012; 6:10463-10474. [PMID: 23176155 DOI: 10.1021/nn304541h] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herein, we report the use of retinoic acid-loaded polymeric nanoparticles as a potent tool to induce the neuronal differentiation of subventricular zone neural stem cells. The intracellular delivery of retinoic acid by the nanoparticles activated nuclear retinoic acid receptors, decreased stemness, and increased proneurogenic gene expression. Importantly, this work reports for the first time a nanoparticle formulation able to modulate in vivo the subventricular zone neurogenic niche. The work further compares the dynamics of initial stages of differentiation between SVZ cells treated with retinoic acid-loaded polymeric nanoparticles and solubilized retinoic acid. The nanoparticle formulation developed here may ultimately offer new perspectives to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Tiago Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shearer KD, Fragoso YD, Clagett-Dame M, McCaffery PJ. Astrocytes as a regulated source of retinoic acid for the brain. Glia 2012; 60:1964-76. [PMID: 22930583 DOI: 10.1002/glia.22412] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/02/2012] [Indexed: 11/09/2022]
Abstract
Retinaldehyde dehydrogenases (RALDH) catalyze the synthesis of the regulatory factor retinoic acid (RA). Cultured astrocytes express several of the RALDH enzyme family, and it has been assumed that this can be extrapolated to astrocytes in vivo. However, this study finds that few astrocytes in the rodent brain express detectable RALDH enzymes, and only when these cells are grown in culture are these enzymes upregulated. Factors controlling the expression of the RALDHs in cultured astrocytes were explored to determine possible reasons for differences between in vitro versus in vivo expression. Retinoids were found to feedback to suppress several of the RALDHs, and physiological levels of retinoids may be one route by which astrocytic RALDHs are maintained at low levels. In the case of RALDH2, in vivo reduction of vitamin A levels in rats resulted in an increase in astrocyte RALDH2 expression in the hippocampus. Other factors though are likely to control RALDH expression. A shift in astrocytic RALDH subcellular localization is a potential mechanism for regulating RA signaling. Under conditions of vitamin A deficiency, RALDH2 protein moved from the cytoplasm to the nucleus where it may synthesize RA at the site of the nuclear RA receptors. Similarly, in conditions of oxidative stress RALDH1 and RALDH2 moved from the cytoplasm to a predominantly nuclear position. Thus, the RALDHs have been revealed to be dynamic in their expression in astrocytes where they may maintain retinoid homeostasis in the brain.
Collapse
Affiliation(s)
- Kirsty D Shearer
- Translational Neuroscience, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | |
Collapse
|
21
|
Functional analysis of histone demethylase Jmjd2b on lipopolysaccharide-treated murine neural stem cells (NSCs). Neurotox Res 2012; 23:154-65. [PMID: 22890720 DOI: 10.1007/s12640-012-9346-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 01/19/2023]
Abstract
Neural stem cell (NSC) neurogenesis is the formation of new neurons by which the brain maintains its lifelong plasticity in response to extrinsic and intrinsic changes. Here, we show the effect of lipopolysaccharides (LPS) as an in vitro model of inflammation on NSCs to determine whether the inflammatory mediators can epigenetically affect NSCs and alter their proliferation and differentiation abilities. To study the effect of LPS on NSCs, we used an immortalized mouse neuroectodermal stem cell line, NE-4C. We found that Jmjd2b, histone-3 lysine-9 di-/tri-methyl (H3K9me2/3) demethylase, is functional following LPS treatment and is crucial in multiple signaling pathways and biological processes. The global gene expression levels were detected in Jmjd2b-knockdown (kd) NE-4C cells and in LPS-stimulated Jmjd2b-kd NE-4C cells using an Affymetrix GeneChip(®) Mouse Gene 1.0 ST Array. In addition, the datasets were analyzed using MetaCore Pathway Analysis (GeneGo). The attenuation of Jmjd2b in NE-4C cells significantly affected the p65, iNOS, Bcl2, and TGF-β expression levels and had downstream effects on related signaling pathways. In addition, chromatin immunoprecipitation revealed that Jmjd2b-kd could inhibit the Notch1, IL-1β, and IL-2 genes by recruiting repressive H3K9me3 to their promoters. Moreover, this study highlights Jmjd2b role in LPS-mediated inflammation, which suggests an epigenetic regulation in NE-4C cells. Finally, this study establishes novel Jmjd2b targets that potentiate a biological rationale involving Jmjd2b in NSC inflammation.
Collapse
|
22
|
Isolation of radial glia-like neural stem cells from fetal and adult mouse forebrain via selective adhesion to a novel adhesive peptide-conjugate. PLoS One 2011; 6:e28538. [PMID: 22163310 PMCID: PMC3233537 DOI: 10.1371/journal.pone.0028538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 11/10/2011] [Indexed: 02/06/2023] Open
Abstract
Preferential adhesion of neural stem cells to surfaces covered with a novel synthetic adhesive polypeptide (AK-cyclo[RGDfC]) provided a unique, rapid procedure for isolating radial glia-like cells from both fetal and adult rodent brain. Radial glia-like (RGl) neural stem/progenitor cells grew readily on the peptide-covered surfaces under serum-free culture conditions in the presence of EGF as the only growth factor supplement. Proliferating cells derived either from fetal (E 14.5) forebrain or from different regions of the adult brain maintained several radial glia-specific features including nestin, RC2 immunoreactivity and Pax6, Sox2, Blbp, Glast gene expression. Proliferating RGl cells were obtained also from non-neurogenic zones including the parenchyma of the adult cerebral cortex and dorsal midbrain. Continuous proliferation allowed isolating one-cell derived clones of radial glia-like cells. All clones generated neurons, astrocytes and oligodendrocytes under appropriate inducing conditions. Electrophysiological characterization indicated that passive conductance with large delayed rectifying potassium current might be a uniform feature of non-induced radial glia-like cells. Upon induction, all clones gave rise to GABAergic neurons. Significant differences were found, however, among the clones in the generation of glutamatergic and cathecolamine-synthesizing neurons and in the production of oligodendrocytes.
Collapse
|
23
|
Kim YH, Chung JI, Woo HG, Jung YS, Lee SH, Moon CH, Suh-Kim H, Baik EJ. Differential regulation of proliferation and differentiation in neural precursor cells by the Jak pathway. Stem Cells 2011; 28:1816-28. [PMID: 20979137 DOI: 10.1002/stem.511] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuronal precursor cells (NPCs) are temporally regulated and have the ability to proliferate and differentiate into mature neurons, oligodendrocytes, and astrocytes in the presence of growth factors (GFs). In the present study, the role of the Jak pathway in brain development was investigated in NPCs derived from neurosphere cultures using Jak2 and Jak3 small interfering RNAs and specific inhibitors. Jak2 inhibition profoundly decreased NPC proliferation, preventing further differentiation into neurons and glial cells. However, Jak3 inhibition induced neuronal differentiation accompanied by neurite growth. This phenomenon was due to the Jak3 inhibition-mediated induction of neurogenin (Ngn)2 and NeuroD in NPCs. Jak3 inhibition induced NPCs to differentiate into scattered neurons and increased the expression of Tuj1, microtubule associated protein 2 (MAP2), Olig2, and neuroglial protein (NG)2, but decreased glial fibrillary acidic protein (GFAP) expression, with predominant neurogenesis/polydendrogenesis compared with astrogliogenesis. Therefore, Jak2 may be important for NPC proliferation and maintenance, whereas knocking-down of Jak3 signaling is essential for NPC differentiation into neurons and oligodendrocytes but does not lead to astrocyte differentiation. These results suggest that NPC proliferation and differentiation are differentially regulated by the Jak pathway.
Collapse
Affiliation(s)
- Yun Hee Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Survival and differentiation of neuroectodermal cells with stem cell properties at different oxygen levels. Exp Neurol 2010; 227:136-48. [PMID: 20969864 DOI: 10.1016/j.expneurol.2010.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/06/2010] [Accepted: 10/12/2010] [Indexed: 12/15/2022]
Abstract
Freeze-lesioned regions of the forebrain cortex provide adequate environment for growth of non-differentiated neural progenitors, but do not support their neuron formation. Reduced oxygen supply, among numerous factors, was suspected to impair neuronal cell fate commitment. In the present study, proliferation and differentiation of neural stem/progenitor cells were investigated at different oxygen levels both in vitro and in vivo. Low (1% atmospheric) oxygen supply did not affect the in vitro viability and proliferation of stem cells or the transcription of "stemness" genes but impaired the viability of committed neuronal progenitors and the expression of proneural and neuronal genes. Consequently, the rate of in vitro neuron formation was markedly reduced under hypoxic conditions. In vivo, neural stem/progenitor cells survived and proliferated in freeze-lesioned adult mouse forebrains, but did not develop into neurons. Hypoperfusion-caused hypoxia in lesioned cortices was partially corrected by hyperbaric oxygen treatment (HBOT). HBOT, while reduced the rate of cell proliferation at the lesion site, resulted in sporadic neuron formation from implanted neural stem cells. The data indicate that in hypoxic brain areas, neural stem cells survive and proliferate, but neural tissue-type differentiation can not proceed. Oxygenation renders the damaged brain areas more permissive for tissue-type differentiation and may help the integration of neural stem/progenitor cells.
Collapse
|