1
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
2
|
Ornelas IM, Silva TM, Pereira MR, França GR, Ventura ALM. Cell cycle regulation by ADP and IGF-1 in cultured late developing glia progenitors of the avian retina. Purinergic Signal 2023:10.1007/s11302-023-09982-7. [PMID: 38151691 DOI: 10.1007/s11302-023-09982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023] Open
Abstract
In the avian retina, ADP induces the proliferation of late developing glia progenitors. Here, we show that in serum-containing retinal cell cultures, ADP-induced increase in [3H]-thymidine incorporation can be prevented by the IGF-1 receptor antagonists AG1024 and I-OMe-Tyrphostin AG 538, suggesting the participation of IGF-1 in ADP-mediated progenitor proliferation. In contrast, no increase in [3H]-thymidine incorporation is observed in retinal cultures treated only with IGF-1. Under serum starvation, while no increase in cell proliferation is detected in cultures treated only with ADP or IGF-1, a significant increase in [3H]-thymidine incorporation and number of PCNA expressing cells is observed in cultures treated concomitantly with ADP plus IGF-1, suggesting that both molecules are required to induce proliferation of retinal progenitors. In serum-starved cultures, although an increase in cell viability is detected by MTT assays in IGF-1-treated cultures, no significant increase in viability of [3H]-thymidine labeled progenitors is observed, suggesting that IGF-1 may contribute to survival of postmitotic cells in culture. While only ADP increases intracellular calcium, only IGF-1 induces the phosphorylation of Akt in the retinal cultures. IGF-1 through the PI3K/Akt pathway induces a significant increase in the transcription and expression of CDK1 with a decrease in phospho-histone H3 expression that is concomitant with an increase in the expression of cyclins D1 and E and CDK2. These findings suggest that IGF-1 stimulates CDK-1 mRNA and protein expression that enable progenitors to progress through the cell cycle. However, signaling of ADP in the presence IGF-I seems to be required for DNA synthesis.
Collapse
Affiliation(s)
- Isis Moraes Ornelas
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, 29047-105, Brazil
| | - Thayane Martins Silva
- Department of Neurobiology, Neuroscience Program, Federal Fluminense University, Rua Prof. M.W. de Freitas Reis, bloco M, sala 409, São Domingos, Niterói, Rio de Janeiro, CEP 24210-201, Brazil
| | - Mariana Rodrigues Pereira
- Department of Neurobiology, Neuroscience Program, Federal Fluminense University, Rua Prof. M.W. de Freitas Reis, bloco M, sala 409, São Domingos, Niterói, Rio de Janeiro, CEP 24210-201, Brazil
| | - Guilherme Rapozeiro França
- Department of Physiological Sciences, Federal University of the State of Rio de Janeiro, Rua Frei Caneca 94, Centro, Rio de Janeiro, RJ, CEP 20211-040, Brazil
| | - Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Federal Fluminense University, Rua Prof. M.W. de Freitas Reis, bloco M, sala 409, São Domingos, Niterói, Rio de Janeiro, CEP 24210-201, Brazil.
| |
Collapse
|
3
|
Gozlan S, Batoumeni V, Fournier T, Nanteau C, Potey A, Clémençon M, Orieux G, Sahel JA, Goureau O, Roger JE, Reichman S. Bankable human iPSC-derived retinal progenitors represent a valuable source of multipotent cells. Commun Biol 2023; 6:762. [PMID: 37479765 PMCID: PMC10362027 DOI: 10.1038/s42003-023-04956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/14/2023] [Indexed: 07/23/2023] Open
Abstract
Retinal progenitor cells (RPCs) are the source of all retinal cell types during retinogenesis. Until now, the isolation and expansion of RPCs has been at the expense of their multipotency. Here, we report simple methods and media for the generation, expansion, and cryopreservation of human induced pluripotent stem-cell derived-RPCs (hiRPCs). Thawed and passed hiRPCs maintained biochemical and transcriptional RPC phenotypes and their ability to differentiate into all retinal cell types. Specific conditions allowed the generation of large cultures of photoreceptor precursors enriched up to 90% within a few weeks and without a purification step. Combined RNA-seq analysis between hiRPCs and retinal organoids identified genes involved in developmental or degenerative retinal diseases. Thus, hiRPC lines could provide a valuable source of retinal cells for cell-based therapies or drug discovery and could be an advanced cellular tool to better understand retinal dystrophies.
Collapse
Affiliation(s)
- Sandy Gozlan
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Vivien Batoumeni
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Tara Fournier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Céline Nanteau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Anais Potey
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Marilou Clémençon
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, F-75019, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, US
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400, Saclay, France
| | - Sacha Reichman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
4
|
Cannabinoids Induce Cell Death and Promote P2X7 Receptor Signaling in Retinal Glial Progenitors in Culture. Mol Neurobiol 2019; 56:6472-6486. [DOI: 10.1007/s12035-019-1537-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
|
5
|
Ventura ALM, Dos Santos-Rodrigues A, Mitchell CH, Faillace MP. Purinergic signaling in the retina: From development to disease. Brain Res Bull 2018; 151:92-108. [PMID: 30458250 DOI: 10.1016/j.brainresbull.2018.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Retinal injuries and diseases are major causes of human disability involving vision impairment by the progressive and permanent loss of retinal neurons. During development, assembly of this tissue entails a successive and overlapping, signal-regulated engagement of complex events that include proliferation of progenitors, neurogenesis, cell death, neurochemical differentiation and synaptogenesis. During retinal damage, several of these events are re-activated with both protective and detrimental consequences. Purines and pyrimidines, along with their metabolites are emerging as important molecules regulating both retinal development and the tissue's responses to damage. The present review provides an overview of the purinergic signaling in the developing and injured retina. Recent findings on the presence of vesicular and channel-mediated ATP release by retinal and retinal pigment epithelial cells, adenosine synthesis and release, expression of receptors and intracellular signaling pathways activated by purinergic signaling in retinal cells are reported. The pathways by which purinergic receptors modulate retinal cell proliferation, migration and death of retinal cells during development and injury are summarized. The contribution of nucleotides to the self-repair of the injured zebrafish retina is also discussed.
Collapse
Affiliation(s)
- Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Niterói, RJ, Brazil.
| | | | - Claire H Mitchell
- Department of Anatomy and Cell Biology, Ophthalmology, and Physiology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Maria Paula Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Zhang X, Yang W, Wang J, Meng Y, Guan Y, Yang J. FAM3 gene family: A promising therapeutical target for NAFLD and type 2 diabetes. Metabolism 2018; 81:71-82. [PMID: 29221790 DOI: 10.1016/j.metabol.2017.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and diabetes are severe public health issues worldwide. The Family with sequence similarity 3 (FAM3) gene family consists of four members designated as FAM3A, FAM3B, FAM3C and FAM3D, respectively. Recently, there had been increasing evidence that FAM3A, FAM3B and FAM3C are important regulators of glucose and lipid metabolism. FAM3A expression is reduced in the livers of diabetic rodents and NAFLD patients. Hepatic FAM3A restoration activates ATP-P2 receptor-Akt and AMPK pathways to attenuate steatosis and hyperglycemia in obese diabetic mice. FAM3C expression is also reduced in the liver under diabetic condition. FAM3C is a new hepatokine that activates HSF1-CaM-Akt pathway and represses mTOR-SREBP1-FAS pathway to suppress hepatic gluconeogenesis and lipogenesis. In contrast, hepatic expression of FAM3B, also called PANDER, is increased under obese state. FAM3B promotes hepatic lipogenesis and gluconeogenesis by repressing Akt and AMPK activities, and activating lipogenic pathway. Under obese state, the imbalance among hepatic FAM3A, FAM3B and FAM3C signaling networks plays important roles in the pathogenesis of NAFLD and type 2 diabetes. This review briefly discussed the latest research progress on the roles and mechanisms of FAM3A, FAM3B and FAM3C in the regulation of hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
7
|
Jacques FJ, Silva TM, da Silva FE, Ornelas IM, Ventura ALM. Nucleotide P2Y13-stimulated phosphorylation of CREB is required for ADP-induced proliferation of late developing retinal glial progenitors in culture. Cell Signal 2017; 35:95-106. [PMID: 28347874 DOI: 10.1016/j.cellsig.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/23/2017] [Accepted: 03/24/2017] [Indexed: 12/28/2022]
Abstract
Nucleotides stimulate phosphorylation of CREB to induce cell proliferation and survival in diverse cell types. We report here that ADP induces the phosphorylation of CREB in a time- and concentration-dependent manner in chick embryo retinal progenitors in culture. ADP-induced increase in phospho-CREB is mediated by P2 receptors as it is blocked by PPADS but not by the adenosine antagonists DPCPX or ZM241385. Incubation of the cultures with the CREB inhibitor KG-501 prevents ADP-induced incorporation of [3H]-thymidine, indicating that CREB is involved in retinal cell proliferation. No effect of this compound is observed on the viability of retinal progenitors. While no significant increase in CREB phosphorylation is observed with the P2Y1 receptor agonist MRS2365, ADP-induced phosphorylation of CREB is blocked by the P2Y13 receptor selective antagonist MRS2211, but not by MRS2179 or PSB0739, two antagonists of the P2Y1 and P2Y12 receptors, respectively, suggesting that ADP-induced CREB phosphorylation is mediated by P2Y13 receptors. ADP-induced increase in phospho-CREB is attenuated by the PI3K inhibitor LY294002 and completely prevented by the MEK inhibitor U0126, suggesting that at least ERK is involved in ADP-induced CREB phosphorylation. A pharmacological profile similar to the activation and inhibition of CREB phosphorylation is observed in the phosphorylation of ERK, suggesting that P2Y13 receptors mediate ADP induced ERK/CREB pathway in the cultures. While no increase in [3H]-thymidine incorporation is observed with the P2Y1 receptor agonist MRS2365, both MRS2179 and MRS2211 prevent ADP-mediated increase in [3H]-thymidine incorporation, but not progenitor's survival, suggesting that both P2Y1 and P2Y13 receptor subtypes are involved in ADP-induced cell proliferation. P2Y1 receptor-mediated increase in [Ca2+]i is observed in glial cells only when cultures maintained for 9days are used. In glia from cultures cultivated for only 2days, no increase in [Ca2+]i is detected with MRS2365 and no inhibition of ADP-mediated calcium response is observed with MRS2179. In contrast, MRS2211 attenuates ADP-mediated increase in [Ca2+]i in glial cells from cultures at both stages, suggesting the presence of P2Y13 receptors coupled to calcium mobilization in proliferating retinal glial progenitors in culture.
Collapse
Affiliation(s)
- Flavia Jesus Jacques
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Outeiro de São João Batista s/n, Centro, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Thayane Martins Silva
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Outeiro de São João Batista s/n, Centro, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Flavia Emenegilda da Silva
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Outeiro de São João Batista s/n, Centro, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Isis Moraes Ornelas
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Outeiro de São João Batista s/n, Centro, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Outeiro de São João Batista s/n, Centro, Niterói, Rio de Janeiro CEP 24020-141, Brazil.
| |
Collapse
|
8
|
de Almeida-Pereira L, Magalhães CF, Repossi MG, Thorstenberg MLP, Sholl-Franco A, Coutinho-Silva R, Ventura ALM, Fragel-Madeira L. Adenine Nucleotides Control Proliferation In Vivo of Rat Retinal Progenitors by P2Y 1 Receptor. Mol Neurobiol 2016; 54:5142-5155. [PMID: 27558237 DOI: 10.1007/s12035-016-0059-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/15/2016] [Indexed: 11/30/2022]
Abstract
Previous studies demonstrated that exogenous ATP is able to regulate proliferation of retinal progenitor cells (RPCs) in vitro possibly via P2Y1 receptor, a G protein-coupled receptor. Here, we evaluated the function of adenine nucleotides in vivo during retinal development of newborn rats. Intravitreal injection of apyrase, an enzyme that hydrolyzes nucleotides, reduced cell proliferation in retinas at postnatal day 2 (P2). This decrease was reversed when retinas were treated together with ATPγ-S or ADPβ-S, two hydrolysis-resistant analogs of ATP and ADP, respectively. During early postnatal days (P0 to P5), an increase in ectonucleotidase (E-NTPDase) activity was observed in the retina, suggesting a decrease in the availability of adenine nucleotides, coinciding with the end of proliferation. Interestingly, intravitreal injection of the E-NTPDase inhibitor ARL67156 increased proliferation by around 60 % at P5 rats. Furthermore, immunolabeling against P2Y1 receptor was observed overall in retina layers from P2 rats, including proliferating Ki-67-positive cells in the neuroblastic layer (NBL), suggesting that this receptor could be responsible for the action of adenine nucleotides upon proliferation of RPCs. Accordingly, intravitreal injection of MRS2179, a selective antagonist of P2Y1 receptors, reduced cell proliferation by approximately 20 % in P2 rats. Moreover, treatment with MRS 2179 caused an increase in p57KIP2 and cyclin D1 expression, a reduction in cyclin E and Rb phosphorylated expression and in BrdU-positive cell number. These data suggest that the adenine nucleotides modulate the proliferation of rat RPCs via activation of P2Y1 receptors regulating transition from G1 to S phase of the cell cycle.
Collapse
Affiliation(s)
- Luana de Almeida-Pereira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Camila Feitosa Magalhães
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marinna Garcia Repossi
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | | | - Alfred Sholl-Franco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil.
- Laboratório de Desenvolvimento e Regeneração Neural, Departmento de Neurobiologia, Universidade Federal Fluminense, Cx. Postal 100180, Niterói, RJ, 24020-141, Brazil.
| |
Collapse
|
9
|
Heine C, Sygnecka K, Scherf N, Grohmann M, Bräsigk A, Franke H. P2Y(1) receptor mediated neuronal fibre outgrowth in organotypic brain slice co-cultures. Neuropharmacology 2015; 93:252-66. [PMID: 25683778 DOI: 10.1016/j.neuropharm.2015.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 11/16/2022]
Abstract
Extracellular purines have multiple functional roles in development, plastic remodelling, and regeneration of the CNS by stimulating certain P2X/Y receptor (R) subtypes. In the present study we elucidated the involvement of P2YRs in neuronal fibre outgrowth in the developing nervous system. We particularly focused on the P2Y1R subtype and the dopaminergic system, respectively. For this purpose, we used organotypic slice co-cultures consisting of the ventral tegmental area/substantia nigra (VTA/SN) and the prefrontal cortex (PFC). After detecting the presence of the P2Y1R in VTA/SN, PFC, and on outgrowing fibres in the border region (e.g. on glial processes) connecting both brain slices, we could show that pharmacological modulation of the receptor influenced neuronal fibre outgrowth. Biocytin-tracing and tyrosine hydroxylase-immunolabelling together with quantitative image analysis revealed a significant increase in fibre growth in the border region of the co-cultures after treatment with ADPβS (P2Y1,12,13R agonist). The observed stimulatory potential of ADPβS was inhibited by pre-treatment with the P2X/YR antagonist PPADS. In P2Y1R knockout (P2Y1R(-/-)) mice, the ADPβS-induced stimulatory effect was absent, while growth was significantly enhanced in the co-cultures of the respective wild-type. This observation was confirmed in entorhino-hippocampal co-cultures, an example of a different projection system, expressing the P2Y1R. Using wortmannin and PD98059 we further showed that PI3K/Akt and MAPK/ERK cascades are involved in the mechanism underlying ADPβS-induced fibre growth. In conclusion, the data of this study clearly indicate that activation of the P2Y1R stimulates fibre growth and thereby emphasises the general role of this particular receptor subtype during development and regeneration.
Collapse
Affiliation(s)
- Claudia Heine
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany; Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Katja Sygnecka
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany; Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Nico Scherf
- Institute for Medical Informatics and Biometry (IMB), Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Marcus Grohmann
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Annett Bräsigk
- Centre for Biotechnology and Biomedicine (BBZ), Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany.
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
10
|
Silva TM, França GR, Ornelas IM, Loiola EC, Ulrich H, Ventura ALM. Involvement of nucleotides in glial growth following scratch injury in avian retinal cell monolayer cultures. Purinergic Signal 2015; 11:183-201. [PMID: 25663277 DOI: 10.1007/s11302-015-9444-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022] Open
Abstract
When retinal cell cultures were mechanically scratched, cell growth over the empty area was observed. Only dividing and migrating, 2 M6-positive glial cells were detected. Incubation of cultures with apyrase (APY), suramin, or Reactive Blue 2 (RB-2), but not MRS 2179, significantly attenuated the growth of glial cells, suggesting that nucleotide receptors other than P2Y1 are involved in the growth of glial cells. UTPγS but not ADPβS antagonized apyrase-induced growth inhibition in scratched cultures, suggesting the participation of UTP-sensitive receptors. No decrease in proliferating cell nuclear antigen (PCNA(+)) cells was observed at the border of the scratch in apyrase-treated cultures, suggesting that glial proliferation was not affected. In apyrase-treated cultures, glial cytoplasm protrusions were smaller and unstable. Actin filaments were less organized and alfa-tubulin-labeled microtubules were mainly parallel to scratch. In contrast to control cultures, very few vinculin-labeled adhesion sites could be noticed in these cultures. Increased Akt and ERK phosphorylation was observed in UTP-treated cultures, effect that was inhibited by SRC inhibitor 1 and PI3K blocker LY294002. These inhibitors and the FAK inhibitor PF573228 also decreased glial growth over the scratch, suggesting participation of SRC, PI3K, and FAK in UTP-induced growth of glial cells in scratched cultures. RB-2 decreased dissociated glial cell attachment to fibronectin-coated dishes and migration through transwell membranes, suggesting that nucleotides regulated adhesion and migration of glial cells. In conclusion, mechanical scratch of retinal cell cultures induces growth of glial cells over the empty area through a mechanism that is dependent on activation of UTP-sensitive receptors, SRC, PI3K, and FAK.
Collapse
Affiliation(s)
- Thayane Martins Silva
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, RJ, 24020-141, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Soares AS, Costa VM, Diniz C, Fresco P. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways. Basic Clin Pharmacol Toxicol 2015; 116:25-36. [PMID: 24909096 DOI: 10.1111/bcpt.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/26/2014] [Indexed: 12/14/2022]
Abstract
Malignant melanoma is the most deadly type of skin cancer. The lack of effective pharmacological approaches for this tumour can be related to the incomplete understanding of the pathophysiological mechanisms involved in melanoma cell proliferation. Adenosine has growth-promoting and growth inhibitory effects on tumour cells. We aimed to investigate effects of adenosine and its metabolic product, inosine, on human C32 melanoma cells and the signalling pathways involved. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and bromodeoxyuridine (BrdU) proliferation assays were used to evaluate adenosine, adenosine deaminase and inosine effects, in the absence or presence of adenosine receptor (AR), A3 AR and P2Y1 R antagonists and PLC, PKC, MEK1/2 and PI3K inhibitors. ERK1/2 levels were determined using an ELISA kit. Adenosine and inosine levels were quantified using an enzyme-coupled assay. Adenosine caused cell proliferation through AR activation. Adenosine deaminase increased inosine levels (nanomolar concentrations) on the extracellular space, in a time-dependent manner, inducing proliferation through A3 AR activation. Micromolar concentrations of inosine enhanced proliferation through A3 AR activation, causing an increase in ERK1/2 levels, and P2Y1 R activation via ENT-dependent mechanisms. We propose the simultaneous activation of PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways as the main mechanism responsible for the proliferative effect elicited by inosine and its significant role in melanoma cancer progression.
Collapse
Affiliation(s)
- Ana Sofia Soares
- REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
12
|
ATP and UTP stimulate bone morphogenetic protein-2,-4 and -5 gene expression and mineralization by rat primary osteoblasts involving PI3K/AKT pathway. Exp Cell Res 2013; 319:2028-2036. [PMID: 23707969 DOI: 10.1016/j.yexcr.2013.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 01/13/2023]
Abstract
The modulation of purinergic receptors plays an important role in the regulation of bone formation by the osteoblast. On the other hand, bone morphogenetic proteins (BMPs), members of the transforming growth factor-β superfamily, regulate the differentiation of osteoprogenitor bone cells and stimulate bone formation. In this study, we investigate the effects of several nucleotides on osteoblast differentiation and function, and their relation with the gene expression of osteogenic proteins BMP-2, BMP-4 and BMP-5 as well as of differentiation markers alkaline phosphatase (ALP) and bone sialoprotein (BSP). Our results indicate that 100μM ATP, ATPγS and UTP, but not ADP, ADPβS or UDP, promote ALP activity in rat primary osteoblasts, showing a peak about day 7 of the treatment. ATP, ATPγS and UTP also increase the mRNA levels of ALP, BMP-2, BMP-4, BMP-5 and BSP. Both the ALP activity and ALP and BMP-4 mRNA increments induced by ATP and UTP are inhibited by Ly294002, a PI3K inhibitor, suggesting the involvement of PI3K/AKT signaling pathway in purinergic modulation of osteoblast differentiation. Furthermore, bone mineralization enhance 1 and 1.5 fold after culturing osteoblasts in the presence of 100μM ATP or UTP, respectively, but not of ADP or UDP for 22 days. This information suggests that P2Y2 receptors (responsive to ATP, ATPγS and UTP) enhance osteoblast differentiation involving PI3K/AKT signaling pathway activation and gene expression induction of ALP, BMP-2, BMP-4, BMP-5 and BSP. Our findings state a novel molecular mechanism that involves specific gene expression activation of osteoblast function by the purinoreceptors, which would be of help in setting up new pharmacological strategies for the intervention in bone loss pathologies.
Collapse
|
13
|
Ornelas IM, Silva TM, Fragel-Madeira L, Ventura ALM. Inhibition of PI3K/Akt pathway impairs G2/M transition of cell cycle in late developing progenitors of the avian embryo retina. PLoS One 2013; 8:e53517. [PMID: 23301080 PMCID: PMC3534656 DOI: 10.1371/journal.pone.0053517] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/29/2012] [Indexed: 01/30/2023] Open
Abstract
PI3K/Akt is an important pathway implicated in the proliferation and survival of cells in the CNS. Here we investigated the participation of the PI3K/Akt signal pathway in cell cycle of developing retinal progenitors. Immunofluorescence assays performed in cultures of chick embryo retinal cells and intact tissues revealed the presence of phosphorylated Akt and 4E-BP1 in cells with typical mitotic profiles. Blockade of PI3K activity with the chemical inhibitor LY 294002 (LY) in retinal explants blocked the progression of proliferating cells through G2/M transition, indicated by an expressive increase in the number of cells labeled for phosphorylated histone H3 in the ventricular margin of the retina. No significant level of cell death could be detected at this region. Retinal explants treated with LY for 24 h also showed a significant decrease in the expression of phospho-Akt, phospho-GSK-3 and the hyperphosphorylated form of 4E-BP1. Although no change in the expression of cyclin B1 was detected, a significant decrease in CDK1 expression was noticed after 24 h of LY treatment both in retinal explants and monolayer cultures. Our results suggest that PI3K/Akt is an active pathway during proliferation of retinal progenitors and its activity appears to be required for proper CDK1 expression levels and mitosis progression of these cells.
Collapse
Affiliation(s)
- Isis Moraes Ornelas
- Department of Neurobiology, Neuroscience Program, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Thayane Martins Silva
- Department of Neurobiology, Neuroscience Program, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lucianne Fragel-Madeira
- Department of Neurobiology, Neuroscience Program, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
14
|
Yamashita M. From neuroepithelial cells to neurons: changes in the physiological properties of neuroepithelial stem cells. Arch Biochem Biophys 2012; 534:64-70. [PMID: 22892549 DOI: 10.1016/j.abb.2012.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 07/04/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
The central nervous system, which includes the spinal cord, retina, and brain, is derived from the neural tube. The neural tube is formed of a sheet of cells called the neuroepithelium. During embryonic development, neuroepithelial cells function as neural stem cells: they renew themselves while undergoing interkinetic nuclear movements along the apico-basal axis during the cell cycle, and they produce postmitotic cells that function as newborn neurons. Neuroepithelial cells exhibit a robust increase in nucleoplasmic [Ca(2+)] in response to G protein-coupled receptor activation during S-phase when the nucleus is located in the basal region of the cell. This Ca(2+) rise is caused by the release of Ca(2+) from intracellular Ca(2+) stores, and the Ca(2+) release in turn activates Ca(2+) entry from the extracellular space, which is called capacitative (or store-operated) Ca(2+) entry. The Ca(2+) release and store-operated Ca(2+) entry are essential for DNA synthesis during S-phase. The activity of this store-operated Ca(2+) signaling system declines in parallel with the decreasing proliferative activity of neuroepithelial cells. When exiting the cell cycle, the cells lose the apical process where gap junctions are located. Following the loss of gap junction coupling, the postmitotic cells show a high input resistance, which allows them to be readily depolarized. The Ca(2+) response to the excitatory neurotransmitter glutamate appears and develops during neuronal differentiation. The glutamate-induced Ca(2+) rise increases transiently during natural cell death (apoptosis). The rise in Ca(2+) levels mediated by voltage-gated Ca(2+) channels also develops during neuronal differentiation. Thus, when neuroepithelial cells differentiate into neurons, a transition from a store-operated system to a voltage-operated system occurs in the main Ca(2+) signaling system. This transition may reflect a change in the mode of intercellular communication from a stored Ca(2+)-dependent mode to a plasma membrane potential-dependent mode.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Department of Physiology 1, Nara Medical University, Shijo-cho 840, Kashihara, Japan.
| |
Collapse
|
15
|
Ion channel activities in neural stem cells of the neuroepithelium. Stem Cells Int 2012; 2012:247670. [PMID: 22848227 PMCID: PMC3398652 DOI: 10.1155/2012/247670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 12/12/2022] Open
Abstract
During the embryonic development of the central nervous system, neuroepithelial cells act as neural stem cells. They undergo interkinetic nuclear movements along their apico-basal axis during the cell cycle. The neuroepithelial cell shows robust increases in the nucleoplasmic [Ca2+] in response to G protein-coupled receptor activation in S-phase, during which the nucleus is located in the basal region of the neuroepithelial cell. This response is caused by Ca2+ release from intracellular Ca2+ stores, which are comprised of the endoplasmic reticulum and the nuclear envelope. The Ca2+ release leads to the activation of Ca2+ entry from the extracellular space, which is called capacitative, or store-operated Ca2+ entry. These movements of Ca2+ are essential for DNA synthesis during S-phase. Spontaneous Ca2+ oscillations also occur synchronously across the cells. This synchronization is mediated by voltage fluctuations in the membrane potential of the nuclear envelope due to Ca2+ release and the counter movement of K+ ions; the voltage fluctuation induces alternating current (AC), which is transmitted via capacitative electrical coupling to the neighboring cells. The membrane potential across the plasma membrane is stabilized through gap junction coupling by lowering the input resistance. Thus, stored Ca2+ ions are a key player in the maintenance of the cellular activity of neuroepithelial cells.
Collapse
|
16
|
ATP induces the death of developing avian retinal neurons in culture via activation of P2X7 and glutamate receptors. Purinergic Signal 2012; 9:15-29. [PMID: 22733428 DOI: 10.1007/s11302-012-9324-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 06/12/2012] [Indexed: 10/28/2022] Open
Abstract
Previous data suggest that nucleotides are important mitogens in the developing retina. Here, the effect of ATP on the death of cultured chick embryo retina cells was investigated. In cultures obtained from retinas of 7-day-old chick embryos (E7) that were cultivated for 2 days (E7C2), both ATP and BzATP induced a ∼30 % decrease in cell viability that was time- and dose-dependent and that could be blocked by 0.2 mM oxidized ATP or 0.3 μM KN-62. An increase in cleaved caspase-3 levels and in the number of TUNEL-positive cells was observed when cultures were incubated with 3 mM ATP and immunolabeling for cleaved-caspase 3 was observed over neurons but not over glial cells. ATP-dependent cell death was developmentally regulated, the maximal levels being detected by E7C2-3. Nucleotides were able to increase neuronal ethidium bromide and sulforhodamine B uptake in mixed and purified neuronal cultures, an effect that was blocked by the antagonists Brilliant Blue G and oxidized ATP. In contrast, nucleotide-induced cell death was observed only in mixed cultures, but not in purified cultures of neurons or glia. ATP-induced neuronal death was blocked by the glutamatergic antagonists MK801 and DNQX and activation of P2X7 receptors by ATP decreased the uptake of [(3)H]-D-aspartate by cultured glial cells with a concomitant accumulation of it in the extracellular medium. These results suggest that ATP induces apoptosis of chick embryo retinal neurons in culture through activation of P2X7 and glutamate ionotropic receptors. Involvement of a P2X7 receptor-mediated inhibition of the glial uptake of glutamate is suggested.
Collapse
|
17
|
Barbosa CMV, Leon CMMP, Nogueira-Pedro A, Wasinsk F, Araújo RC, Miranda A, Ferreira AT, Paredes-Gamero EJ. Differentiation of hematopoietic stem cell and myeloid populations by ATP is modulated by cytokines. Cell Death Dis 2011; 2:e165. [PMID: 21633388 PMCID: PMC3168991 DOI: 10.1038/cddis.2011.49] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Extracellular nucleotides are emerging as important regulators of inflammation, cell proliferation and differentiation in a variety of tissues, including the hematopoietic system. In this study, the role of ATP was investigated during murine hematopoiesis. ATP was able to reduce the percentage of hematopoietic stem cells (HSCs), common myeloid progenitors and granulocyte–macrophage progenitors (GMPs), whereas differentiation into megakaryocyte–erythroid progenitors was not affected. In addition, in vivo administration of ATP to mice reduced the number of GMPs, but increased the number of Gr-1+Mac-1+ myeloid cells. ATP also induced an increased proliferation rate and reduced Notch expression in HSCs and impaired HSC-mediated bone marrow reconstitution in sublethally irradiated mice. Moreover, the effects elicited by ATP were inhibited by suramin, a P2 receptor antagonist, and BAPTA, an intracellular Ca2+ chelator. We further investigated whether the presence of cytokines might modulate the observed ATP-induced differentiation. Treatment of cells with cytokines (stem cell factor, interleukin-3 and granulocyte–monocyte colony stimulator factor) before ATP stimulation led to reduced ATP-dependent differentiation in long-term bone marrow cultures, thereby restoring the ability of HSCs to reconstitute hematopoiesis. Thus, our data suggest that ATP induces the differentiation of murine HSCs into the myeloid lineage and that this effect can be modulated by cytokines.
Collapse
Affiliation(s)
- C M V Barbosa
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Botucatu 862, 2° Andar, 04023-062 São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang WJ, Ma Z, Liu YW, He YQ, Wang YZ, Yang CX, Du Y, Zhou MQ, Gao F. A monoclonal antibody (Mc178-Ab) targeted to the ecto-ATP synthase β-subunit-induced cell apoptosis via a mechanism involving the MAPKase and Akt pathways. Clin Exp Med 2011; 12:3-12. [PMID: 21505868 DOI: 10.1007/s10238-011-0133-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/17/2011] [Indexed: 12/19/2022]
Abstract
Ecto-ATP synthase has been considered to be an effective target for cancer recently. As inhibitors of ecto-ATP synthase were found to be cytotoxic for tumor cells, a monoclonal antibody (Mc178-Ab) against ecto-ATP synthase was generated in our previous study that exhibited both anti-angiogenic and anti-tumorigenic effects. However, the mechanism of action of Mc178-Ab and its downstream pathways for anti-tumor effects remain unclear. In this research, we intended to investigate the mechanism of the anti-tumor action of Mc178-Ab. The expressions of cell surface ATP synthase on A549 and CHO cells were confirmed by flow cytometry and confocal microscope. Proliferation and apoptosis were examined after the treatment with Mc178-Ab. In order to examine the activity of ecto-ATP synthase changed by Mc178-Ab, extracellular ATP generation and intracellular pH levels were assessed. The phosphorylation of the signaling molecules, MAPKase and Akt, was analyzed by western blot. Cell proliferation was blocked, and apoptosis was induced in A549 cells treated with Mc178-Ab, as determined by MTT assay and flow cytometry analysis of Annexin-V/PI staining separately. The intracellular pH level and extracellular ATP generation were also decreased after Mc178-Ab treatment. Finally, western blot data revealed that the phosphorylation of JNK and p38 was increased, while the phosphorylation of ERK and Akt was decreased in A549 cells treated with Mc178-Ab. Compared with A549 cells, Mc178-Ab had less effect on CHO cells. The decreased intracellular pH levels and the altered concentration of extracellular ATP may contribute to the mechanisms of the effect of Mc178-Ab on A549 and CHO cells. The results also suggested that the anti-tumor effect of Mc178-Ab was associated with MAPKase and Akt pathways.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital of Shanghai, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu S, Li Y, Lin T, Fan X, Liang Y, Heemann U. High dose human insulin and insulin glargine promote T24 bladder cancer cell proliferation via PI3K-independent activation of Akt. Diabetes Res Clin Pract 2011; 91:177-82. [PMID: 21129803 DOI: 10.1016/j.diabres.2010.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 10/27/2010] [Accepted: 11/04/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND This study was to investigate the effects of human insulin and insulin glargine on proliferation of T24 human bladder cancer cells and the implication of the PI3K/Akt and MEK/ERK1/2 pathways. METHODS After exposure to insulin or glargine at the indicated concentrations for certain time courses, in the absence or presence of inhibitor for MEK (PD98059) or PI3K (LY294002), T24 cell proliferation was evaluated by CCK-8 assay. Phosphorylation of Akt and ERK1/2 was analyzed by Western blot. RESULTS Insulin and glargine similarly induced phosphorylation of Akt and slight increases in T24 cell proliferation at 10-100IU/L. LY294002 remarkably reduced T24 cell proliferation in all groups. However, in the presence of LY294002, cell growth was still promoted by insulin and glargine relative to LY294002-treated group. Accordingly, LY294002 profoundly reduced protein levels of pAkt, while insulin and glargine increased pAkt in T24 cells pretreated with LY294002 as compared with cells treated with LY294002 alone. PD98059 reduced pERK while enhanced T24 cell proliferation. Insulin and glargine increased pERK at 15, 30, 60 min, not at 24h. CONCLUSIONS High dose human insulin and insulin glargine similarly promoted T24 bladder cancer cell proliferation via PI3K-independent activation of Akt.
Collapse
Affiliation(s)
- S Liu
- Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Loiola EC, Ventura ALM. Release of ATP from avian Müller glia cells in culture. Neurochem Int 2010; 58:414-22. [PMID: 21193002 DOI: 10.1016/j.neuint.2010.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/07/2023]
Abstract
ATP can be released from neurons and act as a neuromodulator in the nervous system. Besides neurons, cortical astrocytes also are capable of releasing ATP from acidic vesicles in a Ca(2+)-dependent way. In the present work, we investigated the release of ATP from Müller glia cells of the chick embryo retina by examining quinacrine staining and by measuring the extracellular levels of ATP in purified Müller glia cultures. Our data revealed that glial cells could be labeled with quinacrine, a reaction that was prevented by incubation of the cells with 1μM bafilomycin A1 or 2μM Evans blue, potent inhibitors of vacuolar ATPases and of the vesicular nucleotide transporter, respectively. Either 50mM KCl or 1mM glutamate was able to decrease quinacrine staining of the cells, as well as to increase the levels of ATP in the extracellular medium by 77% and 89.5%, respectively, after a 5min incubation of the cells. Glutamate-induced rise in extracellular ATP could be mimicked by 100μM kainate (81.5%) but not by 100μM NMDA in medium without MgCl(2) but with 2mM glycine. However, both glutamate- and kainate-induced increase in extracellular ATP levels were blocked by 50μM of the glutamatergic antagonists DNQX and MK-801, suggesting the involvement of both NMDA and non-NMDA receptors. Extracellular ATP accumulation induced by glutamate was also blocked by incubation of the cells with 30μM BAPTA-AM or 1μM bafilomycin A1. These results suggest that glutamate, through activation of both NMDA and non-NMDA receptors, induces the release of ATP from retinal Müller cells through a calcium-dependent exocytotic mechanism.
Collapse
Affiliation(s)
- Erick Correia Loiola
- Department of Neurobiology, Neuroscience Program, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | |
Collapse
|