1
|
Anderson ME, Wind EJ, Robison LS. Exploring the neuroprotective role of physical activity in cerebral small vessel disease. Brain Res 2024; 1833:148884. [PMID: 38527712 DOI: 10.1016/j.brainres.2024.148884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Cerebral small vessel disease (cSVD) is a common neurological finding characterized by abnormalities of the small blood vessels in the brain. Previous research has established a strong connection between cSVD and stroke, as well as neurodegenerative disorders, notably Alzheimer's disease (AD) and other dementias. As the search for effective interventions continues, physical activity (PA) has emerged as a potential preventative and therapeutic avenue. This review synthesizes the human and animal literature on the influence of PA on cSVD, highlighting the importance of determining optimal exercise protocols, considering aspects such as intensity, duration, timing, and exercise type. Furthermore, the necessity of widening the age bracket in research samples is discussed, ensuring a holistic understanding of the interventions across varying pathological stages of the disease. The review also suggests the potential of exploring diverse biomarkers and risk profiles associated with clinically significant outcomes. Moreover, we review findings demonstrating the beneficial effects of PA in various rodent models of cSVD, which have uncovered numerous mechanisms of neuroprotection, including increases in neuroplasticity and integrity of the vasculature and white matter; decreases in inflammation, oxidative stress, and mitochondrial dysfunction; and alterations in amyloid processing and neurotransmitter signaling. In conclusion, this review highlights the potential of physical activity as a preventive strategy for addressing cSVD, offering insights into the need for refining exercise parameters, diversifying research populations, and exploring novel biomarkers, while shedding light on the intricate mechanisms through which exercise confers neuroprotection in both humans and animal models.
Collapse
Affiliation(s)
- Maria E Anderson
- Department of Psychology, Family, and Justice Studies, University of Saint Joseph, 1678 Asylum Ave, West Hartford, CT 06117, USA
| | - Eleanor J Wind
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA
| | - Lisa S Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
2
|
Abdullah M, Huang LC, Lin SH, Yang YK. Dopaminergic and glutamatergic biomarkers disruption in addiction and regulation by exercise: a mini review. Biomarkers 2022; 27:306-318. [PMID: 35236200 DOI: 10.1080/1354750x.2022.2049367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Drug addiction is associated with disruption of a multitude of biomarkers in various brain regions, particularly in the reward center. The most pronounced are dopaminergic and glutamatergic biomarkers, which are affected at various levels. Neuropathological changes in biomarkers alter the homeostasis of the glutamatergic and dopaminergic nervous systems and promote addiction-associated characteristics such as repeated intake, maintenance, withdrawal, reinstatement, and relapse. Exercise has been shown to have a buffering effect on such biomarkers and reverse the effects of addictive substances. METHODS A review of the literature searched in PubMed, examining drug addiction and physical exercise in relation to dopaminergic and glutamatergic systems at any of the three biomarker levels (i.e., neurotransmitter, receptor, or transporter). RESULTS We review the collective impact of addictive substances on the dopaminergic and glutamatergic systems and the beneficial effect of exercise in terms of reversing the damage to these systems. We propose future directions, including implications of exercise as an add-on therapy, substance use disorder (SUD) prognosis and diagnosis and designing of optimized exercise and pharmaceutical regimens based on the aforementioned biomarkers. CONCLUSION Exercise is beneficial for all types of drug addiction at all stages, by reversing molecular damages caused to dopaminergic and glutamatergic systems.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Chia-Yi Branch, Taichung Veterans General Hospital, Chia-Yi, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| |
Collapse
|
3
|
Ji W, Liu K, Zhao G, Wu F, Jiang Y, Hou L, Zhang M, Mao L. Electrochemical Sensing of Ascorbate as an Index of Neuroprotection from Seizure Activity by Physical Exercise in Freely Moving Rats. ACS Sens 2021; 6:546-552. [PMID: 33346640 DOI: 10.1021/acssensors.0c02326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical exercise (PE) has been drawing increasing attention to prevent and alleviate neural damage of brain diseases; however, in vivo sensing of the neuroprotection ability of PE remains a challenge. Here, we find that ascorbate can be used as a small molecular index for neuroprotective function of PE and the neuroprotection ability of PE can thus be in vivo monitored with an online electrochemical system (OECS) in freely moving animals. With the OECS as the sensing system, we find that the concentration of ascorbate in the microdialysate from the striatum increases greatly in kainic acid (KA)-induced seizure rats and reaches twice the basal level (i.e., 214.4 ± 32.7%, p < 0.001, n = 4) at a time point 90 min after KA microinjection. Such an increase of ascorbate is obviously attenuated (i.e., 153.6 ± 23.9% of the basal level, p < 0.05, n = 3) after PE, showing the neuroprotective activity of PE. This finding is believed to be significant in providing chemical insight into the neuroprotection ability of PE.
Collapse
Affiliation(s)
- Wenliang Ji
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Kun Liu
- Capital University of Physical Education and Sports, Beijing 100191, China
| | - Gang Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Fei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| | | | | | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
4
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
5
|
Coqueiro RDS, Soares TDJ, Pereira R, Correia TML, Coqueiro DSO, Oliveira MV, Marques LM, de Sá CKC, de Magalhães ACM. Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. Clin Nutr ESPEN 2018; 29:203-212. [PMID: 30661688 DOI: 10.1016/j.clnesp.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/13/2018] [Accepted: 10/06/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Aging, obesity and sedentarism are among the most important predictors of cardiometabolic diseases. Aiming to reduce the impact of the combination of these three factors, we tested the therapeutic and preventive effects of exercise in aging and obese rats on the following cardiometabolic disease risk parameters: body fat, blood pressure, blood lipids, and glycemic homeostasis. METHODS Eighteen male Wistar rats (initial age = 4 months, and final age = 14 months) were randomly distributed into three aging and obese groups: sedentary, therapeutic exercise and preventive exercise. Food and caloric intake, body adiposity, muscle mass, cardiovascular parameters, biochemical markers, glycemic homeostasis, and gene expression of insulin-dependent, insulin-independent and insulin resistance pathways in skeletal muscle were evaluated. RESULTS Therapeutic and preventive exercises were associated with higher food and caloric intake, and expression of TBC1D1 in the soleus muscle, as well as lower total cholesterol/HDL and LDL/HDL ratios, glucose levels at the end (90 min) of the glucose tolerance test and IKBKB expression in the gastrocnemius and soleus muscles. Only the preventive exercise improved the cardiovascular and body composition parameters, glucose tolerance, insulin resistance and insulin sensitivity, besides reducing total cholesterol, triglycerides, triglycerides/HDL ratio, plasmatic insulin and MAPK8 expression in soleus. The preventive exercise group also presented greater expression of INRS, IRS1, IRS2, PIK3CA, AKT1, and SLC2A4 in gastrocnemius and soleus, TBC1D1 in gastrocnemius, and AKT2 and PRKAA1 in soleus. CONCLUSIONS Therapeutic exercise promoted some improvements on cardiometabolic parameters in aging and obese rats, however, the best benefits were achieved through the preventive exercise.
Collapse
Affiliation(s)
- Raildo da Silva Coqueiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil; Universidade Estadual do Sudoeste da Bahia, Departamento de Saúde, Jequié, Brazil.
| | - Telma de Jesus Soares
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil
| | - Rafael Pereira
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Jequié, Brazil
| | - Thiago Macêdo Lopes Correia
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil
| | | | | | - Lucas Miranda Marques
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil
| | | | - Amélia Cristina Mendes de Magalhães
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil
| |
Collapse
|
6
|
de Souza RF, de Moraes SRA, Augusto RL, de Freitas Zanona A, Matos D, Aidar FJ, da Silveira Andrade-da-Costa BL. Endurance training on rodent brain antioxidant capacity: A meta-analysis. Neurosci Res 2018; 145:1-9. [PMID: 30326252 DOI: 10.1016/j.neures.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
Abstract
The influence of physical exercise on brain antioxidant defense mechanisms has been studied. Nevertheless, the effect of training volume on the brain`s redox balance remains unclear. In this meta-analysis, we compared the effect of training volume on antioxidant enzymatic resource and lipid peroxidation on various brain regions. The activities of the enzymes glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and the levels of thiobarbituric acid reactive substances (TBARS) were also evaluated. The effects of training periods (weeks) and exercise duration were compared. Meta-analysis revealed that protocols over 8 weeks were associated with an increase in SOD (p = 0.0008) and CAT activities (p = 0.0001). Exercise durations for 30 and 60 min were associated with higher CAT activity (p = 0.04). Joint analysis revealed that moderate physical exercise over 4 and 8 weeks promoted a healthy enzymatic balance. However, high volumes of exercise over 8 weeks were associated with the increased antioxidant enzymatic activity, indicating higher reactive oxygen species (ROS) levels. The data also indicated that there is still limited research and inaccurate information, on the safety conditions of training periods that simulate tests of ultra resistance in humans.
Collapse
Affiliation(s)
- Raphael Fabricio de Souza
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil; Department of Physical Education, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil; Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil.
| | | | - Ricielle Lopes Augusto
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Aristela de Freitas Zanona
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Dihogo Matos
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil
| | - Felipe J Aidar
- Department of Physical Education, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil; Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil; Graduate Program in Physiological Science, Federal University of Sergipe - UFS, São Cristovão, Sergipe, Brazil
| | - Belmira Lara da Silveira Andrade-da-Costa
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
7
|
Majumder A, Singh M, George AK, Homme RP, Laha A, Tyagi SC. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: An emerging research perspective. J Cell Biochem 2018; 120:77-92. [PMID: 30272816 DOI: 10.1002/jcb.27603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
Higher levels of nonprotein amino acid homocysteine (Hcy), that is, hyperhomocysteinemia (HHcy) (~5% of general population) has been associated with severe vasculopathies in different organs; however, precise molecular mechanism(s) as to how HHcy plays havoc with body's vascular networks are largely unknown. Interventional modalities have not proven beneficial to counter multifactorial HHcy's effects on the vascular system. An ancient Indian form of exercise called 'yoga' causes transient ischemia as a result of various body postures however the cellular mechanisms are not clear. We discuss a novel perspective wherein we argue that application of remote ischemic conditioning (RIC) could, in fact, deliver anticipated results to patients who are suffering from chronic vascular dysfunction due to HHcy. RIC is the mechanistic phenomenon whereby brief episodes of ischemia-reperfusion events are applied to distant tissues/organs; that could potentially offer a powerful tool in mitigating chronic lethal ischemia in target organs during HHcy condition via simultaneous reduction of inflammation, oxidative and endoplasmic reticulum stress, extracellular matrix remodeling, fibrosis, and angiogenesis. We opine that during ischemic conditioning our organs cross talk by releasing cellular messengers in the form of exosomes containing messenger RNAs, circular RNAs, anti-pyroptotic factors, protective cytokines like musclin, transcription factors, small molecules, anti-inflammatory, antiapoptotic factors, antioxidants, and vasoactive gases. All these could help mobilize the bone marrow-derived stem cells (having tissue healing properties) to target organs. In that context, we argue that RIC could certainly play a savior's role in an unfortunate ischemic or adverse event in people who have higher levels of the circulating Hcy in their systems.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Akash K George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Rubens Petit Homme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky.,Eye and Vision Science Laboratory, University of Louisville, Louisville, Kentucky
| | - Anwesha Laha
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
8
|
Kumar M, Sandhir R. Neuroprotective Effect of Hydrogen Sulfide in Hyperhomocysteinemia Is Mediated Through Antioxidant Action Involving Nrf2. Neuromolecular Med 2018; 20:475-490. [PMID: 30105650 DOI: 10.1007/s12017-018-8505-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022]
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid derived from methionine metabolism. Elevated plasma Hcy levels (> 15 µM) result in a condition called hyperhomocysteinemia (HHcy), which is an independent risk factor in the development of various neurodegenerative disorders. Reactive oxygen species (ROS) produced by auto-oxidation of Hcy have been implicated in HHcy-associated neurological conditions. Hydrogen sulfide (H2S) is emerging as a potent neuroprotective and neuromodulator molecule. The present study was aimed to evaluate the ability of NaHS (a source of H2S) to attenuate Hcy-induced oxidative stress and altered antioxidant status in animals subjected to HHcy. Impaired cognitive functions assessed by Y-maze and elevated plus maze in Hcy-treated animals were reversed on NaHS administration. Increased levels of ROS, lipid peroxidation, protein carbonyls, and 4-hydroxynonenal (4-HNE)-modified proteins were observed in the cortex and hippocampus of Hcy-treated animals suggesting accentuated oxidative stress. This increase in Hcy-induced oxidative stress was reversed following NaHS supplementation. GSH/GSSG ratio, activity of antioxidant enzymes viz; superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase were decreased in Hcy-treated animals. NaHS supplementation, on the otherhand, restored redox ratio and activity of antioxidant enzymes in the brains of animals with HHcy. Further, NaHS administration normalized nuclear factor erythroid 2-related factor 2 expression and acetylcholinesterase (AChE) activity in the brain of Hcy-treated animals. Histopathological studies using cresyl violet indicated higher number of pyknotic neurons in the cortex and hippocampus of HHcy animals, which were reversed by NaHS administration. The results clearly demonstrate that NaHS treatment significantly ameliorates Hcy-induced cognitive impairment by attenuating oxidative stress, improving antioxidant status, and modulating AChE activity thereby suggesting potential of H2S as a therapeutic molecule.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Sector-25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Petráš M, Drgová A, Kovalská M, Tatarková Z, Tóthová B, Križanová O, Lehotský J. Effect of Hyperhomocysteinemia on Redox Balance and Redox Defence Enzymes in Ischemia-Reperfusion Injury and/or After Ischemic Preconditioning in Rats. Cell Mol Neurobiol 2017; 37:1417-1431. [PMID: 28210876 DOI: 10.1007/s10571-017-0473-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/12/2017] [Indexed: 12/21/2022]
Abstract
Increased level of homocysteine (hHcy) in plasma is an accompanying phenomenon of many diseases, including a brain stroke. This study determines whether hyperhomocysteinemia (which is a risk factor of brain ischemia) itself or in combination with ischemic preconditioning affects the ischemia-induced neurodegenerative changes, generation of reactive oxygen species (ROS), lipoperoxidation, protein oxidation, and activity of antioxidant enzymes in the rat brain cortex. The hHcy was induced by subcutaneous administration of homocysteine (0.45 μmol/g body weight) twice a day in 8 h intervals for 14 days. Rats were preconditioned by 5 min ischemia. Two days later, 15 min of global forebrain ischemia was induced by four vessel's occlusion. The study demonstrates that in the cerebral cortex, hHcy alone induces progressive neuronal cell death and morphological changes. Neuronal damage was associated with the pro-oxidative effect of hHcy, which leads to increased ROS formation, peroxidation of lipids and oxidative alterations of cortical proteins. Ischemic reperfusion injury activates degeneration processes and de-regulates redox balance which is aggravated under hHcy conditions and leads to the augmented lipoperoxidation and protein oxidation. If combined with hHcy, ischemic preconditioning could preserve the neuronal tissue from lethal ischemic effect and initiates suppression of lipoperoxidation, protein oxidation, and alterations of redox enzymes with the most significant effect observed after prolonged reperfusion. Increased prevalence of hyperhomocysteinemia in the Western population and crucial role of elevated Hcy level in the pathogenesis of neuronal disorders makes this amino acid as an interesting target for future research. Understanding the multiple etiological mechanisms and recognition of the co-morbid risk factors that lead to the ischemic/reperfusion injury and ischemic tolerance is therefore important for developing therapeutic strategies in human brain stroke associated with the elevated level of Hcy.
Collapse
Affiliation(s)
- Martin Petráš
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Anna Drgová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Mária Kovalská
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Zuzana Tatarková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Barbara Tóthová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Oľga Križanová
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ján Lehotský
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
- Department of Medical Biochemistry and BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 11161/4D, 036 01, Martin, Slovakia.
| |
Collapse
|
10
|
Santos TM, Kolling J, Siebert C, Biasibetti H, Bertó CG, Grun LK, Dalmaz C, Barbé‐Tuana FM, Wyse AT. Effects of previous physical exercise to chronic stress on long‐term aversive memory and oxidative stress in amygdala and hippocampus of rats. Int J Dev Neurosci 2016; 56:58-67. [DOI: 10.1016/j.ijdevneu.2016.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/31/2016] [Accepted: 12/04/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tiago Marcon Santos
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Janaína Kolling
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Cassiana Siebert
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Helena Biasibetti
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Carolina Gessinger Bertó
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Lucas Kich Grun
- Laboratório de Biologia MolecularDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Carla Dalmaz
- Laboratório de Neurobiologia do EstresseDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Florencia María Barbé‐Tuana
- Laboratório de Biologia MolecularDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Angela T.S. Wyse
- Laboratório de Neuroproteção e Doenças NeurometabólicasDepartamento de BioquímicaICBS, Universidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| |
Collapse
|
11
|
Lehotský J, Tothová B, Kovalská M, Dobrota D, Beňová A, Kalenská D, Kaplán P. Role of Homocysteine in the Ischemic Stroke and Development of Ischemic Tolerance. Front Neurosci 2016; 10:538. [PMID: 27932944 PMCID: PMC5120102 DOI: 10.3389/fnins.2016.00538] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/03/2016] [Indexed: 01/17/2023] Open
Abstract
Homocysteine (Hcy) is a toxic, sulfur-containing intermediate of methionine metabolism. Hyperhomocysteinemia (hHcy), as a consequence of impaired Hcy metabolism or defects in crucial co-factors that participate in its recycling, is assumed as an independent human stroke risk factor. Neural cells are sensitive to prolonged hHcy treatment, because Hcy cannot be metabolized either by the transsulfuration pathway or by the folate/vitamin B12 independent remethylation pathway. Its detrimental effect after ischemia-induced damage includes accumulation of reactive oxygen species (ROS) and posttranslational modifications of proteins via homocysteinylation and thiolation. Ischemic preconditioning (IPC) is an adaptive response of the CNS to sub-lethal ischemia, which elevates tissues tolerance to subsequent ischemia. The main focus of this review is on the recent data on homocysteine metabolism and mechanisms of its neurotoxicity. In this context, the review documents an increased oxidative stress and functional modification of enzymes involved in redox balance in experimentally induced hyperhomocysteinemia. It also gives an interpretation whether hyperhomocysteinemia alone or in combination with IPC affects the ischemia-induced neurodegenerative changes as well as intracellular signaling. Studies document that hHcy alone significantly increased Fluoro-Jade C- and TUNEL-positive cell neurodegeneration in the rat hippocampus as well as in the cortex. IPC, even if combined with hHcy, could still preserve the neuronal tissue from the lethal ischemic effects. This review also describes the changes in the mitogen-activated protein kinase (MAPK) protein pathways following ischemic injury and IPC. These studies provide evidence for the interplay and tight integration between ERK and p38 MAPK signaling mechanisms in response to the hHcy and also in association of hHcy with ischemia/IPC challenge in the rat brain. Further investigations of the protective factors leading to ischemic tolerance and recognition of the co-morbid risk factors would result in development of new avenues for exploration of novel therapeutics against ischemia and stroke.
Collapse
Affiliation(s)
- Ján Lehotský
- Institute of Medical Biochemistry and BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava Martin, Slovakia
| | - Barbara Tothová
- Institute of Medical Biochemistry and BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava Martin, Slovakia
| | - Maria Kovalská
- Institute of Medical Biochemistry and BioMed, Jessenius Faculty of Medicine, Comenius University in BratislavaMartin, Slovakia; Institute of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in BratislavaMartin, Slovakia
| | - Dušan Dobrota
- Institute of Medical Biochemistry and BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava Martin, Slovakia
| | - Anna Beňová
- Institute of Medical Biochemistry and BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava Martin, Slovakia
| | - Dagmar Kalenská
- Institute of Medical Biochemistry and BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava Martin, Slovakia
| | - Peter Kaplán
- Institute of Medical Biochemistry and BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava Martin, Slovakia
| |
Collapse
|
12
|
Barth CR, Luft C, Funchal GA, de Oliveira JR, Porto BN, Donadio MVF. LPS-induced neonatal stress in mice affects the response profile to an inflammatory stimulus in an age and sex-dependent manner. Dev Psychobiol 2016; 58:600-13. [PMID: 26956468 DOI: 10.1002/dev.21404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/19/2016] [Indexed: 12/26/2022]
Abstract
The aim of this study is to evaluate the response to an inflammatory stimulus in mice exposed to LPS-induced neonatal stress at different ages and sexes. Balb/c mice were submitted to intraperitoneal injections on postnatal days 3 and 10 with lipopolysaccharide (nLPS) or saline solution (nSal). At 21 or 60 days, either saline solution was injected or an inflammatory stimulus was induced by the injection of 1% carrageenan. Inflammatory cytokines, reactive oxygen species, and neutrophil extracellular traps (NETs) production were measured in peritoneal fluid. LPS-induced neonatal stress can reduce inflammatory cytokines in males and females. An increase in NETs production was observed when 60 day nLPS animals were compared to 21 day mice in both sexes. The ROS production was not affected by neonatal stress. The results shown here indicate that LPS-induced neonatal stress can alter cytokine production in response to inflammatory stimuli at different ages, in a sex-dependent effect. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 600-613, 2016.
Collapse
Affiliation(s)
- Cristiane R Barth
- Centro Infant, Institute of Biomedical Research (IPB) Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690, 2° andar, Rio Grande do Sul, Porto Alegre, CEP 90610-000, Brazil.,Cellular and Molecular Biology Graduate Program, Faculty of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Carolina Luft
- Centro Infant, Institute of Biomedical Research (IPB) Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690, 2° andar, Rio Grande do Sul, Porto Alegre, CEP 90610-000, Brazil.,Laboratory of Research in Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Giselle A Funchal
- Centro Infant, Institute of Biomedical Research (IPB) Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690, 2° andar, Rio Grande do Sul, Porto Alegre, CEP 90610-000, Brazil.,Cellular and Molecular Biology Graduate Program, Faculty of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas R de Oliveira
- Cellular and Molecular Biology Graduate Program, Faculty of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratory of Research in Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bárbara N Porto
- Centro Infant, Institute of Biomedical Research (IPB) Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690, 2° andar, Rio Grande do Sul, Porto Alegre, CEP 90610-000, Brazil
| | - Márcio V F Donadio
- Centro Infant, Institute of Biomedical Research (IPB) Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690, 2° andar, Rio Grande do Sul, Porto Alegre, CEP 90610-000, Brazil. .,Cellular and Molecular Biology Graduate Program, Faculty of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. .,Laboratory of Research in Cellular Biophysics and Inflammation, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
13
|
Rahmani A, Hatefi M, Dastjerdi MM, Zare M, Imani A, Shirazi D. Correlation Between Serum Homocysteine Levels and Outcome of Patients with Severe Traumatic Brain Injury. World Neurosurg 2016; 87:507-15. [DOI: 10.1016/j.wneu.2015.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
14
|
Sharma M, Tiwari M, Tiwari RK. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases. Basic Clin Pharmacol Toxicol 2015; 117:287-96. [DOI: 10.1111/bcpt.12424] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/19/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Meenakshi Sharma
- Dr. B. R. Ambedkar Centre for Biomedical Research; University of Delhi; Delhi India
- Chapman University School of Pharmacy; Harry and Diane Rinker Health Science Campus; Irvine CA USA
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research; University of Delhi; Delhi India
| | - Rakesh Kumar Tiwari
- Chapman University School of Pharmacy; Harry and Diane Rinker Health Science Campus; Irvine CA USA
| |
Collapse
|
15
|
Lehotsky J, Petras M, Kovalska M, Tothova B, Drgova A, Kaplan P. Mechanisms involved in the ischemic tolerance in brain: effect of the homocysteine. Cell Mol Neurobiol 2015; 35:7-15. [PMID: 25194713 DOI: 10.1007/s10571-014-0112-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/02/2014] [Indexed: 02/02/2023]
Abstract
Hyperhomocysteinemia (hHCy) is recognized as a co-morbid risk factor of human stroke. It also aggravates the ischemia-induced injury by increased production of reactive oxygen species, and by the homocysteinylation and thiolation of functional proteins. Ischemic preconditioning represents adaptation of the CNS to sub-lethal ischemia, resulting in increased brain tolerance to subsequent ischemia. We present here an overview of recent data on the homocysteine (Hcy) metabolism and on the genetic and metabolic causes of hHCy-related neuropathologies in humans. In this context, the review documents for an increased oxidative stress and for the functional modifications of enzymes involved in the redox balance in experimentally induced hHCy. Hcy metabolism leads also to the redox imbalance and increased oxidative stress resulting in elevated lipoperoxidation and protein oxidation, the products known to be included in the neuronal degeneration. Additionally, we examine the effect of the experimental hHCy in combination with ischemic insult, and/or with the preischemic challenge on the extent of neuronal degeneration as well as the intracellular signaling and the regulation of DNA methylation. The review also highlights that identification of the effects of co-morbid factors in the mechanisms of ischemic tolerance mechanisms would lead to improved therapeutics, especially the brain tissue.
Collapse
Affiliation(s)
- Jan Lehotsky
- Jessenius Faculty of Medicine, Institute of Medical Biochemistry, Comenius University, Mala Hora 4, 036 01, Martin, Slovakia,
| | | | | | | | | | | |
Collapse
|
16
|
Srejovic I, Jakovljevic V, Zivkovic V, Barudzic N, Radovanovic A, Stanojlovic O, Djuric DM. The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart. Mol Cell Biochem 2014; 401:97-105. [PMID: 25467376 DOI: 10.1007/s11010-014-2296-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022]
Abstract
In light of the limited data concerning the role of N-methyl-D-aspartate (NMDA) receptors in cardiac function, the aim of the present study was to determine the role of NMDA receptors in cardiac function, as well as the possible role played by the oxidative stress induced by the overstimulation of NMDA receptors in isolated rat heart. The hearts of male, Wistar albino rats (n = 24, 12 in each experimental group, BM 180-200 g) were retrogradely perfused at a constant perfusion pressure (70 cm H₂O₂), using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent administration of DL-homocysteine thiolactone (DL-Hcy TLHC) alone, the combination of DL-Hcy TLHC and dizocilpine (MK-801), and MK-801 alone. In the second experimental group, the order of the administration of each of the substances was reversed. The oxidative stress biomarkers, including thiobarbituric acid reactive substances (TBARS), NO(2)(-), O(2)(-) and H₂O₂, were each determined spectrophotometrically. DL-Hcy TLHC and MK-801 depressed cardiac function. DL-Hcy TLHC decreased oxidative stress, a finding that contrasted with the results of the experiments in which MK-801 was administered first. The findings of this study were suggestive of the likely role played by NMDA receptors in the regulation of cardiac function and coronary circulation in isolated rat heart.
Collapse
Affiliation(s)
- Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | | | | | | | | | | |
Collapse
|
17
|
Siebert C, Kolling J, Scherer EBS, Schmitz F, da Cunha MJ, Mackedanz V, de Andrade RB, Wannmacher CMD, Wyse ATS. Effect of physical exercise on changes in activities of creatine kinase, cytochrome c oxidase and ATP levels caused by ovariectomy. Metab Brain Dis 2014; 29:825-35. [PMID: 24810635 DOI: 10.1007/s11011-014-9564-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
The reduction in the secretion of ovarian hormones, principally estrogen, is a consequence of menopause. Estrogens act primarily as female sex hormones, but also exert effects on different physiological systems including the central nervous system. The treatment normally used to reduce the symptoms of menopause is the hormone therapy, which seems to be effective in treating symptoms, but it may be responsible for adverse effects. Based on this, there is an increasing demand for alternative therapies that minimize signs and symptoms of menopause. In the present study we investigated the effect of ovariectomy and/or physical exercise on the activities of energy metabolism enzymes, such as creatine kinase (cytosolic and mitochondrial fractions), pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, as well as on ATP levels in the hippocampus of adult rats. Adult female Wistar rats with 90 days of age were subjected to ovariectomy (an animal model widely used to mimic the postmenopausal changes). Thirty days after the procedure, the rats were submitted to the exercise protocol, which was performed three times a week for 30 days. Twelve hours after the last training session, the rats were decapitated for subsequent biochemical analyzes. Results showed that ovariectomy did not affect the activities of pyruvate kinase, succinate dehydrogenase and complex II, but decreased the activities of creatine kinase (cytosolic and mitochondrial fractions) and cytochrome c oxidase. ATP levels were also reduced. Exercise did not produce the expected results since it was only able to partially reverse the activity of creatine kinase cytosolic fraction. The results of this study suggest that estrogen deficiency, which occurs as a result of ovariectomy, affects generation systems and energy homeostasis, reducing ATP levels in hippocampus of adult female rats.
Collapse
Affiliation(s)
- Cassiana Siebert
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Silva ADSE, da Mota MPG. Effects of physical activity and training programs on plasma homocysteine levels: a systematic review. Amino Acids 2014; 46:1795-804. [DOI: 10.1007/s00726-014-1741-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/03/2014] [Indexed: 11/28/2022]
|
19
|
Swimming improves the emotional memory deficit by scopolamine via mu opioid receptors. Physiol Behav 2014; 128:237-46. [DOI: 10.1016/j.physbeh.2014.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/29/2013] [Accepted: 02/04/2014] [Indexed: 11/23/2022]
|
20
|
Gerber YN, Sabourin JC, Hugnot JP, Perrin FE. Unlike physical exercise, modified environment increases the lifespan of SOD1G93A mice however both conditions induce cellular changes. PLoS One 2012; 7:e45503. [PMID: 23029057 PMCID: PMC3447796 DOI: 10.1371/journal.pone.0045503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/21/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is characterized by a gradual muscular paralysis resulting from progressive motoneurons death. ALS etiology remains unknown although it has been demonstrated to be a multifactorial disease involving several cellular partners. There is currently no effective treatment. Even if the effect of exercise is under investigation for many years, whether physical exercise is beneficial or harmful is still under debate. METHODS AND FINDINGS We investigated the effect of three different intensities of running exercises on the survival of SOD1(G93A) mice. At the early-symptomatic stage (P60), males were isolated and randomly assigned to 5 conditions: 2 sedentary groups ("sedentary" and "sedentary treadmill" placed on the inert treadmill), and 3 different training intensity groups (5 cm/s, 10 cm/s and 21 cm/s; 15 min/day, 5days/week). We first demonstrated that an appropriate "control" of the environment is of the utmost importance since comparison of the two sedentary groups evidenced an 11.6% increase in survival in the "sedentary treadmill" group. Moreover, we showed by immunohistochemistry that this increased lifespan is accompanied with motoneurons survival and increased glial reactivity in the spinal cord. In a second step, we showed that when compared with the proper control, all three running-based training did not modify lifespan of the animals, but result in motoneurons preservation and changes in glial cells activation. CONCLUSIONS/SIGNIFICANCE We demonstrate that increase in survival induced by a slight daily modification of the environment is associated with motoneurons preservation and strong glial modifications in the lumbar spinal cord of SOD1(G93A). Using the appropriate control, we then demonstrate that all running intensities have no effect on the survival of ALS mice but induce cellular modifications. Our results highlight the critical importance of the control of the environment in ALS studies and may explain discrepancy in the literature regarding the effect of exercise in ALS.
Collapse
Affiliation(s)
- Yannick N. Gerber
- INSERM U1051, Institute for Neurosciences of Montpellier, Pathologies Sensorielles, Neuroplasticité et Thérapies, Saint-Eloi Hospital, Montpellier, France
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Jean-Charles Sabourin
- Integrative Biology of Neurodegeneration, Neuroscience Department, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Jean-Philippe Hugnot
- INSERM U1051, Institute for Neurosciences of Montpellier, Pathologies Sensorielles, Neuroplasticité et Thérapies, Saint-Eloi Hospital, Montpellier, France
| | - Florence E. Perrin
- INSERM U1051, Institute for Neurosciences of Montpellier, Pathologies Sensorielles, Neuroplasticité et Thérapies, Saint-Eloi Hospital, Montpellier, France
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Integrative Biology of Neurodegeneration, Neuroscience Department, University of the Basque Country UPV/EHU, Bilbao, Spain
| |
Collapse
|