1
|
Alger JR, O'Neill J, O'Connor MJ, Kalender G, Ly R, Ng A, Dillon A, Narr KL, Loo SK, Levitt JG. Neuroimaging of Supraventricular Frontal White Matter in Children with Familial Attention-Deficit Hyperactivity Disorder and Attention-Deficit Hyperactivity Disorder Due to Prenatal Alcohol Exposure. Neurotox Res 2021; 39:1054-1075. [PMID: 33751467 PMCID: PMC8442735 DOI: 10.1007/s12640-021-00342-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is common in patients with (ADHD+PAE) and without (ADHD-PAE) prenatal alcohol exposure (PAE). Many patients diagnosed with idiopathic ADHD actually have covert PAE, a treatment-relevant distinction. To improve differential diagnosis, we sought to identify brain differences between ADHD+PAE and ADHD-PAE using neurobehavioral, magnetic resonance spectroscopy, and diffusion tensor imaging metrics that had shown promise in past research. Children 8-13 were recruited in three groups: 23 ADHD+PAE, 19 familial ADHD-PAE, and 28 typically developing controls (TD). Neurobehavioral instruments included the Conners 3 Parent Behavior Rating Scale and the Delis-Kaplan Executive Function System (D-KEFS). Two dimensional magnetic resonance spectroscopic imaging was acquired from supraventricular white matter to measure N-acetylaspartate compounds, glutamate, creatine + phosphocreatine (creatine), and choline-compounds (choline). Whole brain diffusion tensor imaging was acquired and used to to calculate fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from the same superventricular white matter regions that produced magnetic resonance spectroscopy data. The Conners 3 Parent Hyperactivity/Impulsivity Score, glutamate, mean diffusivity, axial diffusivity, and radial diffusivity were all higher in ADHD+PAE than ADHD-PAE. Glutamate was lower in ADHD-PAE than TD. Within ADHD+PAE, inferior performance on the D-KEFS Tower Test correlated with higher neurometabolite levels. These findings suggest white matter differences between the PAE and familial etiologies of ADHD. Abnormalities detected by magnetic resonance spectroscopy and diffusion tensor imaging co-localize in supraventricular white matter and are relevant to executive function symptoms of ADHD.
Collapse
Affiliation(s)
- Jeffry R Alger
- Department of Neurology, University of California Los Angeles, MC 708522, Los Angeles, CA, 90024, USA.
- Neurospectroscopics, LLC, Sherman Oaks, CA, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hura Imaging Inc, Calabas, CA, USA.
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Mary J O'Connor
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Guldamla Kalender
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Ronald Ly
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Andrea Ng
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Andrea Dillon
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- Department of Neurology, University of California Los Angeles, MC 708522, Los Angeles, CA, 90024, USA
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Sandra K Loo
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer G Levitt
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Instutute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
3
|
Ieraci A, Herrera DG. Early Postnatal Ethanol Exposure in Mice Induces Sex-Dependent Memory Impairment and Reduction of Hippocampal NMDA-R2B Expression in Adulthood. Neuroscience 2019; 427:105-115. [PMID: 31874240 DOI: 10.1016/j.neuroscience.2019.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Drinking alcohol during pregnancy is particularly detrimental for the developing brain and may cause a broad spectrum of cognitive and behavioral impairments, collectively known as fetal alcohol spectrum disorder (FASD). While behavioral abnormalities and brain damage have been widely investigated in animal models of FASD, the sex differences in the vulnerability to perinatal ethanol exposure have received less consideration. Here we investigated the long-term behavioral and molecular effects of acute ethanol-binge like exposure during the early postnatal period (equivalent to the third trimester of human pregnancy) in adult male and female mice. CD1 mice received a single ethanol exposure on P7 and were analyzed starting from P60. We found that ethanol-exposed mice showed increased activity in the open field test and in the plus-maze test, regardless of the sex. Interestingly, only ethanol-exposed adult male mice exhibited memory impairment in the water maze and fear-conditioning tests. Remarkably, hippocampal levels of NMDA-R2B were reduced only in ethanol-exposed male, while total BDNF levels were increased in both male and female ethanol-exposed mice. Our data suggest a different susceptibility of early postnatal ethanol exposure in male and female CD1 mice.
Collapse
Affiliation(s)
- Alessandro Ieraci
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Daniel G Herrera
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
4
|
Feizolahi F, Azarbayjani MA, Nasehi M, Peeri M, Zarrindast MR. The combination of swimming and curcumin consumption may improve spatial memory recovery after binge ethanol drinking. Physiol Behav 2019; 207:139-150. [PMID: 31071339 DOI: 10.1016/j.physbeh.2019.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022]
|
5
|
Howells FM, Donald KA, Roos A, Woods RP, Zar HJ, Narr KL, Stein DJ. Reduced glutamate in white matter of male neonates exposed to alcohol in utero: a (1)H-magnetic resonance spectroscopy study. Metab Brain Dis 2016; 31:1105-12. [PMID: 27311608 PMCID: PMC6465962 DOI: 10.1007/s11011-016-9850-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
In utero exposure to alcohol leads to a spectrum of fetal alcohol related disorders (FASD). However, few studies used have used proton magnetic resonance spectroscopy ((1)H-MRS) to understand how neurochemical disturbances relate to the pathophysiology of FASD. Further, no studies to date have assessed brain metabolites in infants exposed to alcohol in utero. We hypothesize that neonates exposed to alcohol in utero will show decreased glutamatergic activity, pre-emptive of their clinical diagnosis or behavioural phenotype. Single voxel (1)H-MRS data, sampled in parietal white and gray matter, were acquired from 36 neonates exposed to alcohol in utero, and 31 control unexposed healthy neonates, in their 2nd-4th week of life. Metabolites relative to creatine with phosophocreatine and metabolites absolute concentrations using a water reference are reported. Male infants exposed to alcohol in utero were found to have reduced concentration of glutamate with glutamine (Glx) in their parietal white matter (PWM), compared to healthy male infants (p = 0.02). Further, male infants exposed to alcohol in utero had reduced concentration and ratio for glutamate (Glu) in their PWM (p = 0.02), compared to healthy male infants and female infants exposed to alcohol in utero. Female infants showed higher relative Glx and Glu ratios for parietal gray matter (PGM, p < 0.01), compared to male infants. We speculate that the decreased Glx and Glu concentrations in PWM are a result of delayed oligodendrocyte maturation, which may be a result of dysfunctional thyroid hormone activity in males exposed to alcohol in utero. Further study is required to elucidate the relationship between Glx and Glu, thyroid hormone activity, and oligodendrocyte maturation in infants exposure to alcohol in utero.
Collapse
Affiliation(s)
- F M Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| | - K A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - A Roos
- Medical Research Council Anxiety and Stress Disorders Unit, University of Stellenbosch, Stellenbosch, South Africa
| | - R P Woods
- Departments of Neurology and of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - H J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - K L Narr
- Departments of Neurology and of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - D J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Dysregulation of TrkB phosphorylation and proBDNF protein in adenylyl cyclase 1 and 8 knockout mice in a model of fetal alcohol spectrum disorder. Alcohol 2016; 51:25-35. [PMID: 26992697 DOI: 10.1016/j.alcohol.2015.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) mediates neuron growth and is regulated by adenylyl cyclases (ACs). Mice lacking AC1/8 (DKO) have a basal reduction in the dendritic complexity of medium spiny neurons in the caudate putamen and demonstrate increased neurotoxicity in the striatum following acute neonatal ethanol exposure compared to wild type (WT) controls, suggesting a compromise in BDNF regulation under varying conditions. Although neonatal ethanol exposure can negatively impact BDNF expression, little is known about the effect on BDNF receptor activation and its downstream signaling, including Akt activation, an established neuroprotective pathway. Therefore, here we determined the effects of AC1/8 deletion and neonatal ethanol administration on BDNF and proBDNF protein expression, and activation of tropomyosin-related kinase B (TrkB), Akt, ERK1/2, and PLCγ. WT and DKO mice were treated with a single dose of 2.5 g/kg ethanol or saline at postnatal days 5-7 to model late-gestational alcohol exposure. Striatal and cortical tissues were analyzed using a BDNF enzyme-linked immunosorbent assay or immunoblotting for proBDNF, phosphorylated and total TrkB, Akt, ERK1/2, and PLCɣ1. Neither postnatal ethanol exposure nor AC1/8 deletion affected total BDNF protein expression at any time point in either region examined. Neonatal ethanol increased the expression of proBDNF protein in the striatum of WT mice 6, 24, and 48 h after exposure, with DKO mice demonstrating a reduction in proBDNF expression 6 h after exposure. Six and 24 h after ethanol administration, phosphorylation of full-length TrkB in the striatum was significantly reduced in WT mice, but was significantly increased in DKO mice only at 24 h. Interestingly, 48 h after ethanol, both WT and DKO mice demonstrated a reduction in phosphorylated full-length TrkB. In addition, Akt and PLCɣ1 phosphorylation was also decreased in ethanol-treated DKO mice 48 h after injection. These data demonstrate dysregulation of a potential survival pathway in the AC1/8 knockout mice following early-life ethanol exposure.
Collapse
|
7
|
Smith JP, Prince MA, Achua JK, Robertson JM, Anderson RT, Ronan PJ, Summers CH. Intensity of anxiety is modified via complex integrative stress circuitries. Psychoneuroendocrinology 2016; 63:351-61. [PMID: 26555428 PMCID: PMC4838407 DOI: 10.1016/j.psyneuen.2015.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022]
Abstract
Escalation of anxious behavior while environmentally and socially relevant contextual events amplify the intensity of emotional response produces a testable gradient of anxiety shaped by integrative circuitries. Apprehension of the Stress-Alternatives Model apparatus (SAM) oval open field (OF) is measured by the active latency to escape, and is delayed by unfamiliarity with the passageway. Familiar OF escape is the least anxious behavior along the continuum, which can be reduced by anxiolytics such as icv neuropeptide S (NPS). Social aggression increases anxiousness in the SAM, reducing the number of mice willing to escape by 50%. The apprehension accompanying escape during social aggression is diminished by anxiolytics, such as exercise and corticotropin releasing-factor receptor 1 (CRF1) antagonism, but exacerbated by anxiogenic treatment, like antagonism of α2-adrenoreceptors. What is more, the anxiolytic CRF1 and anxiogenic α2-adrenoreceptor antagonists also modify behavioral phenotypes, with CRF1 antagonism allowing escape by previously submissive animals, and α2-adrenoreceptor antagonism hindering escape in mice that previously engaged in it. Gene expression of NPS and brain-derived neurotrophic factor (BDNF) in the central amygdala (CeA), as well as corticosterone secretion, increased concomitantly with the escalating anxious content of the mouse-specific anxiety continuum. The general trend of CeA NPS and BDNF expression suggested that NPS production was promoted by increasing anxiousness, and that BDNF synthesis was associated with learning about ever-more anxious conditions. The intensity gradient for anxious behavior resulting from varying contextual conditions may yield an improved conceptualization of the complexity of mechanisms producing the natural continuum of human anxious conditions, and potential therapies that arise therefrom.
Collapse
Affiliation(s)
- Justin P. Smith
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota 57105 USA,Institute of Possibility, 322 E. 8th Street, Suite 302, Sioux Falls, SD 57103 USA,Sanford Health, 2301 E. 60th St. N., Sioux Falls, SD 57104 USA
| | - Melissa A. Prince
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Justin K. Achua
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota 57105 USA
| | - James M. Robertson
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Raymond T. Anderson
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Department of Biochemistry, West Virginia University School of Medicine 1 Medical Center Dr., Morgantown, WV 26506 USA
| | - Patrick J. Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota 57105 USA,Avera Research Institute, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota 57105 USA,Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO 80220 USA,Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Cliff H. Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA,Corresponding author: Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069-2390, 605 677 6177, fax: 605 677 6557.
| |
Collapse
|