1
|
Song Y, Yang C. Mechanistic advances of hyperoxia-induced immature brain injury. Heliyon 2024; 10:e30005. [PMID: 38694048 PMCID: PMC11058899 DOI: 10.1016/j.heliyon.2024.e30005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The impact of hyperoxia-induced brain injury in preterm infants is being increasingly investigated. However, the parameters and protocols used to study this condition in animal models lack consistency. Research is further hampered by the fact that hyperoxia exerts both direct and indirect effects on oligodendrocytes and neurons, with the precise underlying mechanisms remaining unclear. In this article, we aim to provide a comprehensive overview of the conditions used to induce hyperoxia in animal models of immature brain injury. We discuss what is known regarding the mechanisms underlying hyperoxia-induced immature brain injury, focusing on the effects on oligodendrocytes and neurons, and briefly describe therapies that may counteract the effects of hyperoxia. We also identify further studies required to fully elucidate the effects of hyperoxia on the immature brain as well as discuss the leading therapeutic options.
Collapse
Affiliation(s)
- Yue Song
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Clinical Medicine, The Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Changqiang Yang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Clinical Medicine, The Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
2
|
Machado RS, Tenfen L, Joaquim L, Lanzzarin EVR, Bernardes GC, Bonfante SR, Mathias K, Biehl E, Bagio É, Stork SDS, Denicol T, de Oliveira MP, da Silva MR, Danielski LG, de Quadros RW, Rezin GT, Terra SR, Balsini JN, Gava FF, Petronilho F. Hyperoxia by short-term promotes oxidative damage and mitochondrial dysfunction in rat brain. Respir Physiol Neurobiol 2022; 306:103963. [PMID: 36041716 DOI: 10.1016/j.resp.2022.103963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Oxygen (O2) therapy is used as a therapeutic protocol to prevent or treat hypoxia. However, a high inspired fraction of O2 (FIO2) promotes hyperoxia, a harmful condition for the central nervous system (CNS). The present study evaluated parameters of oxidative stress and mitochondrial dysfunction in the brain of rats exposed to different FIO2. Male Wistar rats were exposed to hyperoxia (FIO2 40 % and 60 %) compared to the control group (FIO2 21 %) for 2 h. Oxidative stress, neutrophilic infiltration, and mitochondrial respiratory chain enzymes were determined in the hippocampus, striatum, cerebellum, cortex, and prefrontal cortex after O2 exposure. The animals exposed to hyperoxia showed increased lipid peroxidation, formation of carbonyl proteins, N/N concentration, and neutrophilic infiltration in some brain regions, like hippocampus, striatum, and cerebellum being the most affected. Furthermore, CAT activity and activity of mitochondrial enzyme complexes were also altered after exposure to hyperoxia. Rats exposed to hyperoxia showed increase in oxidative stress parameters and mitochondrial dysfunction in brain structures.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Leonardo Tenfen
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Everton Venicius Rosa Lanzzarin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Gabriela Costa Bernardes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Sandra Regina Bonfante
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Erica Biehl
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Érick Bagio
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Solange de Souza Stork
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tais Denicol
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Silvia Resende Terra
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jairo Nunes Balsini
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
3
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
4
|
Neuroprotective Effects of Lacosamide and Memantine on Hyperoxic Brain Injury in Rats. Neurochem Res 2020; 45:1920-1929. [PMID: 32444924 DOI: 10.1007/s11064-020-03056-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
In neonates supraphysiological oxygen therapy has been demonstrated to cause neuronal death in hippocampus, prefrontal cortex, parietal cortex, and retrosplenial cortex. There is a need for the detection of novel neuroprotective drugs. Neuroprotective effects of lacosamide or memantine have been demonstrated in adult patients with ischemia, trauma and status epilepticus. The effects in immature brains may be different. This study aimed to evaluate neuroprotective effects of lacosamide and memantine treatment in a hyperoxia-induced brain injury model in immature rats. This study was performed in the Animal Experiments Laboratory of Dokuz Eylul University Faculty of Medicine. Neonatal Wistar strain rat pups were exposed to hyperoxia (80% oxygen + 20% nitrogen) for five days postnatally. They were divided into five groups; hyperoxia + lacosamide, hyperoxia + memantine, hyperoxia + lacosamide and memantine, hyperoxia + saline, control groups. After termination of the experiment, brain tissues were examined. Neuron counting in examined regions were found to be higher in hyperoxia + memantine and hyperoxia + lacosamide and memantine groups than hyperoxia + saline group. The presence of apoptotic cells evaluated with TUNEL and active Caspase-3 in hyperoxia + memantine and hyperoxia + lacosamide and memantine groups were found to be lower compared to hyperoxia + saline group. This study demonstrates that neuron death and apoptosis in newborn rat brains after hyperoxia is reduced upon memantine treatment. This is the first study to show the effects of memantine and lacosamide on hyperoxia-induced damage in neonatal rat brains.
Collapse
|
5
|
Lorente-Pozo S, Parra-Llorca A, Lara-Cantón I, Solaz A, García-Jiménez JL, Pallardó FV, Vento M. Oxygen in the neonatal period: Oxidative stress, oxygen load and epigenetic changes. Semin Fetal Neonatal Med 2020; 25:101090. [PMID: 32014366 DOI: 10.1016/j.siny.2020.101090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Preterm infants frequently require positive pressure ventilation and oxygen supplementation in the first minutes after birth. It has been shown that the amount of oxygen provided during stabilization, the oxygen load, if excessive may cause hyperoxia, and oxidative damage to DNA. Epidemiologic studies have associated supplementation with pure oxygen in the first minutes after birth with childhood cancer. Recent studies have shown that the amount of oxygen supplemented to preterm infants after birth modifies the epigenome. Of note, the degree of DNA hyper-or hypomethylation correlates with the oxygen load provided upon stabilization. If these epigenetic modifications would persist, oxygen supplied in the first minutes after birth could have long term consequences. Further studies with a robust power calculation and long-term follow up are needed to bear out the long-term consequences of oxygen supplementation during postnatal stabilization of preterm infants.
Collapse
Affiliation(s)
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.
| | | | - Alvaro Solaz
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.
| | | | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine, University of Valencia-INCLIVA, CIBERER, Spain.
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain.
| |
Collapse
|
6
|
Ramani M, Miller K, Brown J, Kumar R, Kadasamy J, McMahon L, Ballinger S, Ambalavanan N. Early Life Supraphysiological Levels of Oxygen Exposure Permanently Impairs Hippocampal Mitochondrial Function. Sci Rep 2019; 9:13364. [PMID: 31527593 PMCID: PMC6746707 DOI: 10.1038/s41598-019-49532-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/27/2019] [Indexed: 01/24/2023] Open
Abstract
Preterm infants requiring prolonged oxygen therapy often develop cognitive dysfunction in later life. Previously, we reported that 14-week-old young adult mice exposed to hyperoxia as newborns had spatial and learning deficits and hippocampal shrinkage. We hypothesized that the underlying mechanism was the induction of hippocampal mitochondrial dysfunction by neonatal hyperoxia. C57BL/6J mouse pups were exposed to 85% oxygen or room air from P2-P14. Hippocampal proteomic analysis was performed in young adult mice (14 weeks). Mitochondrial bioenergetics were measured in neonatal (P14) and young adult mice. We found that hyperoxia exposure reduced mitochondrial ATP-linked oxygen consumption and increased state 4 respiration linked proton leak in both neonatal and young adult mice while complex I function was decreased at P14 but increased in young adult mice. Proteomic analysis revealed that hyperoxia exposure decreased complex I NDUFB8 and NDUFB11 and complex IV 7B subunits, but increased complex III subunit 9 in young adult mice. In conclusion, neonatal hyperoxia permanently impairs hippocampal mitochondrial function and alters complex I function. These hippocampal mitochondrial changes may account for cognitive deficits seen in children and adolescents born preterm and may potentially be a contributing mechanism in other oxidative stress associated brain disorders.
Collapse
Affiliation(s)
- Manimaran Ramani
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Kiara Miller
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jamelle Brown
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ranjit Kumar
- Departments of Bioinformatics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jegen Kadasamy
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lori McMahon
- Departments of cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Departments of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Scott Ballinger
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Namasivayam Ambalavanan
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Departments of cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| |
Collapse
|
7
|
Lorente-Pozo S, Parra-Llorca A, Núñez-Ramiro A, Cernada M, Hervás D, Boronat N, Sandoval J, Vento M. The Oxygen Load Supplied during Delivery Room Stabilization of Preterm Infants Modifies the DNA Methylation Profile. J Pediatr 2018; 202:70-76.e2. [PMID: 30172427 DOI: 10.1016/j.jpeds.2018.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/13/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine whether the amount of oxygen provided during postnatal stabilization changes the DNA methylome in preterm infants. STUDY DESIGN This prospective, observational study included 32 preterm infants ≤32 weeks of gestation who received oxygen in the delivery room. Patients were monitored using a respiratory function monitor to determine the amount of oxygen received upon stabilization. Blood samples were processed for comparison of DNA methylation before and after resuscitation using a DNA methylation high-resolution microarray Infinium Human DNA methylation EPIC 850K BeadChip. RESULTS The median amount oxygen provided to preterm infants during stabilization was 644 mLO2/kg. Male sex and vaginal delivery were associated with increased oxygen needs. There were 2626 differentially methylated CpGs representing 1567 genes that showed an association with oxygen load selected and, of these, 85% were hypomethylated. We found that oxygen loads of >500 mLO2/kg changed the methylation pattern of the selected CpGs. Genes associated with these CpGs were "enriched" in KEGG pathways involved in cell cycle progression, DNA repair, and oxidative stress. CONCLUSIONS The oxygen load provided upon resuscitation modified the DNA methylome. Differential methylation may lead to altered expression of genes related to cell cycle progression, oxidative stress, and DNA repair. The reversibility of these early epigenetic changes is unknown but merits further study.
Collapse
Affiliation(s)
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Antonio Núñez-Ramiro
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - María Cernada
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - David Hervás
- Department of Biostatistics, Health Research Institute La Fe, Valencia, Spain
| | - Nuria Boronat
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute La Fe, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain; Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| |
Collapse
|
8
|
Supraphysiological Levels of Oxygen Exposure During the Neonatal Period Impairs Signaling Pathways Required for Learning and Memory. Sci Rep 2018; 8:9914. [PMID: 29967535 PMCID: PMC6028393 DOI: 10.1038/s41598-018-28220-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
Preterm infants often require prolonged oxygen supplementation and are at high risk of neurodevelopmental impairment. We recently reported that adult mice exposed to neonatal hyperoxia (postnatal day [P] 2 to 14) had spatial navigation memory deficits associated with hippocampal shrinkage. The mechanisms by which early oxidative stress impair neurodevelopment are not known. Our objective was to identify early hyperoxia-induced alterations in hippocampal receptors and signaling pathways necessary for memory formation. We evaluated C57BL/6 mouse pups at P14, exposed to either 85% oxygen or air from P2 to 14. We performed targeted analysis of hippocampal ligand-gated ion channels and proteins necessary for memory formation, and global bioinformatic analysis of differentially expressed hippocampal genes and proteins. Hyperoxia decreased hippocampal mGLU7, TrkB, AKT, ERK2, mTORC1, RPS6, and EIF4E and increased α3, α5, and ɤ2 subunits of GABAA receptor and PTEN proteins, although changes in gene expression were not always concordant. Bioinformatic analysis indicated dysfunction in mitochondria and global protein synthesis and translational processes. In conclusion, supraphysiological oxygen exposure reduced proteins necessary for hippocampus-dependent memory formation and may adversely impact hippocampal mitochondrial function and global protein synthesis. These early hippocampal changes may account for memory deficits seen in preterm survivors following prolonged oxygen supplementation.
Collapse
|