1
|
Alami K, Fathollahi Y, Hashemizadeh S, Mosleh M, Semnanian S, Mousavi SY, Azizi H. Microglia-dependent peripheral neuropathic pain in adulthood following adolescent exposure to morphine in male rats. Neuropharmacology 2025; 263:110211. [PMID: 39521039 DOI: 10.1016/j.neuropharm.2024.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Persistent effects of adolescent morphine exposure on neurobiological processes and behaviors in adulthood have been partially identified. Hypersensitivity following adolescent exposure to morphine is a complex and multifaceted phenomenon whose underlying mechanisms remain largely unknown. This study aimed to investigate the involvement of microglia in neuropathic pain sensitivity following adolescent morphine exposure, focused on hippocampal genes expression and plasticity. To achieve this, adolescent male Wistar rats received morphine, along with minocycline, to inhibit microglial activity. The allodynia and hyperalgesia of adult rats were evaluated using von-Frey filaments and the Hargreaves plantar test in both baseline and neuropathic pain conditions. Hippocampal genes expression was analyzed following the behavioral tests. The plasticity of the Schaffer-CA1 hippocampal synapses was also assessed using field potential recording following neuropathy. Results showed that adolescent morphine exposure exacerbated the allodynia and hyperalgesia in both baseline and neuropathic pain states in adult rats, which was significantly reduced by the co-administration of minocycline during adolescence. Neuropathy in adult rats was found to increase hippocampal expression of inflammatory mediators, but adolescent morphine prevented this effect. Additionally, we observed a reduction in the baseline synaptic transmission and long-term potentiation (LTP) at the Schaffer-CA1 hippocampal synapses after neuropathy in adult rats following adolescent exposure to morphine. The reduction of synaptic activity was not altered by the co-administration of minocycline with morphine during adolescence. It is concluded that microglia play an important role in mediating hypersensitivity induced by adolescent morphine exposure, although hippocampal microglia may not be directly involved in this process.
Collapse
Affiliation(s)
- Kawsar Alami
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shiva Hashemizadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Mosleh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran, Iran
| | - Sayed Yousof Mousavi
- Department of Cognitive Neuroscience, Neuroscience Research Center, Kavosh Nonprofit Educational Research Institute, Kabul, Afghanistan
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Steinbauer P, Lisy T, Monje FJ, Chwala E, Wildner B, Schned H, Deindl P, Berger A, Giordano V, Olischar M. Impact of neonatal pain and opiate administration in animal models: A meta-analysis concerning pain threshold. Early Hum Dev 2024; 193:106014. [PMID: 38701669 DOI: 10.1016/j.earlhumdev.2024.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND AIM Neonatal intensive care treatment, including frequently performed painful procedures and administration of analgesic drugs, can have different effects on the neurodevelopment. This systematic review and meta-analysis aimed to investigate the influence of pain, opiate administration, and pre-emptive opiate administration on pain threshold in animal studies in rodents, which had a brain development corresponding to preterm and term infants. METHODS A systematic literature search of electronic data bases including CENTRAL (OVID), CINAHL (EBSCO), Embase.com, Medline (OVID), Web of Science, and PsycInfo (OVID) was conducted. A total of 42 studies examining the effect of pain (n = 38), opiate administration (n = 9), and opiate administration prior to a painful event (n = 5) in rodents were included in this analysis. RESULTS The results revealed that pain (g = 0.42, 95%CI 0.16-0.67, p = 0.001) increased pain threshold leading to hypoalgesia. Pre-emptive opiate administration had the opposite effect, lowering pain threshold, when compared to pain without prior treatment (g = -1.79, 95%CI -2.71-0.86, p = 0.0001). Differences were found in the meta regression for type of stimulus (thermal: g = 0.66, 95%CI 0.26-1.07, p = 0.001; vs. mechanical: g = 0.13, 95%CI -0.98-1.25, p = 0.81) and gestational age (b = -1.85, SE = 0.82, p = 0.027). In addition, meta regression indicated an association between higher pain thresholds and the amount of cumulative pain events (b = 0.06, SE = 0.03, p = 0.05) as well as severity of pain events (b = 0.94, SE = 0.28, p = 0.001). CONCLUSION Neonatal exposure to pain results in higher pain thresholds. However, caution is warranted in extrapolating these findings directly to premature infants. Further research is warranted to validate similar effects in clinical contexts and inform evidence-based practices in neonatal care.
Collapse
Affiliation(s)
- Philipp Steinbauer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| | - Tamara Lisy
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Eva Chwala
- Information Retrieval Office, University Library of the Medical University of Vienna, Vienna, Austria
| | - Brigitte Wildner
- Information Retrieval Office, University Library of the Medical University of Vienna, Vienna, Austria
| | - Hannah Schned
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Philipp Deindl
- Department of Neonatology and Pediatric Intensive Care Medicine, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Germany
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Vito Giordano
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Monika Olischar
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Crespo PC, Anderson Meira Martins L, Martins OG, Camacho Dos Reis C, Goulart RN, de Souza A, Medeiros LF, Scarabelot VL, Gamaro GD, Silva SP, de Oliveira MR, Torres ILDS, de Souza ICC. Short-term effectiveness of transcranial direct current stimulation in the nociceptive behavior of neuropathic pain rats in development. AIMS Neurosci 2023; 10:433-446. [PMID: 38188001 PMCID: PMC10767070 DOI: 10.3934/neuroscience.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Neuropathic pain (NP) is caused by a lesion that triggers pain chronification and central sensitization and it can develop in a different manner, dependent of age. Recent studies have demonstrated the efficacy of transcranial direct current stimulation (tDCS) for treating NP. Then, we aimed to investigate the effects of tDCS and BDNF levels in neuropathic pain rats in development, with 30 days old in the beginning of experiments. Eight-five male Wistar rats were subjected to chronic constriction injury. After establishment of NP, bimodal tDCS was applied to the rats for eight consecutive days, for 20 minutes each session. Subsequently, nociceptive behavior was assessed at baseline, 14 days after surgery, 1 day and 7 days after the end of tDCS. The rats were sacrificed 8 days after the last session of tDCS. An increase in the nociceptive threshold was observed in rats in development 1 day after the end of tDCS (short-term effect), but this effect was not maintained 7 days after the end of tDCS (long-term effect). Furthermore, brain derived neurotrophic factor (BDNF) levels were analyzed in the frontal cortex, spinal cord and serum using ELISA assays. The neuropathic pain model showed an effect of BDNF in the spinal cord of rats in development. There were no effects of BNDF levels of pain or tDCS in the frontal cortex or serum. In conclusion, tDCS is an effective technique to relieve nociceptive behavior at a short-term effect in neuropathic pain rats in development, and BDNF levels were not altered at long-term effect.
Collapse
Affiliation(s)
- Priscila Centeno Crespo
- Postgraduate Program in Biochemistry and Bioprospection, Universidade Federal de Pelotas, Pelotas (UFPel), Pelotas, Rio Grande do Sul (RS), Brazil
- Laboratory of Cellular Neuromodulation: Basic Sciences, Institute of Biology, Department of Morphology, UFPel, Pelotas, RS, Brazil
| | - Leo Anderson Meira Martins
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Otávio Garcia Martins
- Laboratory of Cellular Neuromodulation: Basic Sciences, Institute of Biology, Department of Morphology, UFPel, Pelotas, RS, Brazil
| | - Clara Camacho Dos Reis
- Laboratory of Cellular Neuromodulation: Basic Sciences, Institute of Biology, Department of Morphology, UFPel, Pelotas, RS, Brazil
| | - Ricardo Netto Goulart
- Laboratory of Cellular Neuromodulation: Basic Sciences, Institute of Biology, Department of Morphology, UFPel, Pelotas, RS, Brazil
| | - Andressa de Souza
- Postgraduate Program in Health and Human Development, Universidade La Salle, Canoas, RS, Brazil
| | - Liciane Fernandes Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researches, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Postgraduate Program in Health and Human Development, Universidade La Salle, Canoas, RS, Brazil
| | - Vanessa Leal Scarabelot
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researches, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Postgraduate Program in Medicine Medical Sciences, Medicine School, UFRGS, Porto Alegre, RS, Brazil
| | - Giovana Duzzo Gamaro
- Postgraduate Program in Biochemistry and Bioprospection, Universidade Federal de Pelotas, Pelotas (UFPel), Pelotas, Rio Grande do Sul (RS), Brazil
| | - Sabrina Pereira Silva
- Postgraduate Program in Biochemistry and Bioprospection, Universidade Federal de Pelotas, Pelotas (UFPel), Pelotas, Rio Grande do Sul (RS), Brazil
| | | | - Iraci Lucena da Silva Torres
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researches, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Izabel Cristina Custódio de Souza
- Postgraduate Program in Biochemistry and Bioprospection, Universidade Federal de Pelotas, Pelotas (UFPel), Pelotas, Rio Grande do Sul (RS), Brazil
- Laboratory of Cellular Neuromodulation: Basic Sciences, Institute of Biology, Department of Morphology, UFPel, Pelotas, RS, Brazil
| |
Collapse
|
4
|
Taylor M, Cheng AB, Hodkinson DJ, Afacan O, Zurakowski D, Bajic D. Body size and brain volumetry in the rat following prolonged morphine administration in infancy and adulthood. FRONTIERS IN PAIN RESEARCH 2023; 4:962783. [PMID: 36923651 PMCID: PMC10008895 DOI: 10.3389/fpain.2023.962783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/20/2023] [Indexed: 02/28/2023] Open
Abstract
Background Prolonged morphine treatment in infancy is associated with a high incidence of opioid tolerance and dependence, but our knowledge of the long-term consequences of this treatment is sparse. Using a rodent model, we examined the (1) short- and (2) long-term effects of prolonged morphine administration in infancy on body weight and brain volume, and (3) we evaluated if subsequent dosing in adulthood poses an increased brain vulnerability. Methods Newborn rats received subcutaneous injections of either morphine or equal volume of saline twice daily for the first two weeks of life. In adulthood, animals received an additional two weeks of saline or morphine injections before undergoing structural brain MRI. After completion of treatment, structural T2-weigthed MRI images were acquired on a 7 T preclinical scanner (Bruker) using a RARE FSE sequence. Total and regional brain volumes were manually extracted from the MRI images using ITK-SNAP (v.3.6). Regions of interest included the brainstem, the cerebellum, as well as the forebrain and its components: the cerebral cortex, hippocampus, and deep gray matter (including basal ganglia, thalamus, hypothalamus, ventral tegmental area). Absolute (cm3) and normalized (as % total brain volume) values were compared using a one-way ANOVA with Tukey HSD post-hoc test. Results Prolonged morphine administration in infancy was associated with lower body weight and globally smaller brain volumes, which was not different between the sexes. In adulthood, females had lower body weights than males, but no difference was observed in brain volumes between treatment groups. Our results are suggestive of no long-term effect of prolonged morphine treatment in infancy with respect to body weight and brain size in either sex. Interestingly, prolonged morphine administration in adulthood was associated with smaller brain volumes that differed by sex only in case of previous exposure to morphine in infancy. Specifically, we report significantly smaller total brain volume of female rats on account of decreased volumes of forebrain and cortex. Conclusions Our study provides insight into the short- and long-term consequences of prolonged morphine administration in an infant rat model and suggests brain vulnerability to subsequent exposure in adulthood that might differ with sex.
Collapse
Affiliation(s)
- Milo Taylor
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard College, Massachusetts Hall, Cambridge, MA, United States
| | - Anya Brooke Cheng
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard College, Massachusetts Hall, Cambridge, MA, United States
| | - Duncan Jack Hodkinson
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, United Kingdom
- Versus Arthritis Pain Centre, University of Nottingham, Nottingham, United Kingdom
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Correspondence: Dusica Bajic
| |
Collapse
|
5
|
van den Hoogen NJ, Kwok CHT, Trang T. Identifying the Neurodevelopmental Differences of Opioid Withdrawal. Cell Mol Neurobiol 2021; 41:1145-1155. [PMID: 33432504 PMCID: PMC11448592 DOI: 10.1007/s10571-020-01035-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023]
Abstract
Stopping opioid medications can result in a debilitating withdrawal syndrome in chronic users. Opioid withdrawal can occur at all ages, but mechanistic understanding of this condition is predominantly derived from adult studies. Here, we examined whether there are age-dependent differences in the behavioural phenotype and cellular indices of opioid withdrawal. We tested this by assessing the behavioural and cFos response (a surrogate marker for neuronal activation) to morphine withdrawal in C57BL/6J mice across key developmental stages-neonatal, adolescent, and adulthood. Mice in all age groups received escalating doses of morphine (10-50 mg/kg) over 5 days and withdrawal was precipitated by a single injection of the opioid receptor antagonist naloxone (2 mg/kg) two hours after the last morphine dose. In adult and adolescent mice, withdrawal behaviours were robust, with age-related differences in autonomic and somatic signs. In both groups, cFos expression was increased in spinally projecting neurons within the Periaqueductal Grey (PAG), Rostro-ventromedial Medulla (RVM), and Locus Coeruleus. Neonatal animals displayed both a distinct behavioural withdrawal and cFos expression profile. Notably, in young animals cFos expression was increased within the PAG and LC, but decreased in the RVM. In summary, naloxone challenge precipitated robust opioid withdrawal behaviours across all developmental stages with neonatal animals displaying differences in withdrawal behaviours and unique neuronal activation patterns within key brainstem regions.
Collapse
Affiliation(s)
- Nynke J van den Hoogen
- Comparative Biology and Experimental Medicine, Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Charlie H T Kwok
- Comparative Biology and Experimental Medicine, Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Comparative Biology and Experimental Medicine, Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
6
|
Neonatal morphine exposure and maternal deprivation alter nociceptive response and central biomarkers' levels throughout the life of rats. Neurosci Lett 2020; 738:135350. [PMID: 32889004 DOI: 10.1016/j.neulet.2020.135350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/20/2022]
Abstract
In the present study, we investigated the effect of repeated neonatal morphine exposure and/or maternal deprivation(MD) on the nociceptive response and central biomarkers' BDNF, IL-1β, and IL-4 levels at postnatal days 16(PND16), 30(PND30), and 60(PND60). At birth, the litters were standardized to contain 8 pups/dam (n = 58). From PND1 to PND10, the pups of the deprived groups were separated daily from their mothers for 3 h and divided into 5 groups: control(C), saline(S), morphine(M), deprived-saline(DS), and deprived-morphine(DM). The pups received subcutaneous injections of saline/morphine (5 μg) in the mid-scapular area between PND8 and PND14. Nociceptive responses were assessed by hot plate(HP) and tail-flick(TFL) tests and biomarker levels by ELISA. Thermal hyperalgesia(HP) was found in all assessments for the M, DS, and DM groups, and a decrease in nociceptive threshold(TFL) was found in the DS group at PND16; M and DM groups at PND30; and M, DS, and DM groups at PND60. There were interactions between treatment/deprivation/timepoint in all central biomarkers' levels. The current study indicates that neonatal exposure to morphine and MD, which occurs in the pediatric ICU, can alter the nociceptive and neuroinflammatory responses.
Collapse
|
7
|
Medeiros LF, Nunes ÉA, Lopes BC, de Souza A, Cappellari AR, de Freitas JS, de Macedo IC, Kuo J, Cioato SG, Battastini AMDO, Caumo W, Torres ILS. Single exercise stress reduces central neurotrophins levels and adenosine A 1 and A 2 receptors expression, but does not revert opioid-induced hyperalgesia in rats. Int J Dev Neurosci 2020; 80:636-647. [PMID: 32798310 DOI: 10.1002/jdn.10059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND This study assessed the effects of an acute stress model upon the long-term hyperalgesia induced by repeated morphine administration in neonatal rats. We also evaluated neurotrophins and cytokines levels; expressions of adenosine and acetylcholine receptors, and acetylcholinesterase enzyme at the spinal cord. MATERIAL AND METHODS Male Wistar rats were subjected to morphine or saline administration from P8 to P14. Thermal hyperalgesia and mechanical hyperesthesia were assessed using the hot plate (HP) and von Frey (vF) tests, respectively, at postnatal day P30 and P60. After baseline measurements, rats were subjected to a single exercise session, as an acute stress model, at P30 or P60. We measured the levels of BDNF and NGF, interleukin-6, and IL-10 in the cerebral cortex and the brainstem; and the expression levels of adenosine and muscarinic receptors, as well as acetylcholinesterase (AChE) enzyme at the spinal cord. RESULTS A stress exercise session was not able to revert the morphine-induced hyperalgesia. The morphine and exercise association in rats induced a decrease in the neurotrophins brainstem levels, and A1 , A2A , A2B receptors expression in the spinal cord, and an increase in the IL-6 cortical levels. The exercise reduced M2 receptors expression in the spinal cord of naive rats, while morphine prevented this effect. CONCLUSIONS Single session of exercise does not revert hyperalgesia induced by morphine in rats; however, morphine plus exercise modulate neurotrophins, IL-6 central levels, and expression of adenosine receptors.
Collapse
Affiliation(s)
- Liciane Fernandes Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil
| | - Éllen Almeida Nunes
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bettega Costa Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andressa de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, UFRGS, Porto Alegre, Brazil
| | - Angélica Regina Cappellari
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Joice Soares de Freitas
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Isabel Cristina de Macedo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Jonnsin Kuo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Stefania Giotti Cioato
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, UFRGS, Porto Alegre, Brazil
| | - Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Medicina: Ciências Médicas, Faculdade de Medicina, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
8
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
9
|
de Macedo FHP, Aires RD, Fonseca EG, Ferreira RCM, Machado DPD, Chen L, Zhang FX, Souza IA, Lemos VS, Romero TRL, Moutal A, Khanna R, Zamponi GW, Cruz JS. TNF-α mediated upregulation of Na V1.7 currents in rat dorsal root ganglion neurons is independent of CRMP2 SUMOylation. Mol Brain 2019; 12:117. [PMID: 31888677 PMCID: PMC6937926 DOI: 10.1186/s13041-019-0538-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Clinical and preclinical studies have shown that patients with Diabetic Neuropathy Pain (DNP) present with increased tumor necrosis factor alpha (TNF-α) serum concentration, whereas studies with diabetic animals have shown that TNF-α induces an increase in NaV1.7 sodium channel expression. This is expected to result in sensitization of nociceptor neuron terminals, and therefore the development of DNP. For further study of this mechanism, dissociated dorsal root ganglion (DRG) neurons were exposed to TNF-α for 6 h, at a concentration equivalent to that measured in STZ-induced diabetic rats that developed hyperalgesia. Tetrodotoxin sensitive (TTXs), resistant (TTXr) and total sodium current was studied in these DRG neurons. Total sodium current was also studied in DRG neurons expressing the collapsin response mediator protein 2 (CRMP2) SUMO-incompetent mutant protein (CRMP2-K374A), which causes a significant reduction in NaV1.7 membrane cell expression levels. Our results show that TNF-α exposure increased the density of the total, TTXs and TTXr sodium current in DRG neurons. Furthermore, TNF-α shifted the steady state activation and inactivation curves of the total and TTXs sodium current. DRG neurons expressing the CRMP2-K374A mutant also exhibited total sodium current increases after exposure to TNF-α, indicating that these effects were independent of SUMOylation of CRMP2. In conclusion, TNF-α sensitizes DRG neurons via augmentation of whole cell sodium current. This may underlie the pronociceptive effects of TNF-α and suggests a molecular mechanism responsible for pain hypersensitivity in diabetic neuropathy patients.
Collapse
Affiliation(s)
| | - Rosária Dias Aires
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Esdras Guedes Fonseca
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital research Institute, University of Calgary, Calgary, Canada
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital research Institute, University of Calgary, Calgary, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital research Institute, University of Calgary, Calgary, Canada
| | - Virgínia Soares Lemos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital research Institute, University of Calgary, Calgary, Canada.
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
10
|
Effect of non-nutritive sucking and sucrose alone and in combination for repeated procedural pain in preterm infants: A randomized controlled trial. Int J Nurs Stud 2018; 83:25-33. [DOI: 10.1016/j.ijnurstu.2018.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022]
|