1
|
Sanches E, van de Looij Y, Ho D, Modernell L, da Silva A, Sizonenko S. Early Neuroprotective Effects of Bovine Lactoferrin Associated with Hypothermia after Neonatal Brain Hypoxia-Ischemia in Rats. Int J Mol Sci 2023; 24:15583. [PMID: 37958562 PMCID: PMC10650654 DOI: 10.3390/ijms242115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) in term newborns is a leading cause of mortality and chronic disability. Hypothermia (HT) is the only clinically available therapeutic intervention; however, its neuroprotective effects are limited. Lactoferrin (LF) is the major whey protein in milk presenting iron-binding, anti-inflammatory and anti-apoptotic properties and has been shown to protect very immature brains against HI damage. We hypothesized that combining early oral administration of LF with whole body hypothermia could enhance neuroprotection in a HIE rat model. Pregnant Wistar rats were fed an LF-supplemented diet (1 mg/kg) or a control diet from (P6). At P7, the male and female pups had the right common carotid artery occluded followed by hypoxia (8% O2 for 60') (HI). Immediately after hypoxia, hypothermia (target temperature of 32.5-33.5 °C) was performed (5 h duration) using Criticool®. The animals were divided according to diet, injury and thermal condition. At P8 (24 h after HI), the brain neurochemical profile was assessed using magnetic resonance spectroscopy (1H-MRS) and a hyperintense T2W signal was used to measure the brain lesions. The mRNA levels of the genes related to glutamatergic excitotoxicity, energy metabolism and inflammation were assessed in the right hippocampus. The cell markers and apoptosis expression were assessed using immunofluorescence in the right hippocampus. HI decreased the energy metabolites and increased lactate. The neuronal-astrocytic coupling impairments observed in the HI groups were reversed mainly by HT. LF had an important effect on astrocyte function, decreasing the levels of the genes related to glutamatergic excitotoxicity and restoring the mRNA levels of the genes related to metabolic support. When combined, LF and HT presented a synergistic effect and prevented lactate accumulation, decreased inflammation and reduced brain damage, pointing out the benefits of combining these therapies. Overall, we showed that through distinct mechanisms lactoferrin can enhance neuroprotection induced by HT following neonatal brain hypoxia-ischemia.
Collapse
Affiliation(s)
- Eduardo Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| | - Dini Ho
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| | - Laura Modernell
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| | - Analina da Silva
- Center for Biomedical Imaging (CIBM), Animal Imaging and Technology Section, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland; (Y.v.d.L.); (D.H.); (L.M.); (S.S.)
| |
Collapse
|
2
|
Durán-Carabali LE, Odorcyk FK, Sanches EF, de Mattos MM, Anschau F, Netto CA. Effect of environmental enrichment on behavioral and morphological outcomes following neonatal hypoxia-ischemia in rodent models: A systematic review and meta-analysis. Mol Neurobiol 2022; 59:1970-1991. [PMID: 35040041 DOI: 10.1007/s12035-022-02730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of mortality and morbidity in newborns and, despite recent advances in neonatal intensive care, there is no definitive treatment for this pathology. Once preclinical studies have shown that environmental enrichment (EE) seems to be a promising therapy for children with HI, the present study conducts a systematic review and meta-analysis of articles with EE in HI rodent models focusing on neurodevelopmental reflexes, motor and cognitive function as well as brain damage. The protocol was registered a priori at PROSPERO. The search was conducted in PubMed, Embase and PsycINFO databases, resulting in the inclusion of 22 articles. Interestingly, EE showed a beneficial impact on neurodevelopmental reflexes (SMD= -0.73, CI= [-0.98; -0.47], p< 0.001, I2= 0.0%), motor function (SMD= -0.55, CI= [-0.81; -0.28], p< 0.001, I2= 62.6%), cognitive function (SMD= -0.93, CI= [-1.14; -0.72], p< 0.001, I2= 27.8%) and brain damage (SMD= -0.80, CI= [-1.03; -0.58], p< 0.001, I2= 10.7%). The main factors that potentiate EE positive effects were enhanced study quality, earlier age at injury as well as earlier start and longer duration of EE exposure. Overall, EE was able to counteract the behavioral and histological damage induced by the lesion, being a promising therapeutic strategy for HI.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - F K Odorcyk
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - M M de Mattos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - F Anschau
- Medicine school, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduation Program on Evaluation and Production of Technologies for the Brazilian National Health System, Porto Alegre, Brazil
| | - C A Netto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil. .,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Glucocorticoid-Dependent Mechanisms of Brain Tolerance to Hypoxia. Int J Mol Sci 2021; 22:ijms22157982. [PMID: 34360746 PMCID: PMC8348130 DOI: 10.3390/ijms22157982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Adaptation of organisms to stressors is coordinated by the hypothalamic-pituitary-adrenal axis (HPA), which involves glucocorticoids (GCs) and glucocorticoid receptors (GRs). Although the effects of GCs are well characterized, their impact on brain adaptation to hypoxia/ischemia is still understudied. The brain is not only the most susceptible to hypoxic injury, but also vulnerable to GC-induced damage, which makes studying the mechanisms of brain hypoxic tolerance and resistance to stress-related elevation of GCs of great importance. Cross-talk between the molecular mechanisms activated in neuronal cells by hypoxia and GCs provides a platform for developing the most effective and safe means for prevention and treatment of hypoxia-induced brain damage, including hypoxic pre- and post-conditioning. Taking into account that hypoxia- and GC-induced reprogramming significantly affects the development of organisms during embryogenesis, studies of the effects of prenatal and neonatal hypoxia on health in later life are of particular interest. This mini review discusses the accumulated data on the dynamics of the HPA activation in injurious and non-injurious hypoxia, the role of the brain GRs in these processes, interaction of GCs and hypoxia-inducible factor HIF-1, as well as cross-talk between GC and hypoxic signaling. It also identifies underdeveloped areas and suggests directions for further prospective studies.
Collapse
|
4
|
Liao JX, Chen YW, Shih MK, Tain YL, Yeh YT, Chiu MH, Chang SKC, Hou CY. Resveratrol Butyrate Esters Inhibit BPA-Induced Liver Damage in Male Offspring Rats by Modulating Antioxidant Capacity and Gut Microbiota. Int J Mol Sci 2021; 22:5273. [PMID: 34067838 PMCID: PMC8156118 DOI: 10.3390/ijms22105273] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Resveratrol can affect the physiology or biochemistry of offspring in the maternal-fetal animal model. However, it exhibits low bioavailability in humans and animals. Fifteen-week SD pregnant female rats were orally administered bisphenol A (BPA) and/or resveratrol butyrate ester (RBE), and the male offspring rats (n = 4-8 per group) were evaluated. The results show that RBE treatment (BPA + R30) compared with the BPA group can reduce the damage caused by BPA (p < 0.05). RBE enhanced the expression of selected genes and induced extramedullary hematopoiesis and mononuclear cell infiltration. RBE increased the abundance of S24-7 and Adlercreutzia in the intestines of the male offspring rats, as well as the concentrations of short-chain fatty acids (SCFAs) in the feces. RBE also increased the antioxidant capacity of the liver by inducing Nrf2, promoting the expression of HO-1, SOD, and CAT. It also increased the concentration of intestinal SCFAs, enhancing the barrier formed by intestinal cells, thereby preventing BPA-induced metabolic disruption in the male offspring rats, and reduced liver inflammation. This study identified a potential mechanism underlying the protective effects of RBE against the liver damage caused by BPA exposure during the peri-pregnancy period, and the influence of the gut microbiota on the gut-liver axis in the offspring.
Collapse
Affiliation(s)
- Jin-Xian Liao
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkow 333, Taiwan;
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, 812301 No.1, Songhe Rd., Xiaogang Dist., Kaohsiung 833, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan; (Y.-T.Y.); (M.-H.C.)
- Biomed Analysis Center, Fooyin University Hospital, Pingtung 92849, Taiwan
| | - Min-Hsi Chiu
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan; (Y.-T.Y.); (M.-H.C.)
- Biomed Analysis Center, Fooyin University Hospital, Pingtung 92849, Taiwan
| | - Sam K. C. Chang
- Experimental Seafood Processing Laboratory, Costal Research and Extension Center, Mississippi State University, Pascagoula, MS 39567, USA;
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| |
Collapse
|
5
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
6
|
Sanches EF, Dos Santos TM, Odorcyk F, Untertriefallner H, Rezena E, Hoeper E, Avila T, Martini AP, Venturin GT, da Costa JC, Greggio S, Netto CA, Wyse AT. Pregnancy swimming prevents early brain mitochondrial dysfunction and causes sex-related long-term neuroprotection following neonatal hypoxia-ischemia in rats. Exp Neurol 2021; 339:113623. [PMID: 33529673 DOI: 10.1016/j.expneurol.2021.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of cognitive impairments in infants. Antenatal strategies improving the intrauterine environment can have high impact decreasing pregnancy-derived intercurrences. Physical exercise alters the mother-fetus unity and has been shown to prevent the energetic challenge imposed by HI. This study aimed to reveal neuroprotective mechanisms afforded by pregnancy swimming on early metabolic failure and late cognitive damage, considering animals' sex as a variable. Pregnant Wistar rats were submitted to daily swimming exercise (20' in a tank filled with 32 °C water) during pregnancy. Neonatal HI was performed in male and female pups at postnatal day 7. Electron chain transport, mitochondrial mass and function and ROS formation were assessed in the right brain hemisphere 24 h after HI. From PND45, reference and working spatial memory were tested in the Morris water maze. MicroPET-FDG images were acquired 24 h after injury (PND8) and at PND60, following behavioral analysis. HI induced early energetic failure, decreased enzymatic activity in electron transport chain, increased production of ROS in cortex and hippocampus as well as caused brain glucose metabolism dysfunction and late cognitive impairments. Maternal swimming was able to prevent mitochondrial dysfunction and to improve spatial memory. The intergenerational effects of swimming were sex-specific, since male rats were benefited most. In conclusion, maternal swimming was able to affect the mitochondrial response to HI in the offspring's brains, preserving its function and preventing cognitive damage in a sex-dependent manner, adding relevant information on maternal exercise neuroprotection and highlighting the importance of mitochondria as a therapeutic target for HI neuropathology.
Collapse
Affiliation(s)
- E F Sanches
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - T M Dos Santos
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Odorcyk
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - H Untertriefallner
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Rezena
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Hoeper
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - T Avila
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A P Martini
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G T Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J C da Costa
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T Wyse
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Durán-Carabali LE, Odorcyk FK, Greggio S, Venturin GT, Sanches EF, Schu GG, Carvalho AS, Pedroso TA, de Sá Couto-Pereira N, Da Costa JC, Dalmaz C, Zimmer ER, Netto CA. Pre- and early postnatal enriched environmental experiences prevent neonatal hypoxia-ischemia late neurodegeneration via metabolic and neuroplastic mechanisms. J Neurochem 2020; 157:1911-1929. [PMID: 33098090 DOI: 10.1111/jnc.15221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/04/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Prenatal and early postnatal periods are important for brain development and neural function. Neonatal insults such as hypoxia-ischemia (HI) causes prolonged neural and metabolic dysregulation, affecting central nervous system maturation. There is evidence that brain hypometabolism could increase the risk of adult-onset neurodegenerative diseases. However, the impact of non-pharmacologic strategies to attenuate HI-induced brain glucose dysfunction is still underexplored. This study investigated the long-term effects of early environmental enrichment in metabolic, cell, and functional responses after neonatal HI. Thereby, male Wistar rats were divided according to surgical procedure, sham, and HI (performed at postnatal day 3), and the allocation to standard (SC) or enriched condition (EC) during gestation and lactation periods. In-vivo cerebral metabolism was assessed by means of [18 F]-FDG micro-positron emission tomography, and cognitive, biochemical, and histological analyses were performed in adulthood. Our findings reveal that HI causes a reduction in glucose metabolism and glucose transporter levels as well as hyposynchronicity in metabolic brain networks. However, EC during prenatal or early postnatal period attenuated these metabolic disturbances. A positive correlation was observed between [18 F]-FDG values and volume ratios in adulthood, indicating that preserved tissue by EC is metabolically active. EC promotes better cognitive scores, as well as down-regulation of amyloid precursor protein in the parietal cortex and hippocampus of HI animals. Furthermore, growth-associated protein 43 was up-regulated in the cortex of EC animals. Altogether, results presented support that EC during gestation and lactation period can reduce HI-induced impairments that may contribute to functional decline and progressive late neurodegeneration.
Collapse
Affiliation(s)
- Luz Elena Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Eduardo Farias Sanches
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Garcia Schu
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrey Soares Carvalho
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natividade de Sá Couto-Pereira
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa Da Costa
- Preclinical Research Center, Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Dalmaz
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Rigon Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Fan X, Wang H, Zhang L, Tang J, Qu Y, Mu D. Neuroprotection of hypoxic/ischemic preconditioning in neonatal brain with hypoxic-ischemic injury. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0024/revneuro-2020-0024.xml. [PMID: 32866133 DOI: 10.1515/revneuro-2020-0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
The neonatal brain is susceptible to hypoxic-ischemic injury due to its developmental characteristics. Hypoxia-ischemia means a decreased perfusion of oxygen and glucose, which can lead to severe encephalopathy. Although early initiation of therapeutic hypothermia was reported to provide neuroprotection for infants after HI, hypothermia administered alone after the acute insult cannot reverse the severe damage that already has occurred or improve the prognosis of severe hypoxic-ischemic encephalopathy. Therefore, exploring new protective mechanisms for treating hypoxic-ischemic brain damage are imperative. Until now, many studies reported the neuroprotective mechanisms of hypoxic/ischemic preconditioning in protecting the hypoxic-ischemic newborn brains. After hypoxia and ischemia, hypoxia-inducible factor signaling pathway is involved in the transcriptional regulation of many genes and is also play a number of different roles in protecting brains during hypoxic/ischemic preconditioning. Hypoxic/ischemic preconditioning could protect neonatal brain by several mechanisms, including vascular regulation, anti-apoptosis, anti-oxidation, suppression of excitotoxicity, immune regulation, hormone levels regulation, and promote cell proliferation. This review focused on the protective mechanisms underlying hypoxic/ischemic preconditioning for neonatal brain after hypoxia-ischemia and emphasized on the important roles of hypoxia inducible factor 1 signaling pathway.
Collapse
Affiliation(s)
- Xue Fan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041,China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu610041,China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041,China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu610041,China
| | - Li Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041,China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu610041,China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041,China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu610041,China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041,China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu610041,China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041,China
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu610041,China
| |
Collapse
|
9
|
Previous adaptation triggers distinct molecular pathways and modulates early and long-term neuroprotective effects of pregnancy swimming preventing neonatal hypoxia-ischemia damage in rats. Brain Res 2020; 1733:146722. [DOI: 10.1016/j.brainres.2020.146722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 02/08/2023]
|
10
|
Diao M, Qu Y, Liu H, Ma Y, Lin X. Effect of carbamylated erythropoietin on neuronal apoptosis in fetal rats during intrauterine hypoxic-ischemic encephalopathy. Biol Res 2019; 52:28. [PMID: 31084604 PMCID: PMC6513514 DOI: 10.1186/s40659-019-0234-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) is a common disease that occurs during the perinatal period. The primary cause of neonatal HIE is related to fetal intrauterine anoxia. Carbamylated erythropoietin (CEPO), a derivative of erythropoietin (EPO), does not exert any erythropoietic effect; however, the neuroprotective effects resemble those of EPO. Previous studies have shown the potential benefits of CEPO on the central nervous system. The present study aimed to investigate the role of CEPO in neuronal apoptosis during intrauterine HIE and the underlying mechanisms. Results To validate our hypothesis, we established an intrauterine HIE model by occluding the bilateral utero-ovarian arteries of pregnant Sprague–Dawley rats. Compared to the I/R group, neuronal apoptosis in the CEPO group was significantly lower at 4, 12, 24, and 48 h (P < 0.05). CEPO significantly inhibited CC3 expression (P < 0.05) during the early-stages after ischemia–reperfusion (0.5, 4, 8, 12 and 24 h), upregulated Bcl-2 expression, and downregulated Bax expression at 4, 8, 12, and 24 h (P < 0.05). Conclusions Carbamylated erythropoietin pretreatment inhibited the expression of proapoptotic protein CC3 in brain and regulated the Bcl-2/Bax ratio, resulting in reduced neuronal apoptosis and thus resulting in a protective effect on intrauterine HIE.
Collapse
Affiliation(s)
- Min Diao
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South of Renmin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Hui Liu
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South of Renmin Road, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Yushan Ma
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South of Renmin Road, Chengdu, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| | - Xuemei Lin
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South of Renmin Road, Chengdu, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Muntsant A, Shrivastava K, Recasens M, Giménez-Llort L. Severe Perinatal Hypoxic-Ischemic Brain Injury Induces Long-Term Sensorimotor Deficits, Anxiety-Like Behaviors and Cognitive Impairment in a Sex-, Age- and Task-Selective Manner in C57BL/6 Mice but Can Be Modulated by Neonatal Handling. Front Behav Neurosci 2019; 13:7. [PMID: 30814939 PMCID: PMC6381068 DOI: 10.3389/fnbeh.2019.00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Perinatal brain injury (PBI) leads to neurological disabilities throughout life, from motor deficits, cognitive limitations to severe cerebral palsy. Yet, perinatal brain damage has limited therapeutic outcomes. Besides, the immature brain of premature children is at increased risk of hypoxic/ischemic (HI) injury, with males being more susceptible to it and less responsive to protective/therapeutical interventions. Here, we model in male and female C57BL/6 mice, the impact of neonatal HI and the protective effects of neonatal handling (NH), an early life tactile and proprioceptive sensory stimulation. From postnatal day 1 (PND1, modeling pre-term) to PND21 randomized litters received either NH or left undisturbed. HI brain damage occurred by permanent left carotid occlusion followed by hypoxia at PND7 (modeling full-term) in half of the animals. The behavioral and functional screening of the pups at weaning (PND23) and their long-term outcomes (adulthood, PND70) were evaluated in a longitudinal study, as follows: somatic development (weight), sensorimotor functions (reflexes, rods and hanger tests), exploration [activity (ACT) and open-field (OF) test], emotional and anxiety-like behaviors [corner, open-field and dark-light box (DLB) tests], learning and memory [T-maze (TM) and Morris Water-Maze (MWM)]. HI induced similar brain damage in both sexes but affected motor development, sensorimotor functions, induced hyperactivity at weaning, and anxiety-like behaviors and cognitive deficits at adulthood, in a sex- and age-dependent manner. Thus, during ontogeny, HI affected equilibrium especially in females and prehensility in males, but only reflexes at adulthood. Hyperactivity of HI males was normalized at adulthood. HI increased neophobia and other anxiety-like behaviors in males but emotionality in females. Both sexes showed worse short/long-term learning, but memory was more affected in males. Striking neuroprotective effects of NH were found, with significantly lower injury scores, mostly in HI males. At the functional level, NH reversed the impaired reflex responses and improved memory performances in hippocampal-dependent spatial-learning tasks, especially in males. Finally, neuropathological correlates referred to atrophy, neuronal densities and cellularity in the affected areas [hippocampal-CA, caudate/putamen, thalamus, neocortex and corpus callosum (CC)] point out distinct neuronal substrates underlying the sex- and age- functional impacts of these risk/protection interventions on sensorimotor, behavioral and cognitive outcomes from ontogeny to adulthood.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kalpana Shrivastava
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Recasens
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|