1
|
Alalwany RH, Hawtrey T, Morgan K, Morris JC, Donaldson LF, Bates DO. Vascular endothelial growth factor isoforms differentially protect neurons against neurotoxic events associated with Alzheimer's disease. Front Mol Neurosci 2023; 16:1181626. [PMID: 37456522 PMCID: PMC10349181 DOI: 10.3389/fnmol.2023.1181626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, the chronic and progressive deterioration of memory and cognitive abilities. AD can be pathologically characterised by neuritic plaques and neurofibrillary tangles, formed by the aberrant aggregation of β-amyloid and tau proteins, respectively. We tested the hypothesis that VEGF isoforms VEGF-A165a and VEGF-A165b, produced by differential splice site selection in exon 8, could differentially protect neurons from neurotoxicities induced by β-amyloid and tau proteins, and that controlling expression of splicing factor kinase activity could have protective effects on AD-related neurotoxicity in vitro. Using oxidative stress, β-amyloid, and tau hyperphosphorylation models, we investigated the effect of VEGF-A splicing isoforms, previously established to be neurotrophic agents, as well as small molecule kinase inhibitors, which selectively inhibit SRPK1, the major regulator of VEGF splicing. While both VEGF-A165a and VEGF-A165b isoforms were protective against AD-related neurotoxicity, measured by increased metabolic activity and neurite outgrowth, VEGF-A165a was able to enhance neurite outgrowth but VEGF-A165b did not. In contrast, VEGF-A165b was more effective than VEGF-A165a in preventing neurite "dieback" in a tau hyperphosphorylation model. SRPK1 inhibition was found to significantly protect against neurite "dieback" through shifting AS of VEGFA towards the VEGF-A165b isoform. These results indicate that controlling the activities of the two different isoforms could have therapeutic potential in Alzheimer's disease, but their effect may depend on the predominant mechanism of the neurotoxicity-tau or β-amyloid.
Collapse
Affiliation(s)
- Roaa H. Alalwany
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Tom Hawtrey
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Kevin Morgan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan C. Morris
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Lucy F. Donaldson
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Study on NGF and VEGF during the Equine Perinatal Period-Part 2: Foals Affected by Neonatal Encephalopathy. Vet Sci 2022; 9:vetsci9090459. [PMID: 36136675 PMCID: PMC9503474 DOI: 10.3390/vetsci9090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population of foals spontaneously affected by NE. The study aimed to: (i) evaluate nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) levels in plasma samples obtained in the affected population at parturition from the mare’s jugular vein, umbilical cord vein and foal’s jugular vein, as well as in amniotic fluid; (ii) evaluate the NGF and VEGF content in the plasma of foals affected by NE during the first 72 h of life/hospitalization; (iii) evaluate NGF and VEGF levels at birth/admission in relation to selected mare’s and foal’s clinical parameters; (iv) evaluate the relationship between the two trophic factors and thyroid hormone levels (TT3 and TT4) in the first 72 h of life/hospitalization; and (v) assess the mRNA expression of NGF, VEGF and brain-derived neurotrophic factor (BDNF), and their cell surface receptors, in the placenta of mares that delivered foals affected by NE. Thirteen affected foals born from mares hospitalized for peripartum monitoring (group NE) and twenty affected foals hospitalized after birth (group exNE) were included in the study. Dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF, and BDNF placental gene expression was performed using a semi-quantitative real-time PCR. In group NE, NGF levels decreased significantly from T0 to T24 (p = 0.0447) and VEGF levels decreased significantly from T0 to T72 (p = 0.0234), whereas in group exNE, only NGF levels decreased significantly from T0 to T24 (p = 0.0304). Compared to healthy foals, a significant reduction of TT3 levels was observed in both NE (T24, p = 0.0066; T72 p = 0.0003) and exNE (T0, p = 0.0082; T24, p < 0.0001; T72, p < 0.0001) groups, whereas a significant reduction of TT4 levels was observed only in exNE group (T0, p = 0.0003; T24, p = 0.0010; T72, p = 0.0110). In group NE, NGF levels were positively correlated with both TT3 (p = 0.0475; r = 0.3424) and TT4 levels (p = 0.0063; r = 0.4589). In the placenta, a reduced expression of NGF in the allantois (p = 0.0033) and a reduced expression of BDNF in the amnion (p = 0.0498) were observed. The less pronounced decrease of the two trophic factors compared to healthy foals, their relationship with thyroid hormones over time, and the reduced expression of NGF and BDNF in placental tissues of mares that delivered affected foals, could be key regulators in the mechanisms of equine NE.
Collapse
|
3
|
Li Y, Wang S, Xiao Y, Liu B, Pang J. Nerve growth factor enhances the therapeutic effect of mesenchymal stem cells on diabetic periodontitis. Exp Ther Med 2021; 22:1013. [PMID: 34373699 DOI: 10.3892/etm.2021.10445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/10/2020] [Indexed: 11/05/2022] Open
Abstract
Patients with diabetes frequently suffer from periodontitis, which progresses rapidly and is difficult to cure. Mesenchymal stem cell (MSC) transplantation may effectively treat periodontitis, but high glucose limits its therapeutic effect in diabetes. Nerve growth factor (NGF) has the functions of cell protection, anti-apoptosis and immune regulation, and may have potential application in diabetic periodontitis. In the present study, flow cytometry indicated that NGF inhibited MSC apoptosis induced by high glucose. Of note, high glucose promoted the transformation of MSCs into the proinflammatory type. NGF inhibited this transformation of MSCs under diabetic conditions and further decreased the proportion of T cells and monocytes/macrophages among lymphocytes. An animal model of diabetic periodontitis was constructed and MSC transplantation was demonstrated to reduce alveolar bone loss caused by diabetes. NGF enhanced the therapeutic effect of MSCs and maintained transplanted MSC survival in periodontal tissue of diabetic mice. Immunohistochemical analysis of periodontal tissues suggested that in the NGF group, infiltration of T cells and macrophages was reduced. Neurotrophic receptor tyrosine kinase 1 was indicated to have a key role in these effects of NGF. In conclusion, NGF may enhance the therapeutic effect of MSCs on diabetic periodontitis by protecting the cells and promoting the transformation of MSCs into the immunosuppressive type.
Collapse
Affiliation(s)
- Ying Li
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Suyu Wang
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Yihan Xiao
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| |
Collapse
|
4
|
Aisa MC, Barbati A, Cappuccini B, De Rosa F, Gerli S, Clerici G, Kaptilnyy VA, Ishenko AI, Di Renzo GC. Urinary Nerve Growth Factor in full-term, preterm and intra uterine growth restriction neonates: Association with brain growth at 30-40 days of postnatal period and with neuro-development outcome at two years. A pilot study. Neurosci Lett 2020; 741:135459. [PMID: 33223047 DOI: 10.1016/j.neulet.2020.135459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) are crucial for the peripheral and central nervous system development, respectively, and differential brain and blood levels in Intra Uterine Growth Restriction (IUGR) and prematurity have been found. As reduced growth of brain regions, measured at 30-40 days of postnatal period, has been demonstrated in preterm and IUGR neonates who showed impaired neuro-development at two years of age, in this study, the levels of NGF and BDNF were evaluated in the urine samples of 30-40 day-old subjects who were full-term, preterm and IUGR and showed a normal or an abnormal neuro-development at follow up after two years. Neurotrophins were measured concurrently with volumes of whole brain, thalamus, frontal cortex and cerebellum. Values were then correlated with later neuro-developmental outcome. Biochemical parameters and cerebral volumes were assessed using colorimetric ELISA kits and three-dimensional ultra-sonography (3DUS), respectively. Neuro-development was estimated using the Griffiths-II test. Urinary NGF and brain volumes significantly correlated and were lower in preterm and IUGR subjects characterized by poor neuro-development. No differences were seen in the case of BDNF. The present investigation demonstrates, for the first time, the strong and direct association of NGF with brain growth at the initial phase of the postnatal period and with neuro-developmental outcome in later life. Remarkably, urinary NGF may be suggested as an early prognostic indicator of high long-term risk of motor and cognitive impairment in IUGR and preterm neonates.
Collapse
Affiliation(s)
- Maria Cristina Aisa
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy; GeBiSa, Research Foundation, Perugia, Italy; Centro Europeo per la Medicina e la Ricerca (CEMER), Perugia, Italy.
| | - Antonella Barbati
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| | | | | | - Sandro Gerli
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy; GeBiSa, Research Foundation, Perugia, Italy; Department of Obstetrics and Gynecology No. 1 of the Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Graziano Clerici
- Centro Europeo per la Medicina e la Ricerca (CEMER), Perugia, Italy; Department of Obstetrics and Gynecology No. 1 of the Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vitaly Alexandrovich Kaptilnyy
- Department of Obstetrics and Gynecology No. 1 of the Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anatoly Ivanovich Ishenko
- Department of Obstetrics and Gynecology No. 1 of the Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Gian Carlo Di Renzo
- Department of Surgical and Biomedical Sciences, Section of Obstetrics and Gynecology, University of Perugia, Perugia, Italy; GeBiSa, Research Foundation, Perugia, Italy; Second Department of Obstetrics and Gynecology, I. M. Sechenov First State Medical University, 119992 Moscow, Russia; Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Rascher M, Wittstein K, Winter B, Rupcic Z, Wolf-Asseburg A, Stadler M, Köster RW. Erinacine C Activates Transcription from a Consensus ETS DNA Binding Site in Astrocytic Cells in Addition to NGF Induction. Biomolecules 2020; 10:E1440. [PMID: 33066380 PMCID: PMC7602259 DOI: 10.3390/biom10101440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Medicinal mushrooms of the genus Hericium are known to produce secondary metabolites with homeostatic properties for the central nervous system. We and others have recently demonstrated that among these metabolites cyathane diterpenoids and in particular erinacine C possess potent neurotrophin inducing properties in astrocytic cells. Yet, the signaling events downstream of erinacine C induced neurotrophin acitivity in neural-like adrenal phaeochromocytoma cells (PC12) cells have remained elusive. Similar, signaling events activated by erinacine C in astrocytic cells are unknown. Using a combination of genetic and pharmacological inhibitors we show that erinacine C induced neurotrophic activity mediates PC12 cell differentiation via the TrkA receptor and likely its associated PLCγ-, PI3K-, and MAPK/ERK pathways. Furthermore, a small library of transcriptional activation reporters revealed that erinacine C induces transcriptional activation mediated by DNA consensus binding sites of selected conserved transcription factor families. Among these, transcription is activated from an ETS consensus in a concentration dependent manner. Interestingly, induced ETS-consensus transcription occurs in parallel and independent of neurotrophin induction. This finding helps to explain the many pleiotropic functions of cyathane diterpenoids. Moreover, our studies provide genetic access to cyathane diterpenoid functions in astrocytic cells and help to mechanistically understand the action of cyathanes in glial cells.
Collapse
Affiliation(s)
- Monique Rascher
- Division of Cellular and Molecular Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (M.R.); (B.W.); (A.W.-A.)
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH and Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.W.); (Z.R.)
- German Centre for Infection Research (DZIF), Technische Universität Braunschweig, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Kathrin Wittstein
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH and Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.W.); (Z.R.)
- German Centre for Infection Research (DZIF), Technische Universität Braunschweig, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Barbara Winter
- Division of Cellular and Molecular Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (M.R.); (B.W.); (A.W.-A.)
| | - Zeljka Rupcic
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH and Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.W.); (Z.R.)
- German Centre for Infection Research (DZIF), Technische Universität Braunschweig, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Alexandra Wolf-Asseburg
- Division of Cellular and Molecular Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (M.R.); (B.W.); (A.W.-A.)
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH and Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.W.); (Z.R.)
- German Centre for Infection Research (DZIF), Technische Universität Braunschweig, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Reinhard W. Köster
- Division of Cellular and Molecular Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (M.R.); (B.W.); (A.W.-A.)
| |
Collapse
|
6
|
Piotrowicz Z, Chalimoniuk M, Płoszczyca K K, Czuba M, Langfort J. Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS One 2019; 14:e0224207. [PMID: 31644554 PMCID: PMC6808427 DOI: 10.1371/journal.pone.0224207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Physical exercise has a neuromodulatory effect on the central nervous system (CNS) partially by modifying expression of neuropeptides produced and secreted by neurons and glial cells, among which the best examined are brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Because both neurotrophins can cross the brain-blood barrier (BBB), their blood levels indirectly reflect their production in the CNS. Moreover, both neuropeptides are involved in modulation of dopaminergic and serotoninergic system function. Because limited information is available on the effects of exercise to volition exhaustion and acute hypoxia on CNS, BDNF and GDNF formation, the aims of the present study were to verify whether 1) acute exercise to exhaustion in addition to neurons also activates glial cells and 2) additional exposure to acute normobaric moderate hypoxia affects their function. In this feasibility study we measured blood concentrations of BDNF, GDNF, and neuropeptides considered as biomarkers of brain damage (bFGF, NGF, S100B, GFAP) in seven sedentary healthy young men who performed a graded exercise test to volitional exhaustion on a cycle ergometer under normoxic (N) and hypoxic conditions: 2,000 m (H2; FiO2 = 16.6%) and 3,000 m altitude (H3; FiO2 = 14.7%). In all conditions serum concentrations of both BDNF and GDNF increased immediately after cessation of exercise (p<0.01). There was no effect of condition or interaction (condition x time of measurement) and exercise on any of the brain damage biomarkers: bFGF, NGF, S100B, GFAP. Moreover, in N (0<0.01) and H3 (p<0.05) exercise caused elevated serum 5-HT concentration. The results suggest that a graded effort to volitional exhaustion in normoxia, as well as hypoxia, simultaneously activates both neurons and astrocytes. Considering that s100B, GFAP, bFGF, and NGF (produced mainly by astrocytes) are markers of brain damage, it can be assumed that a maximum effort in both conditions is safe for the CNS.
Collapse
Affiliation(s)
- Zofia Piotrowicz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biała Podlaska, The Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, Warsaw, Poland
- Department of Sports Theory, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Józef Langfort
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|