1
|
Srisuphanunt M, Wilairatana P, Kooltheat N, Damrongwatanapokin T, Karanis P. Occurrence of Cryptosporidium oocysts in commercial oysters in southern Thailand. Food Waterborne Parasitol 2023; 32:e00205. [PMID: 37577105 PMCID: PMC10412772 DOI: 10.1016/j.fawpar.2023.e00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
The enteric parasite Cryptosporidium is spread through the fecal-oral pathway, most commonly by the consumption of contaminated water but also through food. Because eating raw or barely cooked shellfish might put consumers at risk for cryptosporidiosis, identifying the parasite in oysters is important for public health. A total of 240 oysters, collected from two shellfish aquaculture sites in Thailand's Gulf coast, Nakhon Si Thammarat and Surat Thani, were tested for the presence of Cryptosporidium. Escherichia coli, enterococci, and thermotolerant coliform total levels were measured to assess seawater quality in the shellfish production regions. Oocysts of Cryptosporidium spp. were detected in 13.8% of the samples processed by immunofluorescence analyses. The detection of Cryptosporidium spp. oocysts in oysters obtained from Surat Thani (17.5%) was higher than in those obtained from Nakhon Si Thammarat (9.2%). The difference in detection of positive samples obtained from Nakhon Si Thammarat and those obtained from Surat Thani may be attributed to the effects of physical, ecological, and anthropogenic conditions, resulting in an increased level of marine water contamination by Cryptosporidium spp. oocysts. These findings demonstrate that native commercial oysters obtained from Thailand's southern Gulf coast contained Cryptosporidium spp. oocysts which might serve as a source of human infection. Consequently, these findings pose a serious public health concern and suggest that more quality control measures need to be implemented by the oyster aquaculture business to ensure the safety of seafood.
Collapse
Affiliation(s)
- Mayuna Srisuphanunt
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Centre for One Health, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nateelak Kooltheat
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Thanis Damrongwatanapokin
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Centre for One Health, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Panagiotis Karanis
- University of Nicosia Medical School, Department of Basic and Clinical Sciences, Egkomi 2408, Cyprus
| |
Collapse
|
2
|
de Souza RV, Moresco V, Miotto M, Souza DSM, de Campos CJA. Prevalence, distribution and environmental effects on faecal indicator bacteria and pathogens of concern in commercial shellfish production areas in a subtropical region of a developing country (Santa Catarina, Brazil). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:286. [PMID: 35303750 DOI: 10.1007/s10661-022-09950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This paper reviews recent literature on the abundance and distribution of faecal indicator bacteria and pathogens in shellfish production areas in the state of Santa Catarina, on the subtropical coast of Brazil. This state supplies > 95% of the national production of shellfish. Microbiological monitoring data were mapped using GIS and the results compared with those from other countries. Coastal human population is the main predictive parameter for faecal bacteria in the production areas. Temporal variations of the bacteria can also be predicted by solar radiation and rainfall. The prevalence of pathogens such as hepatitis A virus, human norovirus, Salmonella spp. and Vibrio spp. does not differ substantially from that in developed countries. The information reported here can be used to inform development of microbiological risk profiles for shellfish production areas.
Collapse
Affiliation(s)
- Robson Ventura de Souza
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri), Rodovia Admar Gonzaga, 1.188, Itacorubi, Caixa Postal 502, Florianópolis, SC, CEP 88034-901, Brazil.
| | - Vanessa Moresco
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521-0001, USA
| | - Marilia Miotto
- Departamento de Ciência e Tecnologia de Alimentos, Centro de Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil
| | - Doris Sobral Marques Souza
- Departamento de Ciência e Tecnologia de Alimentos, Centro de Tecnologia de Alimentos, Universidade Federal de Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil
- Laboratório de Virologia Aplicada, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Campus Universitário Trindade, CEP 88040-900, Florianópolis, Santa Catarina, 88034-001, Brazil
| | | |
Collapse
|
3
|
Moratal S, Dea-Ayuela MA, Cardells J, Marco-Hirs NM, Puigcercós S, Lizana V, López-Ramon J. Potential Risk of Three Zoonotic Protozoa ( Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption. Foods 2020; 9:E1913. [PMID: 33371396 PMCID: PMC7767443 DOI: 10.3390/foods9121913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
In recent decades, worldwide fish consumption has increased notably worldwide. Despite the health benefits of fish consumption, it also can suppose a risk because of fishborne diseases, including parasitic infections. Global changes are leading to the emergence of parasites in new locations and to the appearance of new sources of transmission. That is the case of the zoonotic protozoa Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii; all of them reach aquatic environments and have been found in shellfish. Similarly, these protozoa can be present in other aquatic animals, such as fish. The present review gives an overview on these three zoonotic protozoa in order to understand their potential presence in fish and to comprehensively revise all the evidences of fish as a new potential source of Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii transmission. All of them have been found in both marine and freshwater fishes. Until now, it has not been possible to demonstrate that fish are natural hosts for these protozoa; otherwise, they would merely act as mechanical transporters. Nevertheless, even if fish only accumulate and transport these protozoa, they could be a "new" source of infection for people.
Collapse
Affiliation(s)
- Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - M. Auxiliadora Dea-Ayuela
- Farmacy Department, Universidad CEU-Cardenal Herrera, Santiago Ramón y Cajal St, 46115 Alfara del Patriarca, Valencia, Spain
| | - Jesús Cardells
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, 08193 Bellaterra, Barcelona, Spain
| | - Naima M. Marco-Hirs
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - Silvia Puigcercós
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - Víctor Lizana
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, 08193 Bellaterra, Barcelona, Spain
| | - Jordi López-Ramon
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| |
Collapse
|
4
|
Torrecillas C, Fajardo MA, Córdoba MA, Sánchez M, Mellado I, Garrido B, Aleixandre-Górriz I, Sánchez-Thevenet P, Carmena D. First Report of Zoonotic Genotype of Giardia duodenalis in Mussels ( Mytilus edulis) from Patagonia Argentina. Vector Borne Zoonotic Dis 2020; 21:92-97. [PMID: 33074789 DOI: 10.1089/vbz.2020.2645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blue mussels (Mytilus edulis) are among the most consumed fishery products globally. Foodborne outbreaks of mussel-associated infections by viral, bacterial, and parasitic pathogens have been reported in the last years. In this study, we investigated the occurrence, genetic diversity, and zoonotic potential of the diarrhea-causing enteric protozoan Giardia duodenalis in blue mussels from Caleta Córdova in Chubut Province, southeast Patagonia, Argentina. A total of 344 free-living blue mussels were collected and distributed in 53 aliquots of pooled mussel tissue (each containing 5‒7 specimens) during the period 2015‒2018. Conventional optical microscopy was used as screening method for the detection of G. duodenalis cysts in pooled, homogenized tissues. Samples with a positive result were assessed by a multilocus sequence genotyping scheme based on the amplification of partial fragments of the glutamate dehydrogenase and β-giardin genes of the parasite. G. duodenalis cysts were found in 30.2% (16/53) of the aliquots of pooled mussel tissue tested. PCR and sequencing analyses revealed the presence of G. duodenalis subassemblage BIV in selected aliquots. To the best of our knowledge, this is the first description of zoonotic subassemblage BIV from blue mussels in Argentina.
Collapse
Affiliation(s)
- Claudia Torrecillas
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - María Angélica Fajardo
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | | | - Marco Sánchez
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - Ivana Mellado
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - Betiana Garrido
- Departamento de Bioquímica, Facultad de Ciencias Naturales y de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - Isabel Aleixandre-Górriz
- Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
| | - Paula Sánchez-Thevenet
- Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Castellón de la Plana, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Spain
| |
Collapse
|
5
|
Widmer G, Köster PC, Carmena D. Cryptosporidium hominis infections in non-human animal species: revisiting the concept of host specificity. Int J Parasitol 2020; 50:253-262. [PMID: 32205089 DOI: 10.1016/j.ijpara.2020.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Parasites in the genus Cryptosporidium, phylum Apicomplexa, are found worldwide in the intestinal tract of many vertebrate species and in the environment. Driven by sensitive PCR methods, and the availability of abundant sequence data and reference genomes, the taxonomic complexity of the genus has steadily increased; 38 species have been named to date. Due to its public health importance, Cryptosporidium hominis has long attracted the interest of the research community. This species was initially described as infectious to humans only. This perception has persisted in spite of an increasing number of observations of natural and experimental infections of animals with this species. Here we summarize and discuss this literature published since 2000 and conclude that the host range of C. hominis is broader than originally described. The evolving definition of the C. hominis host range raises interesting questions about host specificity and the evolution of Cryptosporidium parasites.
Collapse
Affiliation(s)
- Giovanni Widmer
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, United States
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Ctra. Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
6
|
Patanasatienkul T, Greenwood SJ, McClure J, Davidson J, Gardner I, Sanchez J. Bayesian risk assessment model of human cryptosporidiosis cases following consumption of raw Eastern oysters ( Crassostrea virginica) contaminated with Cryptosporidium oocysts in the Hillsborough River system in Prince Edward Island, Canada. Food Waterborne Parasitol 2020; 19:e00079. [PMID: 32258447 PMCID: PMC7109418 DOI: 10.1016/j.fawpar.2020.e00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
Abstract
Cryptosporidium spp. has been associated with foodborne infectious disease outbreaks; however, it is unclear to what extent raw oyster consumption poses a risk to public health. Control of Cryptosporidium in shellfish harvest seawater in Canada is not mandatory and, despite relay/depuration processes, the parasite can remain viable in oysters for at least a month (depending on initial loads and seawater characteristics). Risks of human infection and illness from exposure to oysters contaminated with Cryptosporidium oocysts were assessed in a Bayesian framework. Two data sets were used: counts of oocysts in oysters harvested in Approved, Restricted, and Prohibited zones of the Hillsborough River system; and oocyst elimination rate from oysters exposed to oocysts in laboratory experiments. A total of 20 scenarios were assessed according to number of oysters consumed in a single serving (1, 10 and 30) and different relay times. The median probability of infection and developing cryptosporidiosis (e.g. illness) due to the consumption of raw oysters in Prince Edward Island was zero for all scenarios. However, the 95th percentiles ranged from 2% to 81% and from 1% to 59% for probability of infection and illness, respectively. When relay times were extended from 14 to 30 days and 10 oysters were consumed in one serving from the Restricted zones, these probabilities were reduced from 35% to 16% and from 15% to 7%, respectively. The 14-day relay period established by Canadian authorities for harvesting in Restricted zones seems prudent, though insufficient, as this relay period has been shown to be enough to eliminate fecal coliforms but not Cryptosporidium oocysts, which can remain viable in the oyster for over a month. Extending relay periods of 14 and 21 days for oysters harvested in Restricted zones to 30 days is likely insufficient to substantially decrease the probability of infection and illness. The highest risk was found for oysters that originated in Prohibited zones. Our findings suggest that Cryptosporidium oocysts are a potential cause of foodborne infection and illness when consuming raw oysters from Hillsborough River, one of the most important oyster production bays on Prince Edward Island. We discuss data gaps and limitations of this work in order to identify future research that can be used to reduce the uncertainties in predicted risks. Risk of infection and illness of cryptosporidiosis in humans by consuming raw oysters from PEI is likely to be negligible. Depuration time of 14 days might not be enough to reduce Cryptosporidium oocysts contamination in oysters in bays of PEI. More field data need to be obtained to reduce uncertainties in predicted risks.
Collapse
Affiliation(s)
- Thitiwan Patanasatienkul
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, PEI, Canada
- Corresponding author at: Department of Health Management, University of Prince Edward Island, 550 University Avenue Charlottetown, PE C1A 4P3, Canada.
| | - Spencer J. Greenwood
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PEI, Canada
| | - J.T. McClure
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, PEI, Canada
| | - Jeff Davidson
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, PEI, Canada
| | - Ian Gardner
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, PEI, Canada
| | - Javier Sanchez
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, PEI, Canada
| |
Collapse
|
7
|
Géba E, Aubert D, Durand L, Escotte S, La Carbona S, Cazeaux C, Bonnard I, Bastien F, Palos Ladeiro M, Dubey JP, Villena I, Geffard A, Bigot-Clivot A. Use of the bivalve Dreissena polymorpha as a biomonitoring tool to reflect the protozoan load in freshwater bodies. WATER RESEARCH 2020; 170:115297. [PMID: 31756612 DOI: 10.1016/j.watres.2019.115297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Cryptosporidium parvum, Toxoplasma gondii and Giardia duodenalis are worldwide pathogenic protozoa recognized as major causal agents of waterborne disease outbreaks. To overcome the normative process (ISO 15553/2006) limitations of protozoa detection in aquatic systems, we propose to use the zebra mussel (Dreissena polymorpha), a freshwater bivalve mollusc, as a tool for biomonitoring protozoan contamination. Mussels were exposed to three concentrations of C. parvum oocysts, G. duodenalis cysts or T. gondii oocysts for 21 days followed by 21 days of depuration in clear water. D. polymorpha accumulated protozoa in its tissues and haemolymph. Concerning T. gondii and G. duodenalis, the percentage of protozoa positive mussels reflected the contamination level in water bodies. As for C. parvum detection, oocysts did accumulate in mussel tissues and haemolymph, but in small quantities, and the limit of detection was high (between 50 and 100 oocysts). Low levels of T. gondii (1-5 oocysts/mussel) and G. duodenalis (less than 1 cyst/mussel) were quantified in D. polymorpha tissues. The ability of zebra mussels to reflect contamination by the three protozoa for weeks after the contamination event makes them a good integrative matrix for the biomonitoring of aquatic ecosystems.
Collapse
Affiliation(s)
- Elodie Géba
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France; EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Dominique Aubert
- EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Loïc Durand
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50000, Saint-Lô, France
| | - Sandy Escotte
- EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | | | - Catherine Cazeaux
- ACTALIA Food Safety Department, 310 Rue Popielujko, 50000, Saint-Lô, France
| | - Isabelle Bonnard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Fanny Bastien
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Mélissa Palos Ladeiro
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Jitender P Dubey
- United States Department Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, building 1001, Beltsville, MD, 20705-2350, USA
| | - Isabelle Villena
- EA7510, ESCAPE, EpidémioSurveillance et CirculAtion des Parasites dans les Environnements, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Alain Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Aurélie Bigot-Clivot
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France.
| |
Collapse
|
8
|
Ligda P, Claerebout E, Casaert S, Robertson LJ, Sotiraki S. Investigations from Northern Greece on mussels cultivated in areas proximal to wastewaters discharges, as a potential source for human infection with Giardia and Cryptosporidium. Exp Parasitol 2020; 210:107848. [PMID: 32004534 DOI: 10.1016/j.exppara.2020.107848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 11/27/2022]
Abstract
Marine bivalves are usually cultivated in shallow, estuarine waters where there is a high concentration of nutrients. Many micro-pollutants, including the protozoan parasites Giardia duodenalis and Cryptosporidium spp., which also occur in such environments, may be concentrated in shellfish tissues during their feeding process. Shellfish can thus be considered as vehicles for foodborne infections, as they are usually consumed lightly cooked or raw. Therefore, the main objective of this study was to investigate the presence of both parasites in Mediterranean mussels, Mytilus galloprovincialis that are cultivated in Thermaikos Gulf, North Greece, which is fed by four rivers that are contaminated with both protozoa. Moreover, the occurrence of these protozoa was monitored in treated wastewaters from 3 treatment plants that discharge into the gulf. In order to identify potential sources of contamination and to estimate the risk for human infection, an attempt was made to genotype Giardia and Cryptosporidium in positive samples. Immunofluorescence was used for detection and molecular techniques were used for both detection and genotyping of the parasites. In total, 120 mussel samples, coming from 10 farms, were examined for the presence of both protozoa over the 6-month farming period. None of them were found positive by immunofluorescence microscopy for the presence of parasites. Only in 3 mussel samples, PCR targeting the GP60 gene detected Cryptosporidium spp. DNA, but sequencing was not successful. Thirteen out of 18 monthly samples collected from the 3 wastewater treatment plants, revealed the presence of Giardia duodenalis cysts belonging to sub-assemblage AII, at relatively low counts (up to 11.2 cysts/L). Cryptosporidium oocysts (up to 0.9 oocysts/L) were also detected in 4 out of 8 samples, although sequencing was not successful at any of the target genes. At the studied location and under the sampling conditions described, mussels tested were not found to be harboring Giardia cysts and the presence of Cryptosporidium was found only in few cases (by PCR detection only). Our results suggest that the likelihood that mussels from these locations act as vehicles of human infection for Giardia and Cryptosporidium seems low.
Collapse
Affiliation(s)
- Panagiota Ligda
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium; Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Stijn Casaert
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Lucy J Robertson
- Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 369, Sentrum, 0102, Oslo, Norway.
| | - Smaragda Sotiraki
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| |
Collapse
|
9
|
|
10
|
Protocol standardization for the detection of Giardia cysts and Cryptosporidium oocysts in Mediterranean mussels (Mytilus galloprovincialis). Int J Food Microbiol 2019; 298:31-38. [PMID: 30903916 DOI: 10.1016/j.ijfoodmicro.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
Marine bivalve shellfish are of public health interest because they can accumulate pollutants in their tissues. As they are usually consumed raw or lightly cooked, they are considered to be a possible source of foodborne infections, including giardiosis and cryptosporidiosis. Although data indicating contamination of shellfish with Giardia cysts and Cryptosporidium oocysts have been published, comparing results from different studies is difficult, as there is no standardized protocol for the detection and quantification of these parasites in mussels, and different researchers have used different analytical approaches. The aim of this study was to identify and characterize the most sensitive protocol for the detection of Giardia cysts and Cryptosporidium oocysts in shellfish. In an effort to test the sensitivity and the detection limits of the protocol, every step of the process was investigated, from initial preparation of the mussel matrix through detection of the parasites. Comparative studies were conducted, including several methods previously applied by other researchers, on commercial mussels Mytilus galloprovincialis spiked with a known number of (oo)cysts of both parasites. As preparation of the mussel matrix plays an important role in the sensitivity of the method, different techniques were tested. These included: (ia) removal of the coarse particles from the matrix with sieving, (ib) extraction of the lipids with diethyl ether, and (ic) artificial digestion of the matrix with pepsin digestion solution, and (ii) the use or not of immunomagnetic separation (IMS) for the concentration of the (oo)cysts. Pre-treatment of the mussel homogenate with pepsin digestion solution, followed by IMS, then detection with a direct immunofluorescence assay, achieved the highest sensitivity: 32.1% (SD: 21.1) of Giardia cysts and 61.4% (SD: 26.2) Cryptosporidium oocysts were recovered, with a detection limit of 10 (oo)cysts per g of mussel homogenate. The outcome of the current study was the standardization of a protocol, with defined detection limits, for the detection of these two protozoan transmission stages in mussels, in order to be used as a reference technique in future studies. Further advantages of this protocol are that it uses the whole mussel as a starting material and does not require difficult handling procedures. The method has potential to be applied in larger surveys and, potentially, to other species of shellfish for the detection of these parasites. However, the composition (lipid to protein ratio) may be of relevance for detection efficiency for some other species of shellfish.
Collapse
|
11
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cacciò S, Chalmers R, Deplazes P, Devleesschauwer B, Innes E, Romig T, van der Giessen J, Hempen M, Van der Stede Y, Robertson L. Public health risks associated with food-borne parasites. EFSA J 2018; 16:e05495. [PMID: 32625781 PMCID: PMC7009631 DOI: 10.2903/j.efsa.2018.5495] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parasites are important food‐borne pathogens. Their complex lifecycles, varied transmission routes, and prolonged periods between infection and symptoms mean that the public health burden and relative importance of different transmission routes are often difficult to assess. Furthermore, there are challenges in detection and diagnostics, and variations in reporting. A Europe‐focused ranking exercise, using multicriteria decision analysis, identified potentially food‐borne parasites of importance, and that are currently not routinely controlled in food. These are Cryptosporidium spp., Toxoplasma gondii and Echinococcus spp. Infection with these parasites in humans and animals, or their occurrence in food, is not notifiable in all Member States. This Opinion reviews current methods for detection, identification and tracing of these parasites in relevant foods, reviews literature on food‐borne pathways, examines information on their occurrence and persistence in foods, and investigates possible control measures along the food chain. The differences between these three parasites are substantial, but for all there is a paucity of well‐established, standardised, validated methods that can be applied across the range of relevant foods. Furthermore, the prolonged period between infection and clinical symptoms (from several days for Cryptosporidium to years for Echinococcus spp.) means that source attribution studies are very difficult. Nevertheless, our knowledge of the domestic animal lifecycle (involving dogs and livestock) for Echinoccocus granulosus means that this parasite is controllable. For Echinococcus multilocularis, for which the lifecycle involves wildlife (foxes and rodents), control would be expensive and complicated, but could be achieved in targeted areas with sufficient commitment and resources. Quantitative risk assessments have been described for Toxoplasma in meat. However, for T. gondii and Cryptosporidium as faecal contaminants, development of validated detection methods, including survival/infectivity assays and consensus molecular typing protocols, are required for the development of quantitative risk assessments and efficient control measures.
Collapse
|
12
|
Ryan U, Hijjawi N, Feng Y, Xiao L. Giardia: an under-reported foodborne parasite. Int J Parasitol 2018; 49:1-11. [PMID: 30391227 DOI: 10.1016/j.ijpara.2018.07.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/26/2022]
Abstract
Foodborne zoonotic pathogens are a serious public health issue and result in significant global economic losses. Despite their importance to public health, epidemiological data on foodborne diseases including giardiasis caused by the enteric parasite, Giardia duodenalis, are lacking. This parasite is estimated to cause ∼28.2 million cases of diarrhoea each year due to contamination of food, but very few foodborne outbreaks have been documented due to the limitations of current detection as well as surveillance methods. The current method for the recovery of Giardia cysts from food matrices using immunomagnetic separation requires further standardisation and cost reduction before it can be widely used. It also should incorporate downstream molecular procedures for genotyping, and traceback and viability analyses. Foodborne giardiasis can be potentially controlled through improvements in national disease surveillance systems and the establishment of Hazard Analysis and Critical Control Point interventions across the food chain. Studies are needed to assess the true prevalence and public health impact of foodborne giardiasis.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University PO Box 150459, Zarqa 13115, Jordan
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
First report of Toxoplasma gondii sporulated oocysts and Giardia duodenalis in commercial green-lipped mussels (Perna canaliculus) in New Zealand. Parasitol Res 2018; 117:1453-1463. [DOI: 10.1007/s00436-018-5832-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 12/29/2022]
|
14
|
Detection and quantification of soil-transmitted helminths in environmental samples: A review of current state-of-the-art and future perspectives. Acta Trop 2017; 169:187-201. [PMID: 28214519 DOI: 10.1016/j.actatropica.2017.02.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
Abstract
It is estimated that over a billion people are infected with soil-transmitted helminths (STHs) globally with majority occurring in tropical and subtropical regions of the world. The roundworm (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworms (Ancylostoma duodenale and Necator americanus) are the main species infecting people. These infections are mostly gained through exposure to faecally contaminated water, soil or contaminated food and with an increase in the risk of infections due to wastewater and sludge reuse in agriculture. Different methods have been developed for the detection and quantification of STHs eggs in environmental samples. However, there is a lack of a universally accepted technique which creates a challenge for comparative assessments of helminths egg concentrations both in different samples matrices as well as between locations. This review presents a comparison of reported methodologies for the detection of STHs eggs, an assessment of the relative performance of available detection methods and a discussion of new emerging techniques that could be applied for detection and quantification. It is based on a literature search using PubMed and Science Direct considering all geographical locations. Original research articles were selected based on their methodology and results sections. Methods reported in these articles were grouped into conventional, molecular and emerging techniques, the main steps in each method were then compared and discussed. The inclusion of a dissociation step aimed at detaching helminth eggs from particulate matter was found to improve the recovery of eggs. Additionally the selection and application of flotation solutions that take into account the relative densities of the eggs of different species of STHs also results in higher egg recovery. Generally the use of conventional methods was shown to be laborious and time consuming and prone to human error. The alternate use of nucleic acid-based techniques has improved the sensitivity of detection and made species specific identification possible. However, these nucleic acid based methods are expensive and less suitable in regions with limited resources and skill. The loop mediated isothermal amplification method shows promise for application in these settings due to its simplicity and use of basic equipment. In addition, the development of imaging soft-ware for the detection and quantification of STHs shows promise to further reduce human error associated with the analysis of environmental samples. It may be concluded that there is a need to comparatively assess the performance of different methods to determine their applicability in different settings as well as for use with different sample matrices (wastewater, sludge, compost, soil, vegetables etc.).
Collapse
|
15
|
Mariné Oliveira GF, do Couto MCM, de Freitas Lima M, do Bomfim TCB. Mussels (Perna perna) as bioindicator of environmental contamination by Cryptosporidium species with zoonotic potential. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2016; 5:28-33. [PMID: 26977402 PMCID: PMC4781961 DOI: 10.1016/j.ijppaw.2016.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/04/2016] [Accepted: 01/13/2016] [Indexed: 12/03/2022]
Abstract
Sources of contamination such as animal feces runoff, organic fertilizer application, and the release of partially treated or untreated sewage can lead to the contamination of aquatic environments by Cryptosporidium spp. The quality of mussels as food is closely related to the sanitary conditions of the marine environment where these bivalves are found. Marine mollusks are filter feeders that are able to retain Cryptosporidium oocysts in their tissue, thus functioning as bioindicators. A total of 72 pooled mussel samples of the species Perna perna were collected at two sites (A and B) in the municipality of Mangaratiba, Rio de Janeiro State, Brazil. Sampling involved removal of 30 mussels, from each collection site every month for one year. The 30 mussels from each sampling were then allocated into three groups of 10. Two Cryptosporidium spp. genes (18S and GP60) were targeted for DNA amplification from the samples obtained. After purification, all of the products obtained were sequenced and phylogenetic analyses were performed. Of the 72 samples analyzed using the nested-PCR for the 18S gene target, 29.2% were positive for the presence of Cryptosporidium spp. Of these samples, 52.4% were collected at site A (ie 11/21) and 47.6% at site B (ie 10/21). The 18S genes of all the samples considered positive for Cryptosporidium spp. were sequenced, and the following three species were identified: Cryptosporidium parvum, C. meleagridis, and C. andersoni. Three distinct C. parvum subtypes (IIaA19G2R2; IIaA20G2R2; IIaA20G3R2) were identified using the GP60 gene. More studies to evaluate the zoonotic potential of this species should be performed as both sampling locations contain human and/or animal fecal contaminants. Different species of Cryptosporidium diagnosed in Perna perna mussels. C. parvum subtypes of IIa zoonotic subfamily diagnosed in P. perna mussels. First report of the zoonotic species C. meleagridis in Brazilian mollusk bivalves. Mollusks bivalves used as bioindicator of environmental pollution.
Collapse
Affiliation(s)
| | | | - Marcelo de Freitas Lima
- Federal Rural University of Rio de Janeiro - Chemistry Department, Institute of Exact Sciences, Brazil
| | - Teresa Cristina Bergamo do Bomfim
- Federal Rural University of Rio de Janeiro, Veterinary Institute, Department of Animal Parasitology, BR 465, Km 07, Seropédica, Rio de Janeiro 23.890-000 Brazil
| |
Collapse
|
16
|
Kumar T, Abd Majid MA, Onichandran S, Jaturas N, Andiappan H, Salibay CC, Tabo HAL, Tabo N, Dungca JZ, Tangpong J, Phiriyasamith S, Yuttayong B, Polseela R, Do BN, Sawangjaroen N, Tan TC, Lim YAL, Nissapatorn V. Presence of Cryptosporidium parvum and Giardia lamblia in water samples from Southeast Asia: towards an integrated water detection system. Infect Dis Poverty 2016; 5:3. [PMID: 26763230 PMCID: PMC4712598 DOI: 10.1186/s40249-016-0095-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background Access to clean and safe drinking water that is free from pathogenic protozoan parasites, especially Cryptosporidium parvum and Giardia lamblia that cause gastrointestinal illness in humans, is still an issue in Southeast Asia (SEA). This study is the first attempt to detect the aforementioned protozoan parasites in water samples from countries in SEA, using real-time polymerase chain reaction (qPCR) assays. Methods A total of 221 water samples of 10 l each were collected between April and October 2013 from Malaysia (53), Thailand (120), the Philippines (33), and Vietnam (15). A physicochemical analysis was conducted. The water samples were processed in accordance with the US Environmental Protection Agency’s methods 1622/1623.1, microscopically observed and subsequently screened using qPCR assays. Results Cryptosporidium oocysts were detected in treated water samples from the Philippines (1/10), with a concentration of 0.06 ± 0.19 oocyst/L, and untreated water samples from Thailand (25/93), Malaysia (17/44), and the Philippines (11/23), with concentrations ranging from 0.13 ± 0.18 to 0.57 ± 1.41 oocyst/L. Giardia cysts were found in treated water samples from the Philippines (1/10), with a concentration of 0.02 ± 0.06 cyst/L, and in untreated water samples from Thailand (20/93), Vietnam (5/10), Malaysia (22/44), and the Philippines (16/23), with concentrations ranging from 0.12 ± 0.3 to 8.90 ± 19.65 cyst/L. The pathogens C. parvum and G. lamblia were detected using using qPCR assays by targeting the 138-bp fragment and the small subunit gene, respectively. C. parvum was detected in untreated water samples from the Philippines (1/23) and Malaysia (2/44), whilst, G. lamblia detected was detected in treated water samples from the Philippines (1/10) and in untreated water samples from Thailand (21/93), Malaysia (12/44), and the Philippines (17/23). Nitrate concentration was found to have a high positive correlation with (oo)cyst (0.993). Conclusion The presence of (oo)cysts in the water samples means that there is potential risk for zoonotic disease transmission in the studied countries. Detection using qPCR is feasible for quantifying both pathogenic C. parvum and G. lamblia in large water samples.
Collapse
Affiliation(s)
- Thulasi Kumar
- Department of Parasitology (Southeast Asia Water Team), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohamad Azlan Abd Majid
- Department of Parasitology (Southeast Asia Water Team), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Subashini Onichandran
- Department of Parasitology (Southeast Asia Water Team), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Narong Jaturas
- Department of Parasitology (Southeast Asia Water Team), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Hemah Andiappan
- Department of Parasitology (Southeast Asia Water Team), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cristina C Salibay
- Biological Science Department, College of Science and Computer Studies, De La Salle University-Dasmariñas, Dasmariñas, Philippines
| | - Hazel A L Tabo
- Biological Science Department, College of Science and Computer Studies, De La Salle University-Dasmariñas, Dasmariñas, Philippines
| | - Norbel Tabo
- Biological Science Department, College of Science and Computer Studies, De La Salle University-Dasmariñas, Dasmariñas, Philippines
| | - Julieta Z Dungca
- School of Science and Technology, Centro Escolar University, Manila, Philippines
| | - Jitbanjong Tangpong
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Boonyaorn Yuttayong
- Regional Medical Sciences Center, Department of Medical Sciences, Ministry of Public Health, Nakhon Ratchasima, Thailand
| | - Raxsina Polseela
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Binh Nhu Do
- Department of Parasitology, Faculty of Medicine, Vietnam Military Medical University, 160 Phung Hung Road, Phuc La Ward, Ha Dong District, Hanoi, Vietnam
| | - Nongyao Sawangjaroen
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Tian-Chye Tan
- Department of Parasitology (Southeast Asia Water Team), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A L Lim
- Department of Parasitology (Southeast Asia Water Team), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- Department of Parasitology (Southeast Asia Water Team), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Willis JE, McClure J, McClure C, Spears J, Davidson J, Greenwood SJ. Static tank depuration and chronic short-term experimental contamination of Eastern oysters (Crassostrea virginica) with Giardia duodenalis cysts. Int J Food Microbiol 2015; 192:13-9. [DOI: 10.1016/j.ijfoodmicro.2014.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/26/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
|
18
|
Molecular epidemiology of Cryptosporidium spp. and Giardia spp. in mussels (Mytilus californianus) and California sea lions (Zalophus californianus) from Central California. Appl Environ Microbiol 2014; 80:7732-40. [PMID: 25281384 DOI: 10.1128/aem.02922-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium and Giardia are of public health importance, with recognized transmission through recreational waters. Therefore, both can contaminate marine waters and shellfish, with potential to infect marine mammals in nearshore ecosystems. A 2-year study was conducted to evaluate the presence of Cryptosporidium and Giardia in mussels located at two distinct coastal areas in California, namely, (i) land runoff plume sites and (ii) locations near sea lion haul-out sites, as well as in feces of California sea lions (CSL) (Zalophus californianus) by the use of direct fluorescent antibody (DFA) detection methods and PCR with sequence analysis. In this study, 961 individual mussel hemolymph samples, 54 aliquots of pooled mussel tissue, and 303 CSL fecal samples were screened. Giardia duodenalis assemblages B and D were detected in hemolymph from mussels collected near two land runoff plume sites (Santa Rosa Creek and Carmel River), and assemblages C and D were detected in hemolymph from mussels collected near a sea lion haul-out site (White Rock). These results suggest that mussels are being contaminated by protozoa carried in terrestrial runoff and/or shed in the feces of CSL. Furthermore, low numbers of oocysts and cysts morphologically similar to Cryptosporidium and Giardia, respectively, were detected in CSL fecal samples, suggesting that CSL could be a source and a host of protozoan parasites in coastal environments. The results of this study showed that Cryptosporidium and Giardia spp. from the feces of terrestrial animals and CSL can contaminate mussels and coastal environments.
Collapse
|
19
|
Protozoan Parasites. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Willis JE, McClure J, McClure C, Spears J, Davidson J, Greenwood SJ. Bioaccumulation and elimination of Cryptosporidium parvum oocysts in experimentally exposed Eastern oysters (Crassostrea virginica) held in static tank aquaria. Int J Food Microbiol 2014; 173:72-80. [DOI: 10.1016/j.ijfoodmicro.2013.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/16/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
|
21
|
Cryptosporidium parvum genotype IIa and Giardia duodenalis assemblage A in Mytilus galloprovincialis on sale at local food markets. Int J Food Microbiol 2014; 171:62-7. [DOI: 10.1016/j.ijfoodmicro.2013.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/19/2013] [Accepted: 11/21/2013] [Indexed: 01/06/2023]
|
22
|
Hohweyer J, Dumètre A, Aubert D, Azas N, Villena I. Tools and methods for detecting and characterizing giardia, cryptosporidium, and toxoplasma parasites in marine mollusks. J Food Prot 2013; 76:1649-57. [PMID: 23992514 DOI: 10.4315/0362-028x.jfp-13-002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Foodborne infections are of public health importance and deeply impact the global economy. Consumption of bivalve mollusks generates risk for humans because these filtering aquatic invertebrates often concentrate microbial pathogens from their environment. Among them, Giardia, Cryptosporidium, and Toxoplasma are major parasites of humans and animals that may retain their infectivity in raw or undercooked mollusks. This review aims to detail current and future tools and methods for ascertaining the load and potential infectivity of these parasites in marine bivalve mollusks, including sampling strategies, parasite extraction procedures, and their characterization by using microscopy and/or molecular techniques. Method standardization should lead to better risk assessment of mollusks as a source of these major environmental parasitic pathogens and to the development of safety regulations, similar to those existing for bacterial and viral pathogens encountered in the same mollusk species.
Collapse
Affiliation(s)
- Jeanne Hohweyer
- Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie-Mycologie, EA 3800, Protozooses Transmises par l'Alimentation, Faculté de Médecine, SFR Cap-Santé Fed 4231, 51 Rue Cognacq-Jay, 51096 Reims, France
| | | | | | | | | |
Collapse
|
23
|
Global occurrence of Cryptosporidium and Giardia in shellfish: Should Canada take a closer look? Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Depletion of Cryptosporidium parvum oocysts from contaminated sewage by using freshwater benthic pearl clams (Hyriopsis schlegeli). Appl Environ Microbiol 2012; 78:7420-8. [PMID: 22904053 DOI: 10.1128/aem.01502-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The freshwater benthic pearl clam, Hyriopsis schlegeli, was experimentally exposed to Cryptosporidium parvum oocysts, and it was verified that the oocysts were eliminated predominantly via the fecal route, retaining their ability to infect cultured cells (HCT-8). The total fecal oocyst elimination rate was more than 90% within 5 days after exposure to the oocysts. H. schlegeli was able to survive in the final settling pond of a sewage plant for long periods, as confirmed by its pearl production. In the light of these findings, the clam was placed in the final settling pond in a trial to test its long-term efficacy in depleting oocysts contaminating the pond water. The number of clams placed was set to ensure a theoretical oocyst removal rate of around 50%, and the turbidity and the density of feed microbes in the overflow trough water of the pond were about 35% and 40 to 60% lower, respectively, than in the control water throughout the year. It was found that the clam feces containing oocysts were sufficiently heavy for them to settle to the bottom of the pond, despite the upward water flow. From these results, we concluded that efficient depletion of oocysts in the sewage water of small or midscale sewage treatment plants can be achieved by appropriate placement of H. schlegeli clams.
Collapse
|
25
|
Abstract
Since 1977, >2000 research papers described attempts to detect, identify and/or quantify parasites, or disease organisms carried by ecto-parasites, using DNA-based tests and 148 reviews of the topic were published. Despite this, only a few DNA-based tests for parasitic diseases are routinely available, and most of these are optional tests used occasionally in disease diagnosis. Malaria, trypanosomiasis, toxoplasmosis, leishmaniasis and cryptosporidiosis diagnosis may be assisted by DNA-based testing in some countries, but there are very few cases where the detection of veterinary parasites is assisted by DNA-based tests. The diagnoses of some bacterial (e.g. lyme disease) and viral diseases (e.g. tick borne encephalitis) which are transmitted by ecto-parasites more commonly use DNA-based tests, and research developing tests for these species makes up almost 20% of the literature. Other important uses of DNA-based tests are for epidemiological and risk assessment, quality control for food and water, forensic diagnosis and in parasite biology research. Some DNA-based tests for water-borne parasites, including Cryptosporidium and Giardia, are used in routine checks of water treatment, but forensic and food-testing applications have not been adopted in routine practice. Biological research, including epidemiological research, makes the widest use of DNA-based diagnostics, delivering enhanced understanding of parasites and guidelines for managing parasitic diseases. Despite the limited uptake of DNA-based tests to date, there is little doubt that they offer great potential to not only detect, identify and quantify parasites, but also to provide further information important for the implementation of parasite control strategies. For example, variant sequences within species of parasites and other organisms can be differentiated by tests in a manner similar to genetic testing in medicine or livestock breeding. If an association between DNA sequence and phenotype has been demonstrated, then qualities such as drug resistance, strain divergence, virulence, and origin of isolates could be inferred by DNA-based tests. No such tests are in clinical or commercial use in parasitology and few tests are available for other organisms. Why have DNA-based tests not had a bigger impact in veterinary and human medicine? To explore this question, technological, biological, economic and sociological factors must be considered. Additionally, a realistic expectation of research progress is needed. DNA-based tests could enhance parasite management in many ways, but patience, persistence and dedication will be needed to achieve this goal.
Collapse
|
26
|
Navarro-i-Martinez L, del Águila C, Bornay-Llinares FJ. Cryptosporidium: un género en revisión. Situación en España. Enferm Infecc Microbiol Clin 2011; 29:135-43. [DOI: 10.1016/j.eimc.2010.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 01/27/2023]
|
27
|
Putignani L, Mancinelli L, Del Chierico F, Menichella D, Adlerstein D, Angelici MC, Marangi M, Berrilli F, Caffara M, di Regalbono DAF, Giangaspero A. Investigation of Toxoplasma gondii presence in farmed shellfish by nested-PCR and real-time PCR fluorescent amplicon generation assay (FLAG). Exp Parasitol 2010; 127:409-17. [PMID: 20920501 DOI: 10.1016/j.exppara.2010.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
To evaluate the presence of Toxoplasma gondii in edible farmed shellfish, 1734 shellfish specimens i.e., 109 Crassostrea gigas (6 pools), 660 Mytilus galloprovincialis (22 pools), 804 Tapes decussatus (28 pools) and 161 Tapes philippinarum (6 pools), were collected from the Varano Lagoon (Apulia, Italy). Shellfish from 62 pools were subjected to two molecular techniques: a nested-PCR assay, and a fluorescent amplicon generation (FLAG) real-time PCR assay, both based on the multi-copy B1 target, were performed. One pooled sample of gills from C. gigas and one pooled sample of haemolymphs from T. decussatus were assessed as positive for T. gondii DNA by both techniques. The results demonstrated the presence of T. gondii in edible farmed C. gigas and T. decussatus and indicate that there may be a considerable health threat involved in eating contaminated raw shellfish.
Collapse
Affiliation(s)
- L Putignani
- Unità di Microbiologia, Bambino Gesù, Ospedale Pediatrico e Istituto di Ricerca, Piazza Sant'Onofrio 4, 00165 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Smith HV, Nichols RAB. Cryptosporidium: detection in water and food. Exp Parasitol 2009; 124:61-79. [PMID: 19501088 DOI: 10.1016/j.exppara.2009.05.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/24/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022]
Abstract
Water and food are major environmental transmission routes for Cryptosporidium, but our ability to identify the spectrum of oocyst contributions in current performance-based methods is limited. Determining risks in water and foodstuffs, and the importance of zoonotic transmission, requires the use of molecular methods, which add value to performance-based morphologic methods. Multi-locus approaches increase the accuracy of identification, as many signatures detected in water originate from species/genotypes that are not infectious to humans. Method optimisation is necessary for detecting small numbers of oocysts in environmental samples consistently, and further work is required to (i) optimise IMS recovery efficiency, (ii) quality assure performance-based methods, (iii) maximise DNA extraction and purification, (iv) adopt standardised and validated loci and primers, (v) determine the species and subspecies range in samples containing mixtures, and standardising storage and transport matrices for validating genetic loci, primer sets and DNA sequences.
Collapse
Affiliation(s)
- Huw V Smith
- Scottish Parasite Diagnostic Laboratory, Stobhill Hospital, Glasgow G21 3UW, Scotland, UK.
| | | |
Collapse
|
29
|
Giles M, Chalmers R, Pritchard G, Elwin K, Mueller-Doblies D, Clifton-Hadley F. Cryptosporidium hominis in a goat and a sheep in the UK. Vet Rec 2009; 164:24-5. [PMID: 19122222 DOI: 10.1136/vr.164.1.24] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- M Giles
- Food and Environmental Safety Department, Veterinary Laboratories Agency - Weybridge, Surrey, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Leone A, Ripabelli G, Sammarco ML, Grasso GM. Detection of Cryptosporidium spp. from human faeces by PCR-RFLP, cloning and sequencing. Parasitol Res 2008; 104:583-7. [DOI: 10.1007/s00436-008-1233-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
|
31
|
Robertson LJ, Gjerde B. Development and use of a pepsin digestion method for analysis of shellfish for Cryptosporidium oocysts and Giardia cysts. J Food Prot 2008; 71:959-66. [PMID: 18522030 DOI: 10.4315/0362-028x-71.5.959] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Investigation of shellfish for Cryptosporidium oocysts and Giardia cysts is of public health interest because shellfish may concentrate these pathogens in their bodies, and because shellfish are frequently eaten raw or lightly cooked. To date, the methods used for the analysis of shellfish for these parasites are based on those originally designed for water concentrates or fecal samples; the reported recovery efficiencies are frequently relatively low and the amount of sample examined is small. Here, we describe the development and use of a pepsin digestion method for analyzing shellfish samples for these parasites. The conditions of the isolation method did not affect subsequent parasite detection by immunofluorescent antibody test, and allowed examination of 3-g samples of shellfish homogenate, with recovery efficiencies from blue mussel homogenates of between 70 and 80%, and similar recoveries from horse mussel and oyster homogenates. Although exposure of the parasites to the conditions used in the technique affected their viability, as assessed by vital dyes, the maximum reduction in viability after 1-h incubation in digestion solution was 20%. In a preliminary survey of shellfish collected from the Norwegian coast, Cryptosporidium oocysts were detected in blue mussel homogenates in 6 (43%) of 14 batches and Giardia cysts in 7 (50%) of these batches. However, this relatively high occurrence, compared with other surveys, may be due to the higher recovery efficiency of the new method, and the relatively large sample size analyzed. A more comprehensive study of the occurrence of these parasites in shellfish would be of pertinence to the Norwegian shellfish industry.
Collapse
Affiliation(s)
- L J Robertson
- Parasitology Laboratory, Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, 0033 Oslo, Norway.
| | | |
Collapse
|
32
|
Pagès-Manté A, Pagès-Bosch M, Majó-Masferrer N, Gómez-Couso H, Ares-Mazás E. An outbreak of disease associated with cryptosporidia on a red-legged partridge (Alectoris rufa) game farm. Avian Pathol 2007; 36:275-8. [PMID: 17620172 DOI: 10.1080/03079450701439389] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An outbreak of disease associated with cryptosporidia on a red-legged partridge (Alectoris rufa) game farm is described. Morbidity (diarrhoea and cough) was between 60% and 70% during the first weeks of life (4 to 25 days) and mortality was higher than 50%. The results of bacteriological and virological analyses were negative. Histological examination and antigenic diagnosis by enzyme-linked immunosorbent analysis revealed the presence of Cryptosporidium spp. in respiratory and intestinal tracts. The application of polymerase chain reaction-restriction fragment length polymorphism techniques and sequencing of a Cryptosporidium oocyst wall protein gene fragment confirmed the existence of Cryptosporidium meleagridis in faecal samples. The results obtained suggest that avian cryptosporidiosis should be included among respiratory and enteric diseases routinely tested for in farmed birds.
Collapse
|
33
|
Abstract
Waterborne trematode and protozoan infections inflict considerable morbidity on healthy, i.e., immunocompetent people, and may cause life-threatening diseases among immunocompromised and immunosuppressed populations. These infections are common, easily transmissible, and maintain a worldwide distribution, although waterborne trematode infections remain predominantly confined to the developing countries. Waterborne transmission of trematodes is enhanced by cultural practices of eating raw or inadequately cooked food, socio-economical factors, and wide zoonotic and sylvatic reservoirs of these helminths. Waterborne protozoan infections remain common in both developed and developing countries (although better statistics exist for developed countries), and their transmission is facilitated via contacts with recreational and surface waters, or via consumption of contaminated drinking water. The transmissive stages of human protozoan parasites are small, shed in large numbers in feces of infected people or animals, resistant to environmental stressors while in the environment, and few are (e.g., Cryptosporidium oocysts) able to resist standard disinfection applied to drinking water.
Collapse
Affiliation(s)
- Thaddeus K Graczyk
- Division of Environmental Health Engineering, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
34
|
Nasser AM, Telser L, Nitzan Y. Effect of sunlight on the infectivity ofCryptosporidium parvumin seawater. Can J Microbiol 2007; 53:1101-5. [DOI: 10.1139/w07-043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of pathogenic microorganisms in seawater can result in waterborne and food borne outbreaks. This study was performed to determine the effect of sunlight and salinity on the die-off of Cryptosporidium parvum . Cryptosporidium parvum oocysts, Escherichia coli , and MS2 coliphage were seeded into tap water and seawater samples and then exposed to sunlight. The die-off of C. parvum in seawater, as measured by infectivity, was greater under sunlight (–3.08 log10) than under dark conditions (–1.31 log10). While, no significant difference was recorded in the die-off of C. parvum, under dark conditions, in tap water as compared to seawater (P < 0.05), indicating that the synergistic effect of salinity and sunlight was responsible for the enhanced die-off in seawater. The die-off of MS2 coliphage and E. coli was greater than that observed for C. parvum under all tested conditions. This indicates that these microorganisms cannot serve as indicators for the presence of C. parvum oocysts in seawaters. The results of the study suggest that C. parvum can persist as infectious oocysts for a long time in seawater and can thus pose a serious hazard by direct and indirect contact with humans.
Collapse
Affiliation(s)
- Abid M. Nasser
- Water Quality Research Laboratory, Ministry of Health, Ben-Zvi Road 69, P.O. Box 8255, Tel-Aviv 61082, Israel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lital Telser
- Water Quality Research Laboratory, Ministry of Health, Ben-Zvi Road 69, P.O. Box 8255, Tel-Aviv 61082, Israel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yeshayahu Nitzan
- Water Quality Research Laboratory, Ministry of Health, Ben-Zvi Road 69, P.O. Box 8255, Tel-Aviv 61082, Israel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
35
|
Leoni F, Gómez-Couso H, Ares-Mazás M, McLauchlin J. Multilocus genetic analysis of Cryptosporidium in naturally contaminated bivalve molluscs. J Appl Microbiol 2007; 103:2430-7. [DOI: 10.1111/j.1365-2672.2007.03508.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Presence of Giardia cysts and Cryptosporidium oocysts in drinking water supplies in northern Spain. J Appl Microbiol 2007; 102:619-29. [PMID: 17309610 DOI: 10.1111/j.1365-2672.2006.03193.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To evaluate the prevalence of Cryptosporidium and Giardia in surface water supplies from the province of Alava, northern Spain, and to investigate possible associations among the presence of these pathogenic protozoa with microbiological, physicochemical and atmospheric parameters. METHODS AND RESULTS A total of 284 samples of drinking and recreational water supplies were analysed. Cryptosporidium oocysts were found in 63.5% of river samples, 33.3% of reservoirs samples, 15.4% and 22.6% of raw water samples from conventional and small water treatment facilities (respectively), 30.8% of treated water from small treatment facilities, and 26.8% of tap water from municipalities with chlorination treatment only. Giardia cysts were found in 92.3% of river samples, 55.5% of reservoirs samples, 26.9% and 45.2% of raw water samples from conventional and small water treatment facilities (respectively), 19.2% of treated water from small treatment facilities, and 26.8% of tap water from municipalities with chlorination treatment only. The presence of Cryptosporidium and Giardia had significant Pearson's correlation coefficients (P < 0.01) with the turbidity levels of the samples, and a number of significant associations were also found with the count levels for total coliforms and Escherichia coli. The samples were positive for Cryptosporidium significantly (P < 0.05) more frequently during the autumn season than during the spring and winter seasons. No significant differences were found in the seasonal pattern of Giardia. A moderate association (r = 0.52) was found between rainfall and the presence of Cryptosporidium oocysts. CONCLUSIONS Cryptosporidium and Giardia are consistently found at elevated concentrations in surface waters for human consumption from the province of Alava, northern Spain. SIGNIFICANCE AND IMPACT OF THE STUDY Water treatments based on rapid filtration process and/or chlorination only are often unsatisfactory to provide safe drinking water, a situation that represents an important public health problem for the affected population because of the risk of waterborne outbreaks.
Collapse
|
37
|
The potential for marine bivalve shellfish to act as transmission vehicles for outbreaks of protozoan infections in humans: a review. Int J Food Microbiol 2007; 120:201-16. [PMID: 17928081 DOI: 10.1016/j.ijfoodmicro.2007.07.058] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/03/2007] [Accepted: 07/22/2007] [Indexed: 11/22/2022]
Abstract
Most marine molluscan bivalve shellfish feed on suspended phytoplankton which are trapped from water pumped across the gills by ciliary action. Pathogenic microorganisms in the water may be filtered by the gills during feeding, and become concentrated in the digestive glands/tract. If these pathogens are not excreted or inactivated by the shellfish, or in subsequent preparatory processes, they may be ingested by consumers, the shellfish thereby acting as vehicles of infection. The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii have the potential to be transmitted in this way, and here we review the accumulating knowledge on the occurrence and survival of the transmission stages of these parasites in shellfish, whilst also emphasising the considerable gaps in our knowledge. Relevant information is particularly lacking for T. gondii, which, in comparison with Cryptosporidium spp. and G. duodenalis, has been relatively under-researched in this context. Although it seems evident that these shellfish can accumulate and concentrate all three of these parasites from the surrounding water, whether Giardia cysts remain viable and infectious is unknown, and some evidence suggests that they may be inactivated by the shellfish. Although both Toxoplasma and Cryptosporidium apparently retain their infectivity for prolonged periods in shellfish, the actual public health threat posed by these parasites via these shellfish is unclear, largely because there is minimal evidence of infection transmission. Reasons for this apparent lack of infection transmission are discussed and it is recommended that the potential for transmission via shellfish consumption is recognised by those concerned with investigating transmission of these infections.
Collapse
|
38
|
Méndez-Hermida F, Gómez-Couso H, Ares-Mazás E. Possible involvement of Artemia as live diet in the transmission of cryptosporidiosis in cultured fish. Parasitol Res 2007; 101:823-7. [PMID: 17468970 DOI: 10.1007/s00436-007-0543-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 04/10/2007] [Indexed: 11/30/2022]
Abstract
The viability of Cryptosporidium parvum oocysts ingested by Artemia franciscana metanauplii was evaluated using two fluorogenic vital dyes. There was no significant difference (p = 0.09) between the viability of oocysts maintained in saline (control) and those recovered from the digestive tract of the microcrustacean 24 h after ingestion (95 vs 90% viable oocysts). The results suggest that Artemia, used as a life food in fish larviculture, may act as a vehicle for transmission of piscine cryptosporidiosis caused by Cryptosporidium molnari and Cryptosporidium scophthalmi.
Collapse
Affiliation(s)
- F Méndez-Hermida
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | |
Collapse
|
39
|
Molini U, Traversa D, Ceschia G, Iorio R, Boffo L, Zentilin A, Capelli G, Giangaspero A. Temporal occurrence of Cryptosporidium in the Manila clam Ruditapes philippinarum in northern Adriatic Italian lagoons. J Food Prot 2007; 70:494-9. [PMID: 17340889 DOI: 10.4315/0362-028x-70.2.494] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to evaluate the temporal occurrence of Cryptosporidium oocysts in Ruditapes philippinarum clams bred along the northeastern Italian Adriatic coast and molecularly characterize the isolates, 2,160 specimens (180 clams per month) were collected from three clam farms from January to December 2004. Two farms (sites A and B) were located in Venice (Chioggia, Veneto region) and one (site C) in the Marano Lagoons (Friuli Venezia Giulia region). Clams from 36 pools (i.e., one pool of 60 clams per month per site) were subjected to a high-sensitivity seminested PCR assay specific for a 360-bp diagnostic region internal to the Cryptosporidium spp. outer wall protein gene. Positive amplicons were sequenced and analyzed. Cryptosporidium DNA was found in clams from seven pools (sites A and B) during 1 month of sampling at site A and 6 months of sampling at site B, with Cryptosporidium hominis and Cryptosporidium parvum being detected. The expected infection rate of the clams was 0.36%. Site B showed a significantly higher expected infection rate (1.15%) than did the other sites (A = 0.14% and C = 0%). Given its high sensitivity and specificity, this seminested PCR assay can be considered a reliable tool for detecting and distinguishing species within the Cryptosporidium genus. The seasonal pattern of contamination and the related public health risks are of particular concern.
Collapse
Affiliation(s)
- Umberto Molini
- Dipartimento di Scienze Biomediche Comparate, Università degli Studi di Teramo, Piazza Aldo Moro, 45 64100, Teramo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Schets FM, van den Berg HHJL, Engels GB, Lodder WJ, de Roda Husman AM. Cryptosporidium and Giardia in commercial and non-commercial oysters (Crassostrea gigas) and water from the Oosterschelde, the Netherlands. Int J Food Microbiol 2007; 113:189-94. [PMID: 16973232 DOI: 10.1016/j.ijfoodmicro.2006.06.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/16/2006] [Accepted: 06/13/2006] [Indexed: 11/18/2022]
Abstract
The intestinal parasites Cryptosporidium and Giardia cause gastro-enteritis in humans and can be transmitted via contaminated water. Oysters are filter feeders that have been demonstrated to accumulate pathogens such as Salmonella, Vibrio, norovirus and Cryptosporidium from contaminated water and cause foodborne infections. Oysters are economically important shellfish that are generally consumed raw. Commercial and non-commercial oysters (Crassostrea gigas) and oyster culture water from the Oosterschelde, The Netherlands, were examined for the presence of Cryptosporidium oocysts and Giardia cysts. Nine of 133 (6.7%) oysters from two non-commercial harvesting sites contained Cryptosporidium, Giardia or both. Six of 46 (13.0%) commercial oysters harboured Cryptosporidium or Giardia in their intestines. Data on the viability of (oo)cysts recovered from Oosterschelde oysters were not obtained, however viable (oo)cysts were detected in surface waters that enter the Oosterschelde oyster harvesting areas. The detection of Cryptosporidium and Giardia in oysters destined for human consumption has implications for public health only when human pathogenic (oo)cysts that have preserved infectivity during their stay in a marine environment are present. Our data suggest that consumption of raw oysters from the Oosterschelde may occasionally lead to cases of gastro-intestinal illness.
Collapse
Affiliation(s)
- Franciska M Schets
- National Institute for Public Health and the Environment, Microbiological Laboratory for Health Protection, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Gómez-Couso H, Paniagua-Crespo E, Ares-Mazás E. Acanthamoeba as a temporal vehicle of Cryptosporidium. Parasitol Res 2006; 100:1151-4. [PMID: 17136384 DOI: 10.1007/s00436-006-0377-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 11/02/2006] [Indexed: 11/25/2022]
Abstract
The capacity of Acanthamoeba to predate Cryptosporidium oocysts was demonstrated. A maximum of six oocysts per Acanthamoeba trophozoite were detected, and a slow elimination of the internalized oocysts to the surrounding culture medium was observed. Free-living amoebae may act as carriers of Cryptosporidium oocysts and, thus, may play an important role in the transmission of cryptosporidiosis.
Collapse
Affiliation(s)
- H Gómez-Couso
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Avenida de Vigo s/n, 15782 Santiago de Compostela, A Coruña, Spain
| | | | | |
Collapse
|
42
|
Gómez-Couso H, Méndez-Hermida F, Ares-Mazás E. First report of Cryptosporidium
parvum ‘ferret’ genotype in American mink (Mustela vison Shreber 1777). Parasitol Res 2006; 100:877-9. [PMID: 17111177 DOI: 10.1007/s00436-006-0338-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/05/2006] [Indexed: 11/24/2022]
Abstract
A total of 51 faecal samples from wild and farmed mink were analysed by a direct immunofluorescence antibody test. Cryptosporidium oocysts were identified in eight, apparently healthy, farmed American mink (Mustela vison). The isolates were identified as Cryptosporidium parvum 'ferret' genotype by PCR-RFLP and sequencing analysis of a 341-base-pair fragment of the Cryptosporidium oocyst wall protein (COWP) gene. This is the first report of Cryptosporidium in American mink.
Collapse
Affiliation(s)
- H Gómez-Couso
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Avenida de Vigo s/n, 15782, Santiago de Compostela, A Coruña, Spain
| | | | | |
Collapse
|
43
|
King BJ, Monis PT. Critical processes affecting Cryptosporidium oocyst survival in the environment. Parasitology 2006; 134:309-23. [PMID: 17096874 DOI: 10.1017/s0031182006001491] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/21/2006] [Accepted: 08/21/2006] [Indexed: 11/07/2022]
Abstract
Cryptosporidium are parasitic protozoans that cause gastrointestinal disease and represent a significant risk to public health. Cryptosporidium oocysts are prevalent in surface waters as a result of human, livestock and native animal faecal contamination. The resistance of oocysts to the concentrations of chlorine and monochloramine used to disinfect potable water increases the risk of waterborne transmission via drinking water. In addition to being resistant to commonly used disinfectants, it is thought that oocysts can persist in the environment and be readily mobilized by precipitation events. This paper will review the critical processes involved in the inactivation or removal of oocysts in the terrestrial and aquatic environments and consider how these processes will respond in the context of climate change.
Collapse
Affiliation(s)
- B J King
- The Co-operative Research Centre for Water Quality and Treatment, Australian Water Quality Centre, SA Water Corporation, Salisbury, South Australia 5108, Australia
| | | |
Collapse
|
44
|
Pecson BM, Barrios JA, Johnson DR, Nelson KL. A real-time PCR method for quantifying viable ascaris eggs using the first internally transcribed spacer region of ribosomal DNA. Appl Environ Microbiol 2006; 72:7864-72. [PMID: 17056687 PMCID: PMC1694259 DOI: 10.1128/aem.01983-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Worldwide, 1.4 billion people are infected with the intestinal worm Ascaris lumbricoides. As a result, Ascaris eggs are commonly found in wastewater and sludges. The current microscopy method for detecting viable Ascaris eggs is time- and labor-intensive. The goal of this study was to develop a real-time quantitative PCR (qPCR) method to determine the levels of total and viable Ascaris eggs in laboratory solutions using the first internally transcribed spacer (ITS-1) region of ribosomal DNA (rDNA) and rRNA. ITS-1 rDNA levels were proportional to Ascaris egg cell numbers, increasing as eggs developed from single cells to mature larvae and ultimately reaching a constant level per egg. Treatments causing >99% inactivation (high heat, moderate heat, ammonia, and UV) eliminated this increase in ITS-1 rDNA levels and caused decreases that were dependent on the treatment type. By taking advantage of this difference in ITS-1 rDNA level between viable, larvated eggs and inactivated, single-celled eggs, qPCR results were used to develop inactivation profiles for the different treatments. No statistical difference from the standard microscopy method was found in 75% of the samples (12 of 16). ITS-1 rRNA was detected only in samples containing viable eggs, but the levels were more variable than rDNA levels and ITS-1 rRNA could not be used for quantification. The detection limit of the rDNA-based method was approximately one larvated egg or 90 single-celled eggs; the detection limit for the rRNA-based method was several orders of magnitude higher. The rDNA qPCR method is promising for both research and regulatory applications.
Collapse
Affiliation(s)
- Brian M Pecson
- Department of Civil and Environmental Engineering, MS 1710, University of California, Berkeley, CA 94720-1710, USA
| | | | | | | |
Collapse
|
45
|
Gómez-Couso H, Méndez-Hermida F, Ares-Mazás E. Levels of detection of Cryptosporidium oocysts in mussels (Mytilus galloprovincialis) by IFA and PCR methods. Vet Parasitol 2006; 141:60-5. [PMID: 16720079 DOI: 10.1016/j.vetpar.2006.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 03/30/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Cryptosporidium spp. are monoxenous protozoan parasites that cause gastrointestinal diseases in humans and animals. Shellfish harvesting areas can become contaminated by the infectious stage of the parasite and humans are therefore at risk of infection either by consumption of shellfish, or by taking part in recreational activities in these areas. In the present study we determined the levels of detection, by IFA and PCR techniques, of Cryptosporidium oocysts in mussels experimentally contaminated with a theoretical number of oocysts. There was a significant correlation between the results obtained by both techniques (P<0.05). IFA and PCR were also applied to a total of 222 samples of mussels (Mytilus galloprovincialis) destined for human consumption. In the naturally contaminated samples, we detected a 31.1% of contamination and only Cryptosporidium parvum (previously denominated C. parvum genotype II) was identified.
Collapse
Affiliation(s)
- Hipólito Gómez-Couso
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, La Coruña, Spain
| | | | | |
Collapse
|
46
|
Graczyk TK, Lewis EJ, Glass G, Dasilva AJ, Tamang L, Girouard AS, Curriero FC. Quantitative assessment of viable Cryptosporidium parvum load in commercial oysters (Crassostrea virginica) in the Chesapeake Bay. Parasitol Res 2006; 100:247-53. [PMID: 16896650 DOI: 10.1007/s00436-006-0261-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
The epidemiological importance of increasing reports worldwide on Cryptosporidium contamination of oysters remains unknown in relation to foodborne cryptosporidiosis. Thirty market-size oysters (Crassostrea virginica), collected from each of 53 commercial harvesting sites in Chesapeake Bay, MD, were quantitatively tested in groups of six for Cryptosporidium sp. oocysts by immunofluorescent antibody (IFA). After IFA analysis, the samples were retrospectively retested for viable Cryptosporidium parvum oocysts by combined fluorescent in situ hybridization (FISH) and IFA. The mean cumulative numbers of Cryptosporidium sp. oocysts in six oysters (overall, 42.1+/-4.1) were significantly higher than in the numbers of viable C. parvum oocysts (overall, 28.0+/-2.9). Of 265 oyster groups, 221 (83.4%) contained viable C. parvum oocysts, and overall, from 10-32% (mean, 23%) of the total viable oocysts were identified in the hemolymph as distinct from gill washings. The amount of viable C. parvum oocysts was not related to oyster size or to the level of fecal coliforms at the sampling site. This study demonstrated that, although oysters are frequently contaminated with oocysts, the levels of viable oocysts may be too low to cause infection in healthy individuals. FISH assay for identification can be retrospectively applied to properly stored samples.
Collapse
Affiliation(s)
- Thaddeus K Graczyk
- Department of Environmental Health Sciences, Division of Environmental Health Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Miller WA, Gardner IA, Atwill ER, Leutenegger CM, Miller MA, Hedrick RP, Melli AC, Barnes NM, Conrad PA. Evaluation of methods for improved detection of Cryptosporidium spp. in mussels (Mytilus californianus). J Microbiol Methods 2006; 65:367-79. [PMID: 16181691 DOI: 10.1016/j.mimet.2005.08.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 08/04/2005] [Accepted: 08/16/2005] [Indexed: 11/24/2022]
Abstract
Bivalve molluscs concentrate Cryptosporidium oocysts from fecal-contaminated aquatic environments and are therefore useful in monitoring water quality. A real-time TaqMan polymerase chain reaction (PCR) system was developed to allow for large scale quantitative detection of Cryptosporidium spp. in mussels (Mytilus californianus). The TaqMan sensitivity and specificity were compared to conventional PCR and direct immunofluorescent antibody (DFA) assays, with and without immunomagnetic separation (IMS), to identify the best method for parasite detection in mussel hemolymph, gill washings and digestive glands. TaqMan PCR and two conventional PCR systems all detected 1 or more oocysts spiked into 1 ml hemolymph samples. The minimum oocyst detection limit in spiked 5 ml gill wash and 1 g digestive gland samples tested by TaqMan PCR and DFA was 100 oocysts, with a 1 log(10) improvement when samples were first processed by IMS. For tank exposed mussels, TaqMan and conventional PCR methods detected C. parvum in <5% of hemolymph samples. No gill washings from these same mussels tested positive by TaqMan PCR or DFA analysis even with IMS concentration. All methods detected the highest prevalence of C. parvum-positive samples in digestive gland tissues of exposed mussels. In conclusion, the most sensitive method for the detection of C. parvum in oocyst-exposed mussels was IMS concentration with DFA detection: 80% of individual and 100% of pooled digestive gland samples tested positive. TaqMan PCR was comparable to conventional PCR for detection of C. parvum oocysts in mussels and additionally allowed for automated testing, high throughput, and semi-quantitative results.
Collapse
Affiliation(s)
- Woutrina A Miller
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gómez-Couso H, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E. Cooking mussels (Mytilus galloprovincialis) by steam does not destroy the infectivity of Cryptosporidium parvum. J Food Prot 2006; 69:948-50. [PMID: 16629046 DOI: 10.4315/0362-028x-69.4.948] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The consumption of shellfish has increased considerably worldwide, with an associated increase in foodborne illnesses. Among the bivalves, the mussels are usually cooked by steam, which constitutes a typical dish in several regions. In this article, we demonstrate that this preparation is not sufficient to destroy completely the infectivity of Cryptosporidium parvum. Oocysts recovered from experimentally contaminated mussels (Mytilus galloprovincialis) were infectious to neonatal mice after cooking. Although, to date, no official cases of cryptosporidiosis linked to shellfish consumption have been reported, we recommend that people with reduced immunity avoid this type of food because they are at high risk of being infected with Cryptosporidium spp. after eating raw or undercooked contaminated bivalves.
Collapse
Affiliation(s)
- Hipólito Gómez-Couso
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, La Coruña, Spain
| | | | | | | |
Collapse
|
49
|
Gómez-Couso H, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E. Cryptosporidium contamination in harvesting areas of bivalve molluscs. J Food Prot 2006; 69:185-90. [PMID: 16416917 DOI: 10.4315/0362-028x-69.1.185] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cryptosporidium contamination was evaluated in areas in Galicia (northwestern Spain) where bivalve molluscs are harvested. Galicia is the main mussel-producing region in Europe. Data were collected on water contamination of effluents that are discharged into these areas. Cryptosporidium spp. were detected by immunofluorescence microscopy and molecular methods in 71% of the river water samples (n = 7), 64% of raw sewage samples (n = 11), 50% of effluents from wastewater treatment plants (n = 16), and 29.3% of the mussel samples (Mytilus galloprovincialis, n = 184). Cryptosporidium parvum was identified in all samples of contaminated mussels, Cryptosporidium muris was found in three samples of effluent from wastewater treatment plants, and Cryptosporidium baileyi was found in a sample of raw sewage. Further studies are needed to determine the parasitological quality of water in these shellfish harvesting and recreational areas. Cryptosporidium could be a public health risk from consumption of raw or undercooked contaminated molluscs and use of contaminated waters for recreational purposes.
Collapse
Affiliation(s)
- Hipólito Gómez-Couso
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, La Coruña, Spain
| | | | | | | |
Collapse
|
50
|
Gómez-Couso H, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E. Giardia in shellfish-farming areas: Detection in mussels, river water and waste waters. Vet Parasitol 2005; 133:13-8. [PMID: 15982819 DOI: 10.1016/j.vetpar.2005.04.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 03/31/2005] [Accepted: 04/22/2005] [Indexed: 11/27/2022]
Abstract
Giardia cyst contamination of mussels (Mytilus galloprovincialis), raw and treated waste waters and water from rivers that flow into four Galician estuaries (NW Spain), where bivalve molluscs are cultured for human consumption, was studied. The high prevalence of contamination in mussels (41.8%, n=184), raw waste water (90.9%, n=11), treated waste water (87.5%, n=16) and in samples of river water (85.7%, n=7), with cyst counts of 9.8-1800.0, 7.0-2541.0 and 1.0-29.3 cysts l(-1), respectively, illustrate the wide distribution of this enteropathogen in the environment and the potential risk to public health associated with the consumption of raw or undercooking bivalves and use of these estuaries for recreational purposes.
Collapse
Affiliation(s)
- Hipólito Gómez-Couso
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, La Coruña, Spain
| | | | | | | |
Collapse
|