1
|
Iorizzo M, Albanese G, Letizia F, Testa B, Di Criscio D, Petrarca S, Di Martino C, Ganassi S, Avino P, Pannella G, Aturki Z, Tedino C, De Cristofaro A. Diversity of plant pollen sources, microbial communities, and phenolic compounds present in bee pollen and bee bread. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10425-10435. [PMID: 39073714 DOI: 10.1007/s11356-024-34517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The pollination of several crops, as well as wild plants, depends on honeybees. To get the nutrients required for growth and survival, honeybee colonies are dependent on pollen supply. Bee pollen (BP) is partially packed in honeycomb cells and processed into beebread (BB) by microbial metabolism. The composition of pollen is highly variable and is mainly dependent on ecological habitat, geographical origin, honey plants, climatic conditions, and seasonal variations. Although there are important differences between the BP and the BB, little comparative chemical and microbiological data on this topic exists in the literature, particularly for samples with the same origin. In this study, BP and BB pollen samples were collected from two apiaries located in the Campania and Molise regions of Southern Italy. Phenolic profiles were detected via HPLC, while antioxidant activity was determined by ABTS·+ and DPPH· assay. The next-generation sequencing (NGS) based on RNA analysis of 16S (rRNA) and internal transcribed spacer (ITS2) regions were used to investigate the microbial community (bacteria and fungi) and botanical origin of the BP and BB. Chemical analysis showed a higher content of flavonols in BP (rutin, myricetin, quercetin, and kaempferol), while in BB there was a higher content of phenolic acids. The NGS analysis revealed that the microbial communities and pollen sources are dependent on the geographical location of apiaries. In addition, diversity was highlighted between the microbial communities present in the BP and BB samples collected from each apiary.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Gianluca Albanese
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Dalila Di Criscio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Sonia Petrarca
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
- CONAPROA, Consorzio Nazionale Produttori Apistici, 86100, Campobasso, Italy
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00159, Rome, Italy
| | - Zeineb Aturki
- Istituto Per I Sistemi Biologici, Consiglio Nazionale Delle Ricerche, Area Della Ricerca Di Roma I, Via Salaria Km 29.300, 00015, Monterotondo, Rome, Italy
| | - Cosimo Tedino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
2
|
Margaoan R, Papa G, Nicolescu A, Cornea-Cipcigan M, Kösoğlu M, Topal E, Negri I. Environmental pollution effect on honey bees and their derived products: a comprehensive analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10370-10391. [PMID: 38847955 PMCID: PMC11996992 DOI: 10.1007/s11356-024-33754-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/17/2024] [Indexed: 04/15/2025]
Abstract
Several factors, including environmental degradation, air pollution, intense urbanization, excessive agriculture, and climate change, endanger the well-being of animals and plants. One of the major issues with an increasingly negative impact is agricultural contamination with pesticides and antibiotics. Seed coatings with neonicotinoid insecticides used as a protective layer against pests are shown to exceed the permissible limits in most cases. Neonicotinoid compounds bind to nicotinic acetylcholine receptors, therefore affecting the honey bees' brain. Heavy metals in higher concentrations are lethal for honey bees, and the residue in bee products might pose a threat to human health. Highly effective acaricides used to treat Varroa destructor infestations in honey bee colonies have negative effects on honey bee reproduction, olfaction, and honey production. Furthermore, amitraz and fluvalinate are mostly found in the highest amounts and lead to decreased honey production and reduced colony reproduction, along with decreased learning ability and memory. However, scientific studies have shown that honey bees act as a reliable bio-indicator of environmental pollution. In response to the growing demand for bee products, the effects of adulteration and improper storage conditions have gotten worse and represent a new risk factor. In light of the shifting global economy, it is important to analyze consumer expectations and adjust manufacturing accordingly. By ensuring the manufacture of high-quality, traceable products devoid of drug residues, consumers will be better protected from subsequent health problems. This review's objectives are based on the necessity of identifying the risks associated with honey bees and bee products.
Collapse
Affiliation(s)
- Rodica Margaoan
- Department of Animal Production and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Giulia Papa
- Department of Sustainable Crop Production-DIPROVES, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Alexandru Nicolescu
- Department of Horticulture and Landscape, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337, Cluj-Napoca, Romania.
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscape, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mustafa Kösoğlu
- Apiculture Research Center, Aegean Agricultural Research Institute, 35661, Izmir, Turkey
| | - Erkan Topal
- Izmir Food Control Laboratory Directorate, Bornova, 35100, Izmir, Turkey
| | - Ilaria Negri
- Department of Sustainable Crop Production-DIPROVES, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
3
|
von Knoblauch T, Jensen AB, Mülling CKW, Heusinger A, Aupperle-Lellbach H, Genersch E. Stonebrood Disease-Histomorphological Changes in Honey Bee Larvae ( Apis mellifera) Experimentally Infected with Aspergillus flavus. Vet Sci 2025; 12:124. [PMID: 40005884 PMCID: PMC11861757 DOI: 10.3390/vetsci12020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Stonebrood (Aspergillus sp.) is a rare, poorly described disease of the Western honey bee (Apis mellifera) that can affect adult bees and brood. This study describes the pathogenesis using artificially reared pathogen-free Apis mellifera larvae, experimentally infected (5 × 102 spores/larva) with Aspergillus flavus. Between days 1 and 5 p.i. (larval age 4 until 8 days), five uninfected control larvae, up to five infected living larvae, and up to five infected dead larvae were examined macroscopically. Subsequently, the larvae were photographed, fixed (4% formaldehyde), and processed for histological examination (hematoxylin-eosin stain, Grocott silvering). Sections were digitized, measured (area, thickness), and statistically analyzed. In total, 19 of the 43 collected infected larvae showed signs of infection (germinating spores/fungal mycelium): dead larvae (from day 2 p.i.) showed clear histological and macroscopic signs of infection, while larvae collected alive (from day 1 p.i.) were only locally affected. Infected larvae were significantly smaller (day 2 p.i.: p < 0.001, 4 p.i.: p < 0.01, 5 p.i.: p < 0.01) than uninfected larvae (control group). Our study shows that the pathogenesis of stonebrood is characterized by a short period between Aspergillus germination and the onset of disease (about one day), and a rapid larval death.
Collapse
Affiliation(s)
- Tammo von Knoblauch
- LABOKLIN GmbH & Co.KG, Labor für Klinische Diagnostik, Steubenstraße 4, 97688 Bad Kissingen, Germany; (T.v.K.); (A.H.)
| | - Annette B. Jensen
- Department of Plant and Environmental Sciences Section for Organismal Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark;
| | - Christoph K. W. Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany;
| | - Anton Heusinger
- LABOKLIN GmbH & Co.KG, Labor für Klinische Diagnostik, Steubenstraße 4, 97688 Bad Kissingen, Germany; (T.v.K.); (A.H.)
| | - Heike Aupperle-Lellbach
- LABOKLIN GmbH & Co.KG, Labor für Klinische Diagnostik, Steubenstraße 4, 97688 Bad Kissingen, Germany; (T.v.K.); (A.H.)
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
- Institute of Microbiology and Epizootics, Faculty of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| |
Collapse
|
4
|
Vit P, Araque M, Chuttong B, Moreno E, Contreras RR, Wang Q, Wang Z, Betta E, Bankova V. Pot-Pollen Volatiles, Bioactivity, Synergism with Antibiotics, and Bibliometrics Overview, Including Direct Injection in Food Flavor. Foods 2024; 13:3879. [PMID: 39682953 DOI: 10.3390/foods13233879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Stingless bees (Hymenoptera; Apidae; Meliponini), with a biodiversity of 605 species, harvest and transport corbicula pollen to the nest, like Apis mellifera, but process and store the pollen in cerumen pots instead of beeswax combs. Therefore, the meliponine pollen processed in the nest was named pot-pollen instead of bee bread. Pot-pollen has nutraceutical properties for bees and humans; it is a natural medicinal food supplement with applications in health, food science, and technology, and pharmaceutical developments are promising. Demonstrated synergism between Tetragonisca angustula pot-pollen ethanolic extracts, and antibiotics against extensively drug-resistant (XDR) bacteria revealed potential to combat antimicrobial resistance (AMR). Reviewed pot-pollen VOC richness was compared between Australian Austroplebeia australis (27), Tetragonula carbonaria (31), and Tetragonula hogkingsi (28), as well as the Venezuelan Tetragonisca angustula (95). Bioactivity and olfactory attributes of the most abundant VOCs were revisited. Bibliometric analyses with the Scopus database were planned for two unrelated topics in the literature for potential scientific advances. The top ten most prolific authors, institutions, countries, funding sponsors, and sources engaged to disseminate original research and reviews on pot-pollen (2014-2023) and direct injection food flavor (1976-2023) were ranked. Selected metrics and plots were visualized using the Bibliometrix-R package. A scholarly approach gained scientific insight into the interaction between an ancient fermented medicinal pot-pollen and a powerful bioanalytical technique for fermented products, which should attract interest from research teams for joint projects on direct injection in pot-pollen flavor, and proposals on stingless bee nest materials. Novel anti-antimicrobial-resistant agents and synergism with conventional antibiotics can fill the gap in the emerging potential to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Maria Araque
- Laboratory of Molecular Microbiology, Department of Microbiology and Parasitology, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Enrique Moreno
- Smithsonian Tropical Research Institute, Calle Portobelo, Balboa, Ancon 0843-03092, Panama
| | - Ricardo R Contreras
- Department of Chemistry, Faculty of Science, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Qibi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650033, China
| | - Emanuela Betta
- Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Guo M, Zhang J, Wang Y, Chen H, Lv J, Kong D, Jin Z, Ke T, Zhang H, Luo J, Yang M. Determination of mycobiota and aflatoxin contamination in commercial bee pollen from eight provinces and one autonomous region of China. Int J Food Microbiol 2024; 411:110511. [PMID: 38043476 DOI: 10.1016/j.ijfoodmicro.2023.110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The co-occurrence of fungi and mycotoxins in various foods has been frequently reported in many countries, posing a serious threat to the health and safety of consumers. In this study, the mycobiota in five types of commercial bee pollen samples from China were first revealed by DNA metabarcoding. Meanwhile, the content of total aflatoxins in each sample was investigated by high-performance liquid chromatography with fluorescence detection. The results demonstrated that Cladosporium (0.16 %-89.29 %) was the most prevalent genus in bee pollen, followed by Metschnikowia (0-81.12 %), unclassified genus in the phylum Ascomycota (0-81.13 %), Kodamaea (0-73.57 %), and Penicillium (0-36.13 %). Meanwhile, none of the assayed aflatoxins were determined in the 18 batches of bee pollen samples. In addition, the fungal diversity, community composition, and trophic mode varied significantly among five groups. This study provides comprehensive information for better understanding the fungal communities and aflatoxin residues in bee pollen from different floral origins in China.
Collapse
Affiliation(s)
- Mengyue Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Dandan Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ziyue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tongwei Ke
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hongkun Zhang
- Sichuan Haoyun Pharmaceutical Co., Ltd., Guangyuan 628000, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Chinese Materia Medica and Prepared Slices), Lanzhou 730070, China.
| |
Collapse
|
6
|
Wang Y, Ma L, Xu B. Bee wisdom: exploring bee control strategies for food microflora by comparing the physicochemical characteristics and microbial composition of beebread. Microbiol Spectr 2023; 11:e0181823. [PMID: 37800944 PMCID: PMC10871783 DOI: 10.1128/spectrum.01818-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/05/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Bees are a valuable model for investigating the relationship between environmental factors, gut microbiota, and organismal health. Beebread, produced from collected pollen, is a natural food source and a primary reservoir of gut microorganisms. Although pollen typically has diverse bacterial species, beebread has low species richness and bacterial abundance. Consequently, considerable attention has been paid to the adaptive strategies employed by honey bees to cope with the microorganisms within their food environment during co-evolution with plants. This study identified the distribution patterns of beebread's physicochemical characteristics, showing how bees use fermentation to enrich specific microbes. These findings help understand the relationship between environmental and food-associated microbes and bee intestinal microbiota. They also bridge gaps in the literature and provide a valuable reference for studying the complex interplay between these factors.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
7
|
Anderson KE, Mott BM. Ecology of Pollen Storage in Honey Bees: Sugar Tolerant Yeast and the Aerobic Social Microbiota. INSECTS 2023; 14:265. [PMID: 36975950 PMCID: PMC10058632 DOI: 10.3390/insects14030265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Honey bee colonies are resource rich and densely populated, generating a constant battle to control microbial growth. Honey is relatively sterile in comparison with beebread: a food storage medium comprising pollen mixed with honey and worker head-gland secretions. Within colonies, the microbes that dominate aerobic niches are abundant throughout social resource space including stored pollen, honey, royal jelly, and the anterior gut segments and mouthparts of both queens and workers. Here, we identify and discuss the microbial load in stored pollen associated with non-Nosema fungi (primarily yeast) and bacteria. We also measured abiotic changes associated with pollen storage and used culturing and qPCR of both fungi and bacteria to investigate changes in stored pollen microbiology by both storage time and season. Over the first week of pollen storage, pH and water availability decreased significantly. Following an initial drop in microbial abundance at day one, both yeasts and bacteria multiply rapidly during day two. Both types of microbes then decline at 3-7 days, but the highly osmotolerant yeasts persist longer than the bacteria. Based on measures of absolute abundance, bacteria and yeast are controlled by similar factors during pollen storage. This work contributes to our understanding of host-microbial interactions in the honey bee gut and colony and the effect of pollen storage on microbial growth, nutrition, and bee health.
Collapse
|
8
|
Becchimanzi A, Nicoletti R. Aspergillus-bees: A dynamic symbiotic association. Front Microbiol 2022; 13:968963. [PMID: 36160228 PMCID: PMC9489833 DOI: 10.3389/fmicb.2022.968963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Besides representing one of the most relevant threats of fungal origin to human and animal health, the genus Aspergillus includes opportunistic pathogens which may infect bees (Hymenoptera, Apoidea) in all developmental stages. At least 30 different species of Aspergillus have been isolated from managed and wild bees. Some efficient behavioral responses (e.g., diseased brood removal) exerted by bees negatively affect the chance to diagnose the pathology, and may contribute to the underestimation of aspergillosis importance in beekeeping. On the other hand, bee immune responses may be affected by biotic and abiotic stresses and suffer from the loose co-evolutionary relationships with Aspergillus pathogenic strains. However, if not pathogenic, these hive mycobiota components can prove to be beneficial to bees, by affecting the interaction with other pathogens and parasites and by detoxifying xenobiotics. The pathogenic aptitude of Aspergillus spp. likely derives from the combined action of toxins and hydrolytic enzymes, whose effects on bees have been largely overlooked until recently. Variation in the production of these virulence factors has been observed among strains, even belonging to the same species. Toxigenic and non-toxigenic strains/species may co-exist in a homeostatic equilibrium which is susceptible to be perturbed by several external factors, leading to mutualistic/antagonistic switch in the relationships between Aspergillus and bees.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| |
Collapse
|
9
|
Barta DG, Cornea-Cipcigan M, Margaoan R, Vodnar DC. Biotechnological Processes Simulating the Natural Fermentation Process of Bee Bread and Therapeutic Properties-An Overview. Front Nutr 2022; 9:871896. [PMID: 35571893 PMCID: PMC9097220 DOI: 10.3389/fnut.2022.871896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Recent signs of progress in functional foods and nutraceuticals highlighted the favorable impact of bioactive molecules on human health and longevity. As an outcome of the fermentation process, an increasing interest is developed in bee products. Bee bread (BB) is a different product intended for humans and bees, resulting from bee pollen's lactic fermentation in the honeycombs, abundant in polyphenols, nutrients (vitamins and proteins), fatty acids, and minerals. BB conservation is correlated to bacteria metabolites, mainly created by Pseudomonas spp., Lactobacillus spp., and Saccharomyces spp., which give lactic acid bacteria the ability to outperform other microbial groups. Because of enzymatic transformations, the fermentation process increases the content of new compounds. After the fermentation process is finalized, the meaningful content of lactic acid and several metabolites prevent the damage caused by various pathogens that could influence the quality of BB. Over the last few years, there has been an increase in bee pollen fermentation processes to unconventional dietary and functional supplements. The use of the chosen starters improves the bioavailability and digestibility of bioactive substances naturally found in bee pollen. As a consequence of enzymatic changes, the fermentation process enhances BB components and preserves them against loss of characteristics. In this aspect, the present review describes the current biotechnological advancements in the development of BB rich in beneficial components derived from bee pollen fermentation and its use as a food supplement and probiotic product with increased shelf life and multiple health benefits.
Collapse
Affiliation(s)
- Daniel Gabriel Barta
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rodica Margaoan
- Advanced Horticultural Research Institute of Transylvania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Microbial Decontamination of Bee Pollen by Direct Ozone Exposure. Foods 2021; 10:foods10112593. [PMID: 34828875 PMCID: PMC8623575 DOI: 10.3390/foods10112593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The bee pollen is a complete and healthy food with important nutritional properties. Usually, bee pollen is consumed dehydrated, but it is possible to market it as fresh frozen pollen, favoring the maintenance of its properties and greatly increasing its palatability, compared to dried pollen. However, fresh frozen pollen maintains a high microbiological load that can include some pathogenic genus to human health. In this work, ozonation combined with drying is applied to reduce the microbiological load. The lowest timing exposure to ozone (30 min) was chosen together with hot-air drying during 15 min to evaluate the shelf-life of treated bee-pollen under cold storage (4 °C), and initial reductions of 3, 1.5, and 1.7 log cycles were obtained for Enterobacteriaceae, mesophilic aerobes, and molds and yeasts counting, respectively. Six weeks after treatment the microbial load was held at a lower level than initially observed in fresh bee-pollen. In addition, ozone treatment did not have a negative impact on the polyphenols evaluated. Likewise, the sensory profile of the bee pollen under different treatments was studied. For all these assays the results have been favorable, so we can say that ozonation of fresh pollen is safe for human consumption, which maintains its polyphenols composition and organoleptically is better valued than dried pollen.
Collapse
|
11
|
A Snapshot Picture of the Fungal Composition of Bee Bread in Four Locations in Bulgaria, Differing in Anthropogenic Influence. J Fungi (Basel) 2021; 7:jof7100845. [PMID: 34682266 PMCID: PMC8539294 DOI: 10.3390/jof7100845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 01/30/2023] Open
Abstract
Information about the fungal composition of bee bread, and the fermentation processes to which the fungi contribute significantly, is rather scarce or fragmentary. In this study, we performed an NGS-based metagenomics snapshot picture study of the fungal composition of bee bread in four locations in Bulgaria during the most active honeybee foraging period at the end of June 2020. The sampling locations were chosen to differ significantly in climatic conditions, landscape, and anthropogenic pressure, and the Illumina 2 × 250 paired-end reads platform was used for amplicon metagenomics study of the ITS2 region. We found that some of the already reported canonical beneficial core fungal species were present within the studied samples. However, some fungal genera such as Monilinia, Sclerotinia, Golovinomyces, Toxicocladosporium, Pseudopithomyces, Podosphaera and Septoriella were reported for the first time among the dominant genera for a honeybee related product. Anthropogenic pressure negatively influences the fungal composition of the bee bread in two different ways-urban/industrial pressure affects the presence of pathogenic species, while agricultural pressure is reflected in a decrease of the ratio of the beneficial fungi.
Collapse
|
12
|
Friedle C, D'Alvise P, Schweikert K, Wallner K, Hasselmann M. Changes of microorganism composition in fresh and stored bee pollen from Southern Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47251-47261. [PMID: 33893577 PMCID: PMC8692275 DOI: 10.1007/s11356-021-13932-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Analysis of plant pollen can provide valuable insights into the existing spectrum of microorganisms in the environment. When harvesting bee-collected pollen as a dietary supplement for human consumption, timely preservation of the freshly collected pollen is fundamental for product quality. Environmental microorganisms contained in freshly collected pollen can lead to spoilage by degradation of pollen components. In this study, freshly collected bee pollen was sampled at different locations and stored under various storage conditions to examine the hypothesis that storage conditions may have an effect on the composition of microorganisms in pollen samples. The samples were analyzed using 16S and 18S amplicon sequencing and characterized by palynological analysis. Interestingly, the bacterial communities between pollen samples from different locations varied only slightly, whereas for fungal community compositions, this effect was substantially increased. Further, we noticed that fungal communities in pollen are particularly sensitive to storage conditions. The fungal genera proportion Cladosporium and Mycosphaerella decreased, while Zygosaccharomyces and Aspergillus increased during storage. Aspergillus and Zygosaccharomyces fractions increased during storage at 30 °C, which could negatively impact the pollen quality if it is used as a dietary supplement.
Collapse
Affiliation(s)
- Carolin Friedle
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany.
- Institute of Animal Science, Department of Livestock Population Genomics, University of Hohenheim, Stuttgart, Germany.
| | - Paul D'Alvise
- Institute of Animal Science, Department of Livestock Population Genomics, University of Hohenheim, Stuttgart, Germany
| | - Karsten Schweikert
- Core Facility Hohenheim and Institute of Economics, University of Hohenheim, Stuttgart, Germany
| | - Klaus Wallner
- Apicultural State Institute, University of Hohenheim, Stuttgart, Germany
| | - Martin Hasselmann
- Institute of Animal Science, Department of Livestock Population Genomics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
De Jesus Inacio L, Merlanti R, Lucatello L, Bisutti V, Carraro L, Larini I, Vitulo N, Cardazzo B, Capolongo F. Natural contaminants in bee pollen: DNA metabarcoding as a tool to identify floral sources of pyrrolizidine alkaloids and fungal diversity. Food Res Int 2021; 146:110438. [PMID: 34119245 DOI: 10.1016/j.foodres.2021.110438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023]
Abstract
The use of bee pollen as a food supplement has increased in recent years as it contains several nutrients and phytochemicals. However, depending on floral composition, bee pollen can be contaminated by pyrrolizidine alkaloids (PAs), PA N-oxides (PANOs) and toxigenic fungi found in plants, which may pose a potential health risk for consumers. Thus, a DNA metabarcoding approach based on internal transcribed spacer 2 (ITS2) region was used to identify the plant sources of 17 PAs/PANOs detected by a validated method in liquid chromatography coupled to mass spectrometry (LC-MS/MS), as well as floral and fungal diversity in 61 bee pollen samples. According to LC-MS/MS analysis, 67% of the samples contained PAs/PANOs with mean concentration of 339 µg/kg. The contamination pattern was characterised by lycopsamine- and senecionine-type PAs/PANOs. PA/PANO-producing plants were identified in 54% of the PA/PANO-contaminated samples analysed by DNA metabarcoding, which also allowed identifying the overall floral and fungal composition of 56 samples. To evaluate the performance of the molecular approach, a subset of 25 samples was analysed by classical palynology. Palynological analysis partially confirmed the results of DNA metabarcoding, which had a better performance in distinguishing pollens of different genera from Asteraceae (76%) and Brassicaceae (88%). However, the molecular analysis did not identify pollens from Castanea, Eucalyptus, Hedera and Salix, which were abundant in 11 samples according to palynology. On the other hand, the molecular analysis allowed identifying several fungal genera in 33 samples, including the toxigenic fungi Alternaria and Aspergillus, which were positively correlated to the plant genus Hypericum. Despite limitations in identifying some pollen types, these preliminary results suggest that the DNA metabarcoding could be applied in a multidisciplinary approach to give a picture of floral and fungal diversity, which can be sources of natural contaminants in bee pollen and would help to control its safety.
Collapse
Affiliation(s)
- Luciana De Jesus Inacio
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Roberta Merlanti
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Vittoria Bisutti
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Ilaria Larini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy.
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| |
Collapse
|
14
|
Ispirli H, Dertli E. Detection of fructophilic lactic acid bacteria (FLAB) in bee bread and bee pollen samples and determination of their functional roles. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hümeyra Ispirli
- Central Research Laboratory Bayburt University Bayburt Turkey
| | - Enes Dertli
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Yildiz Technical University Istanbul Turkey
| |
Collapse
|
15
|
Bee-pollen retailed in Tuscany (Italy): Labelling, palynological, microbiological, and mycotoxicological profile. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Zhang H, Ahima J, Yang Q, Zhao L, Zhang X, Zheng X. A review on citrinin: Its occurrence, risk implications, analytical techniques, biosynthesis, physiochemical properties and control. Food Res Int 2021; 141:110075. [DOI: 10.1016/j.foodres.2020.110075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
|
17
|
The Application of Pollen as a Functional Food and Feed Ingredient-The Present and Perspectives. Biomolecules 2020; 10:biom10010084. [PMID: 31948037 PMCID: PMC7023195 DOI: 10.3390/biom10010084] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Pollen is recognized as an excellent dietary supplement for human nutrition, which is why it can be found in different forms on the market (granules, capsules, tablets, pellets, and powders). But, the digestibility of pollen’s nutrients is strongly affected by the presence of a pollen shell, which can decrease the bioavailability of nutrients by 50% and more. Since consumers have become more aware of the benefits of a healthy diet and the necessity to improve pollen digestibility, different pollen-based functional food products have been developed and extensive studies were done to estimate the beneficial effects of pollen-based feed on animal growth, health, and rigor mortise stage. Considering the positive effects of pollen nutrients and phytometabolites on human and animal health, the aim of this paper was to give an overview of recent achievements in the application of pollen in the formulation of functional food and animal diets. Special attention was paid to the effects of pollen’s addition on the nutritional, functional, techno-functional, and sensory properties of the new formulated food products. Anti-nutritional properties of pollen were also discussed. This review points out the benefits of pollen addition to food and feed and the possible directions in the further development of functional food and feed for the wellbeing of everyone.
Collapse
|
18
|
Khalil NM, Abd El-Ghany MN, Rodríguez-Couto S. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. CHEMOSPHERE 2019; 218:477-486. [PMID: 30497030 DOI: 10.1016/j.chemosphere.2018.11.129] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 05/24/2023]
Abstract
The cell-free culture filtrate (CFF) of the fungi Fusarium chlamydosporum NG30 and Penicillium chrysogenum NG85 was tested to synthesize silver nanoparticles (AgNPs). The synthesized AgNPs were further characterized by means of transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier transform infra-red (FTIR) spectroscopy. TEM revealed their spherical shape, homogeneity and a size range between 6 and 26 nm for F. chlamydosporum AgNPs (FAgNPs) and from 9 to 17.5 nm for P. chrysogenum AgNPs (PAgNPs). DLS showed that the diameter of FAgNPs was narrower than that of PAgNPs. FTIR spectroscopy indicated that the functional groups present in the CFF might be responsible for the reduction of silver ions to form stabilized protein-capped AgNPs. In addition, the AgNPs showed notable antifungal activity and potency in thwarting mycotoxin production. Thus, using Aspergillus flavus as a test microorganism the minimum inhibitory concentration (MIC) was 48, 45 and 50 μg/mL for FAgNPs, PAgNPs and the antifungal compound itraconazole, respectively. Also, when testing Aspergillus ochraceus FAgNPs, PAgNPs and itraconazole led to MIC values of 51, 47 and 49 μg/mL, respectively. The statistical MIC values to inhibit completely the total aflatoxin production by A. flavus were 5.9 and 5.6 μg/mL for FAgNPs and PAgNPs, respectively, and to inhibit the ochratoxin A production by A. ochraceus 6.3 and 6.1 μg/mL for FAgNPs and PAgNPs, respectively. The cytotoxicity assay of the AgNPs on human normal melanocytes (HFB 4) revealed a cell survival of 80% and 75% at a concentration of 6 μg/mL for FAgNPs and PAgNPs, respectively.
Collapse
Affiliation(s)
- Neveen M Khalil
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed N Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Susana Rodríguez-Couto
- Ceit-IK4, Paseo Manuel de Lardizábal 15, 20018, San Sebastian, Spain; Universidad de Navarra, Tecnun, Paseo Manuel de Lardizábal 13, 20018, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
| |
Collapse
|
19
|
Novel solid-state fermentation of bee-collected pollen emulating the natural fermentation process of bee bread. Food Microbiol 2019; 82:218-230. [PMID: 31027777 DOI: 10.1016/j.fm.2019.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/29/2023]
Abstract
Structure of lactic acid bacteria biota in ivy flowers, fresh bee-collected pollen (BCP), hive-stored bee bread, and honeybee gastrointestinal tract was investigated. Although a large microbial diversity characterized flowers and fresh BCP, most of lactic acid bacteria species disappeared throughout the bee bread maturation, giving way to Lactobacillus kunkeei and Fructobacillus fructosus to dominate long stored bee bread and honeybee crop. Adaptation of lactic acid bacteria was mainly related to species-specific, and, more in deep, to strain-specific features. Bee bread preservation seemed related to bacteria metabolites, produced especially by some L. kunkeei strains, which likely gave to lactic acid bacteria the capacity to outcompete other microbial groups. A protocol to ferment BCP was successfully set up, which included the mixed inoculum of selected L. kunkeei strains and Hanseniaspora uvarum AN8Y27B, almost emulating the spontaneous fermentation of bee bread. The strict relationship between lactic acid bacteria and yeasts during bee bread maturation was highlighted. The use of the selected starters increased the digestibility and bioavailability of nutrients and bioactive compounds naturally occurring in BCP. Our biotechnological protocol ensured a product microbiologically stable and safe. Conversely, raw BCP was more exposed to the uncontrolled growth of yeasts, moulds, and other bacterial groups.
Collapse
|
20
|
Janashia I, Choiset Y, Jozefiak D, Déniel F, Coton E, Moosavi-Movahedi AA, Chanishvili N, Haertlé T. Beneficial Protective Role of Endogenous Lactic Acid Bacteria Against Mycotic Contamination of Honeybee Beebread. Probiotics Antimicrob Proteins 2019; 10:638-646. [PMID: 29297160 DOI: 10.1007/s12602-017-9379-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this article is to reveal the role of the lactic acid bacteria (LAB) in the beebread transformation/preservation, biochemical properties of 25 honeybee endogenous LAB strains, particularly: antifungal, proteolytic, and amylolytic activities putatively expressed in the beebread environment have been studied. Seventeen fungal strains isolated from beebread samples were identified and checked for their ability to grow on simulated beebread substrate (SBS) and then used to study mycotic propagation in the presence of LAB. Fungal strains identified as Aspergillus niger (Po1), Candida sp. (BB01), and Z. rouxii (BB02) were able to grow on SBS. Their growth was partly inhibited when co-cultured with the endogenous honeybee LAB strains studied. No proteolytic or amylolytic activities of the studied LAB were detected using pollen, casein starch based media as substrates. These findings suggest that some honeybee LAB symbionts are involved in maintaining a safe microbiological state in the host honeybee colonies by inhibiting beebread mycotic contaminations, starch, and protein predigestion in beebread by LAB is less probable. Honeybee endogenous LAB use pollen as a growth substrate and in the same time restricts fungal propagation, thus showing host beneficial action preserving larval food. This study also can have an impact on development of novel methods of pollen preservation and its processing as a food ingredient.
Collapse
Affiliation(s)
- Irakli Janashia
- Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, Georgia
| | - Yvan Choiset
- FIP, UR1268, Biopolymers Interactions Assemblies, INRA, BP 71627, 44316, Nantes Cedex 3, France
| | - Damian Jozefiak
- Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, ul. Wołyńska 33, 60-637, Poznań, Poland
| | - Franck Déniel
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Emmanuel Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Nina Chanishvili
- Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, Georgia
| | - Thomas Haertlé
- FIP, UR1268, Biopolymers Interactions Assemblies, INRA, BP 71627, 44316, Nantes Cedex 3, France. .,Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, ul. Wołyńska 33, 60-637, Poznań, Poland. .,Institute of Biochemistry and Biophysics, University of Teheran, Teheran, Iran.
| |
Collapse
|
21
|
Kostić AŽ, Milinčić DD, Petrović TS, Krnjaja VS, Stanojević SP, Barać MB, Tešić ŽL, Pešić MB. Mycotoxins and Mycotoxin Producing Fungi in Pollen: Review. Toxins (Basel) 2019; 11:E64. [PMID: 30678361 PMCID: PMC6409990 DOI: 10.3390/toxins11020064] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022] Open
Abstract
Due to its divergent chemical composition and good nutritional properties, pollen is not only important as a potential food supplement but also as a good substrate for the development of different microorganisms. Among such microorganisms, toxigenic fungi are extremely dangerous as they can synthesize mycotoxins as a part of their metabolic pathways. Furthermore, favorable conditions that enable the synthesis of mycotoxins (adequate temperature, relative humidity, pH, and aw values) are found frequently during pollen collection and/or production process. Internationally, several different mycotoxins have been identified in pollen samples, with a noted predominance of aflatoxins, ochratoxins, fumonisins, zearalenone, deoxynivalenol, and T-2 toxin. Mycotoxins are, generally speaking, extremely harmful for humans and other mammals. Current EU legislation contains guidelines on the permissible content of this group of compounds, but without information pertaining to the content of mycotoxins in pollen. Currently only aflatoxins have been researched and discussed in the literature in regard to proposed limits. Therefore, the aim of this review is to give information about the presence of different mycotoxins in pollen samples collected all around the world, to propose possible aflatoxin contamination pathways, and to emphasize the importance of a regular mycotoxicological analysis of pollen. Furthermore, a suggestion is made regarding the legal regulation of pollen as a food supplement and the proposed tolerable limits for other mycotoxins.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Danijel D Milinčić
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Tanja S Petrović
- Preservation and Fermentation, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Vesna S Krnjaja
- Institute for Animal Husbandry, Autoput 16, 11080 Belgrade, Serbia.
| | - Sladjana P Stanojević
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Miroljub B Barać
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Živoslav Lj Tešić
- Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia.
| | - Mirjana B Pešić
- Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| |
Collapse
|
22
|
Gomaa EZ, Housseiny MM, Omran AAAK. Fungicidal Efficiency of Silver and Copper Nanoparticles Produced by Pseudomonas fluorescens ATCC 17397 Against Four Aspergillus Species: A Molecular Study. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1474-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Li QQ, Wang K, Marcucci MC, Sawaya ACHF, Hu L, Xue XF, Wu LM, Hu FL. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Barbosa RN, Bezerra JDP, Souza-Motta CM, Frisvad JC, Samson RA, Oliveira NT, Houbraken J. New Penicillium and Talaromyces species from honey, pollen and nests of stingless bees. Antonie Van Leeuwenhoek 2018; 111:1883-1912. [PMID: 29654567 PMCID: PMC6153986 DOI: 10.1007/s10482-018-1081-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/31/2018] [Indexed: 01/05/2023]
Abstract
Penicillium and Talaromyces species have a worldwide distribution and are isolated from various materials and hosts, including insects and their substrates. The aim of this study was to characterize the Penicillium and Talaromyces species obtained during a survey of honey, pollen and the inside of nests of Melipona scutellaris. A total of 100 isolates were obtained during the survey and 82% of those strains belonged to Penicillium and 18% to Talaromyces. Identification of these isolates was performed based on phenotypic characters and β-tubulin and ITS sequencing. Twenty-one species were identified in Penicillium and six in Talaromyces, including seven new species. These new species were studied in detail using a polyphasic approach combining phenotypic, molecular and extrolite data. The four new Penicillium species belong to sections Sclerotiora (Penicillium fernandesiae sp. nov., Penicillium mellis sp. nov., Penicillium meliponae sp. nov.) and Gracilenta (Penicillium apimei sp. nov.) and the three new Talaromyces species to sections Helici (Talaromyces pigmentosus sp. nov.), Talaromyces (Talaromyces mycothecae sp. nov.) and Trachyspermi (Talaromyces brasiliensis sp. nov.). The invalidly described species Penicillium echinulonalgiovense sp. nov. was also isolated during the survey and this species is validated here.
Collapse
Affiliation(s)
- Renan N Barbosa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jadson D P Bezerra
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Cristina M Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Neiva T Oliveira
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Beev G, Stratev D, Vashin I, Pavlov D, Dinkov D, Department of Biochemistry, Microbiology and Physics, Faculty of Agriculture, Trakia University, 6000, Stara Zagora, Bulgaria, Department of Food Hygiene and Control, Veterinary Legislation and Management, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria, Department of Food Hygiene and Control, Veterinary Legislation and Management, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria, Department of Crop Production, Faculty of Agriculture, Trakia University, 6000, Stara Zagora, Bulgaria, Department of Food Hygiene and Control, Veterinary Legislation and Management, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria. Quality Assessment of Bee Pollen: A Cross Sectional Survey in Bulgaria. JOURNAL OF FOOD QUALITY AND HAZARDS CONTROL 2018. [DOI: 10.29252/jfqhc.5.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
26
|
Kieliszek M, Piwowarek K, Kot AM, Błażejak S, Chlebowska-Śmigiel A, Wolska I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.021] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Zhang X, Li Y, Wang H, Gu X, Zheng X, Wang Y, Diao J, Peng Y, Zhang H. Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes. Toxins (Basel) 2016; 8:toxins8110333. [PMID: 27845758 PMCID: PMC5127129 DOI: 10.3390/toxins8110333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 11/16/2022] Open
Abstract
Ochratoxin A (OTA) contamination has been established as a world-wide problem. In this study, the strains with the ability of OTA production were screened by analyzing the green fluorescence of the isolates colonies from the grapes in Zhenjiang with 365 nm UV light and confirmed by HPLC with fluorescent detection (HPLC-FLD). The results showed that seven isolates acquired the characteristic of the fluorescence, of which only five showed the ability of OTA production as confirmed by HPLC-FLD analysis. The five OTA-producing strains were identified based on comparative sequence analysis of three conserved genes (ITS, BenA and RPB2) of the strains, and they are Talaromyces rugulosus (O1 and Q3), Penicillium commune (V5-1), Penicillium rubens (MQ-5) and Aspergillus aculeatus (MB1-1). There are two Penicillium species of the five OTA-producing strains and our study is the first to report that P. rubens, T. rugulosus and A. aculeatus can produce OTA. This work would contribute to comprehensively understanding the fungi with an OTA-producing ability in grapes before harvest and then take effective measures to prevent OTA production.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Yulin Li
- Hubei Key Laboratory, Edible Wild Plants Conservation and Utilization, 11 Cihu Road, Huangshi 435002, China.
| | - Haiying Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Xiangyu Gu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, China.
| | - Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Junwei Diao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Yaping Peng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
28
|
Ammar H, El-Desouky T. Green synthesis of nanosilver particles by Aspergillus terreus
HA1N and Penicillium expansum
HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol 2016; 121:89-100. [DOI: 10.1111/jam.13140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 02/04/2023]
Affiliation(s)
- H.A.M. Ammar
- Botany Department; Faculty of Science; Zagazig University; Cairo Egypt
| | - T.A. El-Desouky
- Food Toxicology & Contaminants Deptartment; National Research Centre; Cairo Egypt
| |
Collapse
|
29
|
Farzaneh M, Shi ZQ, Ahmadzadeh M, Hu LB, Ghassempour A. Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1. THE PLANT PATHOLOGY JOURNAL 2016; 32:209-215. [PMID: 27298596 PMCID: PMC4892817 DOI: 10.5423/ppj.oa.11.2015.0250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 06/01/2023]
Abstract
In this study, the treatment of pistachio nuts by Bacillus subtilis UTBSP1, a promising isolate to degrade aflatoxin B1 (AFB1), caused to reduce the growth of Aspergillus flavus R5 and AFB1 content on pistachio nuts. Fluorescence probes revealed that the cell free supernatant fluid from UTBSP1 affects spore viability considerably. Using high-performance liquid chromatographic (HPLC) method, 10 fractions were separated and collected from methanol extract of cell free supernatant fluid. Two fractions showed inhibition zones against A. flavus. Mass spectrometric analysis of the both antifungal fractions revealed a high similarity between these anti-A. flavus compounds and cyclic-lipopeptides of surfactin, and fengycin families. Coproduction of surfactin and fengycin acted in a synergistic manner and consequently caused a strong antifungal activity against A. flavus R5. There was a positive significant correlation between the reduction of A. flavus growth and the reduction of AFB1 contamination on pistachio nut by UTBSP1. The results indicated that fengycin and surfactin-producing B. subtilis UTBSP1 can potentially reduce A. flavus growth and AFB1 content in pistachio nut.
Collapse
Affiliation(s)
- Mohsen Farzaneh
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 19835-389,
Iran
- Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, Nanjing 210014,
China
| | - Zhi-Qi Shi
- Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, Nanjing 210014,
China
| | - Masoud Ahmadzadeh
- Department of Plant Protection, University of Tehran, Karaj 4111,
Iran
| | - Liang-Bin Hu
- Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, Nanjing 210014,
China
- School of Food, Henan Institute of Science and Technology, Xinxiang 453003,
China
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 19835-389,
Iran
| |
Collapse
|
30
|
Shevtsova TV, Petrová J, Brindza J, Garkava KG, Kačániová M. Microbial Diversity of Betula Trees: Pollen, Catkins, Leaves Relatively of Flowering. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2016. [DOI: 10.11118/actaun201664020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Salazar-González C, Díaz-Moreno C. The nutritional and bioactive aptitude of bee pollen for a solid-state fermentation process. JOURNAL OF APICULTURAL RESEARCH 2016; 55:161-175. [DOI: 10.1080/00218839.2016.1205824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 06/17/2016] [Indexed: 01/03/2025]
Affiliation(s)
- Claudia Salazar-González
- Institute of Food Science and Technology, National University of Colombia in Bogotá, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Institute of Food Science and Technology, National University of Colombia in Bogotá, Bogotá, Colombia
| |
Collapse
|
32
|
Weiss K, Strohm E, Kaltenpoth M, Herzner G. Comparative morphology of the postpharyngeal gland in the Philanthinae (Hymenoptera, Crabronidae) and the evolution of an antimicrobial brood protection mechanism. BMC Evol Biol 2015; 15:291. [PMID: 26690740 PMCID: PMC4687156 DOI: 10.1186/s12862-015-0565-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hymenoptera that mass-provision their offspring have evolved elaborate antimicrobial strategies to ward off fungal infestation of the highly nutritive larval food. Females of the Afro-European Philanthus triangulum and the South American Trachypus elongatus (Crabronidae, Philanthinae) embalm their prey, paralyzed bees, with a secretion from a complex postpharyngeal gland (PPG). This coating consists of mainly unsaturated hydrocarbons and reduces water accumulation on the prey's surface, thus rendering it unfavorable for fungal growth. Here we (1) investigated whether a North American Philanthus species also employs prey embalming and (2) assessed the occurrence and morphology of a PPG among females of the subfamily Philanthinae in order to elucidate the evolution of prey embalming as an antimicrobial strategy. RESULTS We provide clear evidence that females of the North American Philanthus gibbosus possess large PPGs and embalm their prey. The comparative analyses of 26 species from six genera of the Philanthinae, using histological methods and 3D-reconstructions, revealed pronounced differences in gland morphology within the subfamily. A formal statistical analysis based on defined characters of the glands confirmed that while all members of the derived tribe Philanthini have large and complex PPGs, species of the two more basal tribes, Cercerini and Aphilanthopsini, possess simple and comparatively small glands. According to an ancestral state reconstruction, the complex PPG most likely evolved in the last common ancestor of the Philanthini, thus representing an autapomorphy of this tribe. CONCLUSION Prey embalming, as described for P. triangulum and T. elongatus, and now also for P. gibbosus, most probably requires a complex PPG. Hence, the morphology and size of the PPG may allow for inferences about the origin and distribution of the prey embalming behavior within the Philanthinae. Based on our results, we suggest that prey embalming has evolved as an antimicrobial strategy in and is restricted to the tribe Philanthini, which seems to face exceptional threats with regard to fungal infestations of their larval provisions.
Collapse
Affiliation(s)
- Katharina Weiss
- Evolutionary Ecology Group, Institute of Zoology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
| | - Erhard Strohm
- Evolutionary Ecology Group, Institute of Zoology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany. .,Department for Evolutionary Ecology, Johannes Gutenberg University Mainz, Institute for Zoology, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| | - Gudrun Herzner
- Evolutionary Ecology Group, Institute of Zoology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
| |
Collapse
|
33
|
Deveza MV, Keller KM, Lorenzon MCA, Nunes LMT, Sales ÉO, Barth OM. Mycotoxicological and palynological profiles of commercial brands of dried bee pollen. Braz J Microbiol 2015; 46:1171-6. [PMID: 26691478 PMCID: PMC4704650 DOI: 10.1590/s1517-838246420140316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 03/05/2015] [Indexed: 11/22/2022] Open
Abstract
Pollen is used in the human diet as a food supplement because of its high nutritional
value; however, this product is prone to fungal contamination that could potentially
generate toxins that are harmful to human health. This study aimed to verify the
floral diversity of commercial brands of bee pollen and their mycotoxicological
safety for human consumption. A total of 27 bee pollen samples were analyzed; these
samples represented commercial brands, either showing an inspection seal or not,
marketed in the State of Rio de Janeiro. The analyzed parameters included floral
diversity through palynological analysis, water activity, fungal counts,
identification and toxigenic profiles. The palynological analysis identified nine
plant families, of which the Asteraceae was predominant. Analysis of hygienic quality
based on fungal load showed that 92% of samples were reproved according to the
commercial, sanitary, and food safety quality indicators. Aspergillus,
Cladosporium and Penicillium were the most common
genera. Toxigenic evaluation showed that 25% of the A. flavus
strains produced aflatoxins. The high rate of contamination of products bearing an
inspection seal emphasizes the need to monitor the entire procedure of bee pollen
production, as well as to revise the current legislation to ensure safe
commercialization of this product.
Collapse
Affiliation(s)
| | - Kelly Moura Keller
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
34
|
De-Melo AAM, Estevinho MLMF, Almeida-Muradian LB. A diagnosis of the microbiological quality of dehydrated bee-pollen produced in Brazil. Lett Appl Microbiol 2015; 61:477-83. [PMID: 26280091 DOI: 10.1111/lam.12480] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED Bee-pollen is an apicultural product with potential for medical and nutritional applications; therefore, its microbiology quality should be monitored. In this context, the objective of this study was to diagnose the microbiological quality of 45 dehydrated bee-pollen samples collected from November 2011 to December 2013 in nine Brazilian States. All the samples were negative for sulphite-reducing Clostridium spores, Salmonella, coagulase-positive Staphylococcus and Escherichia coli, which are micro-organisms of public health concern. Total aerobic mesophilic micro-organism counts ranged from <10 to 1·10 × 10(4) CFU g(-1) , with psychrotroph counts ranging from <10 to 1·12 × 10(3) CFU g(-1) and total coliforms from <10 to 2·80 × 10(3) CFU g(-1) , while the values for yeasts and moulds were between <10 to 7·67 × 10(3) CFU g(-1) . According to the literature, the microbiota observed in this study were typical; however, it is important to consider that these micro-organisms may cause spoilage and diminish shelf life, reason by which quality control programs should be implemented. SIGNIFICANCE AND IMPACT OF THE STUDY Contamination of bee-pollen can occur during production, collection and processing, but there are few studies of the microbiological quality of this product. Brazil is an important producer of dehydrated bee-pollen, therefore, a diagnosis of the microbiological status is important to ensure the safety of many consumers. Salmonella sp., genus Clostridium, coagulase-positive Staphylococcus, Escherichia coli and even some yeast species are micro-organisms of public health concern and their presence must be monitored. Furthermore, the determination of spoilage micro-organisms indicates whether the production and the processing practices carried out by beekeepers and warehouses were adequate.
Collapse
Affiliation(s)
- A A M De-Melo
- Laboratory of Food Analysis, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - M L M F Estevinho
- CIMO-Mountain Research Center, Department of Biology and Biotechnology, Polytechnic Institute of Bragança, Bragança, Portugal
| | - L B Almeida-Muradian
- Laboratory of Food Analysis, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Abstract
Insecticides are chemicals used to kill insects, so it is unsurprising that many insecticides have the potential to harm honey bees (Apis mellifera). However, bees are exposed to a great variety of other potentially toxic chemicals, including flavonoids and alkaloids that are produced by plants; mycotoxins produced by fungi; antimicrobials and acaricides that are introduced by beekeepers; and fungicides, herbicides, and other environmental contaminants. Although often regarded as uniquely sensitive to toxic compounds, honey bees are adapted to tolerate and even thrive in the presence of toxic compounds that occur naturally in their environment. The harm caused by exposure to a particular concentration of a toxic compound may depend on the level of simultaneous exposure to other compounds, pathogen levels, nutritional status, and a host of other factors. This review takes a holistic view of bee toxicology by taking into account the spectrum of xenobiotics to which bees are exposed.
Collapse
Affiliation(s)
- Reed M Johnson
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691;
| |
Collapse
|
36
|
Kačániová M, Sudzinová J, Kádasi-Horáková M, Valšíková M, Kráčmar S. The determination of microscopic fungi from Chestnut (Castanea sativa Mill.) fruits, leaves, crust and pollen. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun201058040073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
de Souza GG, Pfenning LH, de Moura F, Salgado M, Takahashi JA. Isolation, identification and antimicrobial activity of propolis-associated fungi. Nat Prod Res 2014; 27:1705-7. [PMID: 23439233 DOI: 10.1080/14786419.2013.771348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Propolis is a natural product widely known for its medicinal properties. In this work, fungi present on propolis samples were isolated, identified and tested for the production of antimicrobial metabolites. Twenty-two fungal isolates were obtained, some of which were identified as Alternaria alternata, Aspergillus flavus, Bipolaris hawaiiensis, Fusarium merismoides, Lasiodiplodia theobromae, Penicillium citrinum, Penicillium crustosum, Penicillium janthinellum, Penicillium purpurogenum, Pestalotiopsis palustris, Tetracoccosporium paxianum and Trichoderma koningii. These fungi were grown in liquid media to obtain crude extracts that were evaluated for their antibiotic activity against pathogenic bacteria, yeast and Cladosporium cladosporioides and A. flavus. The most active extract was obtained from L. theobromae (minimum inhibitory concentration = 64 μg/mL against Listeria monocitogenes). Some extracts showed to be more active than the positive control in the inhibition of Staphylococcus aureus and L. monocitogenes. Therefore, propolis is a promising source of fungi, which produces active agents against relevant food poisoning bacteria and crop-associated fungi.
Collapse
|
38
|
Foley K, Fazio G, Jensen AB, Hughes WOH. The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees. Vet Microbiol 2013; 169:203-10. [PMID: 24485932 DOI: 10.1016/j.vetmic.2013.11.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/22/2013] [Indexed: 01/27/2023]
Abstract
Stonebrood is a disease of honey bee larvae caused by fungi from the genus Aspergillus. As very few studies have focused on the epidemiological aspects of stonebrood and diseased brood may be rapidly discarded by worker bees, it is possible that a high number of cases go undetected. Aspergillus spp. fungi are ubiquitous and associated with disease in many insects, plants, animals and man. They are regarded as opportunistic pathogens that require immunocompromised hosts to establish infection. Microbiological studies have shown high prevalences of Aspergillus spp. in apiaries which occur saprophytically on hive substrates. However, the specific conditions required for pathogenicity to develop remain unknown. In this study, an apiary was screened to determine the prevalence and diversity of Aspergillus spp. fungi. A series of dose-response tests were then conducted using laboratory reared larvae to determine the pathogenicity and virulence of frequently occurring isolates. The susceptibility of adult worker bees to Aspergillus flavus was also tested. Three isolates (A. flavus, Aspergillus nomius and Aspergillus phoenicis) of the ten species identified were pathogenic to honey bee larvae. Moreover, adult honey bees were also confirmed to be highly susceptible to A. flavus infection when they ingested conidia. Neither of the two Aspergillus fumigatus strains used in dose-response tests induced mortality in larvae and were the least pathogenic of the isolates tested. These results confirm the ubiquity of Aspergillus spp. in the apiary environment and highlight their potential to infect both larvae and adult bees.
Collapse
Affiliation(s)
- Kirsten Foley
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Géraldine Fazio
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Annette B Jensen
- Department of Ecology and Agriculture, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | | |
Collapse
|
39
|
Xue X, Selvaraj JN, Zhao L, Dong H, Liu F, Liu Y, Li Y. Simultaneous Determination of Aflatoxins and Ochratoxin A in Bee Pollen by Low-Temperature Fat Precipitation and Immunoaffinity Column Cleanup Coupled with LC-MS/MS. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9723-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Chen AJ, Tang D, Zhou YQ, Sun BD, Li XJ, Wang LZ, Gao WW. Identification of ochratoxin A producing fungi associated with fresh and dry liquorice. PLoS One 2013; 8:e78285. [PMID: 24205182 PMCID: PMC3804526 DOI: 10.1371/journal.pone.0078285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022] Open
Abstract
The presence of fungi on liquorice could contaminate the crop and result in elevated levels of mycotoxin. In this study, the mycobiota associated with fresh and dry liquorice was investigated in 3 producing regions of China. Potential toxigenic fungi were tested for ochratoxin A (OTA) and aflatoxin B1 (AFB1) production using liquid chromatography/mass spectrometry/mass spectrometry. Based on a polyphasic approach using morphological characters, β-tubulin and RNA polymerase II second largest subunit gene phylogeny, a total of 9 genera consisting of 22 fungal species were identified, including two new Penicillium species (Penicillium glycyrrhizacola sp. nov. and Penicillium xingjiangense sp. nov.). The similarity of fungal communities associated with fresh and dry liquorice was low. Nineteen species belonging to 8 genera were detected from fresh liquorice with populations affiliated with P. glycyrrhizacola, P. chrysogenum and Aspergillus insuetus comprising the majority (78.74%, 33.33% and 47.06% of total) of the community from Gansu, Ningxia and Xinjiang samples, respectively. In contrast, ten species belonging to 4 genera were detected from dry liquorice with populations affiliated with P. chrysogenum, P. crustosum and Aspergillus terreus comprising the majority (64.00%, 52.38% and 90.91% of total) of the community from Gansu, Ningxia and Xinjiang samples, respectively. Subsequent LC/MS/MS analysis indicated that 5 fungal species were able to synthesize OTA in vitro including P. chrysogenum, P. glycyrrhizacola, P. polonicum, Aspergillus ochraceus and A. westerdijkiae, the OTA concentration varied from 12.99 to 39.03 µg/kg. AFB1 was absent in all tested strains. These results demonstrate the presence of OTA producing fungi on fresh liquorice and suggest that these fungi could survive on dry liquorice after traditional sun drying. Penicillium chrysogenum derived from surrounding environments is likely to be a stable contributor to high OTA level in liquorice. The harvesting and processing procedure needs to be monitored in order to keep liquorice free of toxigenic fungi.
Collapse
Affiliation(s)
- Amanda Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Dan Tang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Ying Qun Zhou
- China National Corporation of Traditional & Herbal Medicine, Beijing, P.R. China
| | - Bing Da Sun
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiao Jin Li
- Xinjiang Institute of Traditional Chinese Medicine and Ethnicdrug, Urumchi, P.R. China
| | - Li Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wei Wei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
41
|
Ulbricht C, Conquer J, Giese N, Khalsa KPS, Sklar J, Weissner W, Woods J. An evidence-based systematic review of bee pollen by the Natural Standard Research Collaboration. J Diet Suppl 2013; 6:290-312. [PMID: 22435480 DOI: 10.1080/19390210903081381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
An evidence-based systematic review including written and statistical analysis of scientific literature, expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.
Collapse
|
42
|
Egyptian honeybee pollen as antimicrobial, antioxidant agents, and dietary food supplements. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0238-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Rodríguez-Carrasco Y, Font G, Mañes J, Berrada H. Determination of mycotoxins in bee pollen by gas chromatography-tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1999-2005. [PMID: 23383867 DOI: 10.1021/jf400256f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bee pollen, promoted as a natural food supplement, is consumed increasingly by people to maintain a healthy diet. Depending on environmental conditions, pollen can also be an optimum medium for growth of molds such as Fusarium and Penicillium . A quick, easy, cheap, rapid, and safe (QuEChERS) extraction procedure followed by a gas chromatography-tandem mass spectrometry (GC-MS/MS) determination of eight selected Fusarium toxins in bee pollen was developed and optimized. Recovery studies at 20, 80, and 1000 μg/kg showed values between 73 and 95% with relative standard deviations (RSDs) of <15% for all studied mycotoxins. Limits of quantitation (LOQ) ranged from 1 to 4 μg/kg. The proposed method was applied to the analysis of 15 commercial samples. Two of 15 samples showed quantifiable values for neosolaniol and nivalenol.
Collapse
|
44
|
Nogueira C, Iglesias A, Feás X, Estevinho LM. Commercial bee pollen with different geographical origins: a comprehensive approach. Int J Mol Sci 2012; 13:11173-11187. [PMID: 23109845 PMCID: PMC3472737 DOI: 10.3390/ijms130911173] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 11/16/2022] Open
Abstract
Since the primordial of humanity, pollen has been considered a good source of nutrients and energy. Its promising healing properties have also been referred to. The present study aimed to characterize, for the first time, eight commercial pollens from Portugal and Spain available on the market studying the legislation on labeling, pollinic origin, physicochemical and microbiological analyses and identification of yeasts. Eleven botanical families were found amongst the samples. The most abundant family and the most dominant pollen was Cistaceae. The moisture content, ash, aw, pH, reducing sugars, carbohydrates, proteins, lipids and energy were analyzed and the specific parameters were within the specifications required by some countries with legislation regarding these parameters. Microbiologically commercial pollen showed acceptable safety for the commercial quality and hygiene. All samples showed negative results for toxigenic species. The microorganisms studied were aerobic mesophiles, yeasts and moulds, coliforms, Escherichia coli, Staphylococcus aureus, Salmonella and sulfite-reducing Clostridium. During the work, six yeasts species were isolated from pollen, with Rhodotorula mucilaginosa being the most abundant, as it was present in four samples.
Collapse
Affiliation(s)
- Carla Nogueira
- CIMO-Mountain Research Center, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, Bragança 5301-855, Portugal; E-Mail:
| | - Antonio Iglesias
- Department of Anatomy and Animal Production, Faculty of Veterinary, University of Santiago de Compostela, Lugo 27002, Galicia, Spain; E-Mail:
| | - Xesus Feás
- Department of Organic Chemistry, Faculty of Sciences, University of Santiago de Compostela, Lugo 27002, Galicia, Spain; E-Mail:
| | - Leticia M. Estevinho
- CIMO-Mountain Research Center, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, Bragança 5301-855, Portugal; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+351-273-303-342
| |
Collapse
|
45
|
Amézqueta S, Schorr-Galindo S, Murillo-Arbizu M, González-Peñas E, López de Cerain A, Guiraud J. OTA-producing fungi in foodstuffs: A review. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.01.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
46
|
Johnson RM, Mao W, Pollock HS, Niu G, Schuler MA, Berenbaum MR. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS One 2012; 7:e31051. [PMID: 22319603 PMCID: PMC3272026 DOI: 10.1371/journal.pone.0031051] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/31/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. CONCLUSIONS/SIGNIFICANCE These results suggest that regulation of honey bee P450s is tuned to chemicals occurring naturally in the hive environment and that, in terms of toxicological capacity, a diet of sugar is not equivalent to a diet of honey.
Collapse
Affiliation(s)
- Reed M Johnson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.
| | | | | | | | | | | |
Collapse
|
47
|
Kačániová M, Kňazovická V, Felšöciová S, Rovná K. Microscopic fungi recovered from honey and their toxinogenity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1659-1664. [PMID: 22702826 DOI: 10.1080/10934529.2012.687242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The objective of this investigation was to contribute towards the knowledge of microbiology of honey, more than 50 samples of honey from Slovakia and other countries were mycologically investigated in terms of the overall fungal diversity and toxicological potential of isolated fungi from Penicillium genera. The study revealed that out of 13 genera recovered, Penicillium was the most frequent and diverse genus, followed by Aspergillus and Cladosporium being found in 65.91 % (29 samples), 34.1 % (15 samples) and 29.55 % (13 samples), respectively. The most frequently encountered taxa from Penicillium genera were Penicillium chrysogenum (found in 22.73 %), Penicillium brevicompactum (13.64 %), Penicillium crustosum (11.36 %) and Penicillium griseofulvum (11.36 %). In addition, the following genera were recorded (in descending order) Mycelia (18.18 %), Fusarium (11.36 %), Mucor (9.09 %), Acremonium (6.82 %), Alternaria (4.55 %), Epicoccum (4.55 %), and finally Botrytis, Eurotium Trichoderma and Phoma all were encountered in 2.27 % of the samples being represented. The mean value counts of total fungi ranged from 0.00 to 2 × 10(2) cfu.g(-1). Outcomes from mycotoxin screening within the appropriate potentially toxinogenic species from Penicillium genera showed a number of mycotoxin producers, namely those forming citrinin (n = 1), cyclopiazonic acid (n = 5), griseofulvin (n = 5), patulin (n = 5), penitrem A (n = 2) and roquefortin C (n = 13).
Collapse
Affiliation(s)
- Miroslava Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovak Republic.
| | | | | | | |
Collapse
|
48
|
Kpodzo DS, Calderwood MS, Ruchelsman DE, Abramson JS, Piris A, Winograd JM, Kotton CN. Primary subcutaneous Alternaria alternata infection of the hand in an immunocompromised host. Med Mycol 2011; 49:543-7. [PMID: 21299373 DOI: 10.3109/13693786.2011.555848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a case of a progressive subcutaneous Alternaria alternata infection in the hand of a patient with chronic lymphocytic leukemia (CLL). The diagnosis was based upon the examination of tissue biopsy and isolation of the etiologic agent in culture. The identity of the isolate was determined by phenotypic characteristics and by sequencing the ITS and D1/D2 regions of the rDNA. Despite combination therapy with voriconazole and micafungin, the lesion continued to progress. Posaconazole therapy, along with surgical excision of the infected tissue, resulted in the eradication of infection. The limitations of the clinical management of invasive Alternaria infections are discussed.
Collapse
Affiliation(s)
- Dzifa S Kpodzo
- Harvard Combined Plastic Surgery Residency Training Program, Department of Plastic and Reconstructive Surgery, Brigham & Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Kňazovická V, Kačániová M, Dovičičová M, Melich M, Kadási-Horáková M, Barboráková Z, Mareček J. Microbial quality of honey mixture with pollen. POTRAVINARSTVO 2011. [DOI: 10.5219/110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was evaluation of microbial quality in raw materials (honey, pollen) and evaluation of microbial quality in honey mixture with pollen (2.91 % and 3.85 %) and also dynamics of microbial groups in honey mixtures with pollen after 14 days storage at the room temperature (approximately 25 °C) and in cold store (8 °C). We used dilution plating method for testing of samples. Detections of total plate microbial count (aerobic and anaerobic microorganisms), sporulating bacteria, coliform bacteria, Bifidobacterium sp., Lactobacillus sp. and microscopic fungi were performed. In general, counts of microorganisms decreased in honey mixture with pollen compared to raw pollen and these counts increased compared to natural honey. Total plate count was 5.37 log KTJ.g-1 in pollen; 1.36 log KTJ.g-1 in honey; 2.97 log KTJ.g-1 in honey mixture with 2.91 % pollen and 2.04 log KTJ.g-1 in honey mixture with 3.85 % pollen. Coliform bacteria were detected in pollen (1.77 log KTJ.g-1). Then, we found coliform bacteria in one sample of honey mixtures with pollen (2.91 %) - 1.00 log KTJ.g-1.Bifidobacterium species were detected only in raw pollen. We did not findLactobacillus sp. in any of the samples. Microscopic fungi were detected on two cultivating media. Yeasts were present in pollen sample (average 5.39 log KTJ.g-1), honey mixture with 2.91 % pollen (average 2.51 log KTJ.g-1) and honey mixture with 3.85 % pollen (average 1.58 log KTJ.g-1). Filamentous microscopic fungi were detectable in pollen (average 3.38 log KTJ.g-1), in honey (only on one medium: 1.00 log KTJ.g-1), in honey mixture with 2.91 % pollen (average 1.15 log KTJ.g-1) and in honey mixture with 3.85 % pollen (1.71 %). Raw pollen contained microscopic fungi as Absidiasp., Mucor sp., Alternaria sp. andEmericella nidulans. Honey mixture with 2.91 % pollen after storage (14 days) contained lower microbial counts when compared with the sample analyzed at the beginning, beside sporulating bacteria and filamentous microscopic fungi in sample stored at 8 °C. We recorded growth of anaerobic microorganisms in honey mixture with 3.85 % pollen after storage (8 °C, 25 °C / 14 days).
Collapse
|
50
|
Kačániová M, Juráček M, Chlebo R, Kňazovická V, Kadasi-Horáková M, Kunová S, Lejková J, Haščík P, Mareček J, Simko M. Mycobiota and mycotoxins in bee pollen collected from different areas of Slovakia. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2011; 46:623-629. [PMID: 21749250 DOI: 10.1080/03601234.2011.589322] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Contamination by microscopic fungi and mycotoxins in different bee pollen samples, which were stored under three different ways of storing as freezing, drying and UV radiation, was investigated. During spring 2009, 45 samples of bee-collected pollen were gathered from beekeepers who placed their bee colonies on monocultures of sunflower, rape and poppy fields within their flying distance. Bee pollen was collected from bees' legs by special devices placed at the entrance to hives. Samples were examined for the concentration and identification of microscopic fungi able to grow on Malt and Czapek-Dox agar and mycotoxins content [deoxynivalenol (DON), T-2 toxin (T-2), zearalenone (ZON) and total aflatoxins (AFL), fumonisins (FUM), ochratoxins (OTA)] by direct competitive enzyme-linked immunosorbent assays (ELISA). The total number of microscopic fungi in this study ranged from 2.98 ± 0.02 in frozen sunflower bee pollen to 4.06 ± 0.10 log cfu.g(-1) in sunflower bee pollen after UV radiation. In this study, 449 isolates belonging to 21 fungal species representing 9 genera were found in 45 samples of bee pollen. The total isolates were detected in frozen poppy pollen 29, rape pollen 40, sunflower pollen 80, in dried poppy pollen 12, rape pollen 36, sunflower 78, in poppy pollen after UV radiation treatment 54, rape 59 and sunflower 58. The most frequent isolates of microscopic fungi found in bee pollen samples of all prevalent species were Mucor mucedo (49 isolates), Alternaria alternata (40 isolates), Mucor hiemalis (40 isolates), Aspergillus fumigatus (33 isolates) and Cladosporium cladosporioides (31 isolates). The most frequently found isolates were detected in sunflower bee pollen frozen (80 isolates) and the lowest number of isolates was observed in poppy bee pollen dried (12 isolates). The most prevalent mycotoxin of poppy bee pollen was ZON (361.55 ± 0.26 μg.kg(-1)), in rape bee pollen T-2 toxin (265.40 ± 0.18 μg.kg(-1)) and in sunflower bee pollen T-2 toxin (364.72 ± 0.13 μg.kg(-1)) in all cases in frozen samples.
Collapse
|