1
|
Wang Z, Xu J, Zeng X, Du Q, Lan H, Zhang J, Pan D, Tu M. Recent Advances on Antimicrobial Peptides from Milk: Molecular Properties, Mechanisms, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:80-93. [PMID: 38152984 DOI: 10.1021/acs.jafc.3c07217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Traditional antibiotics are facing a tremendous challenge due to increased antimicrobial resistance; hence, there is an urgent need to find novel antibiotic alternatives. Milk protein-derived antimicrobial peptides (AMPs) are currently attracting substantial attention considering that they showcase an extensive spectrum of antimicrobial activities, with slower development of antimicrobial resistance and safety of raw materials. This review summarizes the molecular properties, and activity mechanisms and highlights the applications and limitations of AMPs derived from milk proteins comprehensively. Also the analytical technologies, especially bioinformatics methodologies, applied in the process of screening, identification, and mechanism illustration of AMPs were underlined. This review will give some ideas for further research and broadening of the applications of milk protein-derived AMPs in the food field.
Collapse
Affiliation(s)
- Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
2
|
Singh A, Duche RT, Wandhare AG, Sian JK, Singh BP, Sihag MK, Singh KS, Sangwan V, Talan S, Panwar H. Milk-Derived Antimicrobial Peptides: Overview, Applications, and Future Perspectives. Probiotics Antimicrob Proteins 2023; 15:44-62. [PMID: 36357656 PMCID: PMC9649404 DOI: 10.1007/s12602-022-10004-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
The growing consumer awareness towards healthy and safe food has reformed food processing strategies. Nowadays, food processors are aiming at natural, effective, safe, and low-cost substitutes for enhancing the shelf life of food products. Milk, besides being a rich source of nutrition for infants and adults, serves as a readily available source of precious functional peptides. Due to the existence of high genetic variability in milk proteins, there is a great possibility to get bioactive peptides with varied properties. Among other bioactive agents, milk-originated antimicrobial peptides (AMPs) are gaining interest as attractive and safe additive conferring extended shelf life to minimally processed foods. These peptides display broad-spectrum antagonistic activity against bacteria, fungi, viruses, and protozoans. Microbial proteolytic activity, extracellular peptidases, food-grade enzymes, and recombinant DNA technology application are among few strategies to tailor specific peptides from milk and enhance their production. These bioprotective agents have a promising future in addressing the global concern of food safety along with the possibility to be incorporated into the food matrix without compromising overall consumer acceptance. Additionally, in conformity to the current consumer demands, these AMPs also possess functional properties needed for value addition. This review attempts to present the basic properties, synthesis approaches, action mechanism, current status, and prospects of antimicrobial peptide application in food, dairy, and pharma industry along with their role in ensuring the safety and health of consumers.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Rachael Terumbur Duche
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Federal University of Agriculture, Makurdi, Nigeria
| | - Arundhati Ganesh Wandhare
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Jaspreet Kaur Sian
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Punjab Agricultural University (PAU), Ludhiana, 141001 Punjab India
| | - Brij Pal Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, 123031 Haryana India
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Kumar Siddharth Singh
- Institute for Microbiology, Gottfried Wilhelm Leibniz University, Herrenhäuser Str. 2, 30419 Hanover, Germany
| | - Vikas Sangwan
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Shreya Talan
- Dairy Microbiology Division, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001, Punjab, India.
| |
Collapse
|
3
|
Harouna S, Franco I, Carramiñana JJ, Blázquez A, Abad I, Pérez MD, Calvo M, Sánchez L. Effect of hydrolysis and microwave treatment on the antibacterial activity of native bovine milk lactoferrin against Cronobacter sakazakii. Int J Food Microbiol 2019; 319:108495. [PMID: 31911211 DOI: 10.1016/j.ijfoodmicro.2019.108495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/19/2023]
Abstract
Bovine lactoferrin (bLF) is an iron-binding glycoprotein used in functional and therapeutic products due to its biological properties, the most important being its antimicrobial activity. In this study, hydrolysates of bovine lactoferrin (bLFH) obtained with pepsin, chymosin and microbial rennet were assayed against Cronobacter sakazakii (104 CFU/mL) in different media: phosphate buffered saline (PBS), bovine skim milk and whey, and reconstituted powdered infant formula (PIFM). The results obtained have shown that hydrolysis of bLF enhances its antibacterial activity against C. sakazakii. The three types of bLFH dissolved in PBS reduced C. sakazakii growth from a concentration of 0.1 mg/mL and inhibited it completely above 0.5 mg/mL, after 4 and 8 h of incubation at 37 °C. The three bLFH (1 and 2 mg/mL) did not show any antibacterial activity in skim milk, whey and reconstituted PIFM after 8 h of incubation at 37 °C. However, C. sakazakii growth was completely inhibited in whey when pepsin and chymosin bLFH (2 mg/mL) were combined with undigested bLF (2 mg/mL), after 8 h of incubation at 37 °C. On the other hand, the combination of any of the three hydrolysates with bLF showed very low activity in skim milk and practically no activity in reconstituted PIFM. Furthermore, the effect of temperature after reconstitution (4, 23 and 37 °C), on the antibacterial activity of bLF (2.5 and 5 mg/mL) in reconstituted PIFM contaminated with C. sakazakii (10-102 CFU/mL) was also investigated. bLF at 5 mg/mL significantly reduced (p < .05) the proliferation of C. sakazakii in reconstituted PIFM at 37 °C until 2 h. C. sakazakii did not grow at 4 °C for 6 days in reconstituted PIFM with or without bLF. The effect of microwave heating (450, 550 and 650 W for 5, 10 and 15 s) on the antibacterial activity and stability of bLF (2.5 mg/mL) in reconstituted PIFM contaminated with C. sakazakii (10-102 CFU/mL) was also studied. The antibacterial activity of bLF was maintained after treatments at 450 and 550 W for 5 s, which kept 94 and 89% of bLF immunoreactivity, respectively. Moreover, microwave treatments of reconstituted PIFM with or without bLF, at 650 W for 5 s, and at 450, 550 and 650 W for 10 and 15 s, completely inactivated C. sakazakii.
Collapse
Affiliation(s)
- Saidou Harouna
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Indira Franco
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain; Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá, Campus Metropolitano Víctor Levi Sasso, Panamá, Panamá
| | - Juan J Carramiñana
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Arturo Blázquez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - María D Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Miguel Calvo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain.
| |
Collapse
|
4
|
Niaz B, Saeed F, Ahmed A, Imran M, Maan AA, Khan MKI, Tufail T, Anjum FM, Hussain S, Suleria HAR. Lactoferrin (LF): a natural antimicrobial protein. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1666137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bushra Niaz
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Awais Ahmed
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet & Nutritional Sciences, University of Lahore, Lahore, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Tabussam Tufail
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | | | - Shahzad Hussain
- College of Food and Agricultural Sciences, King Saud, University, Riyadh, Saudi Arabia
| | | |
Collapse
|
5
|
Tolve R, Galgano F, Caruso MC, Tchuenbou-Magaia FL, Condelli N, Favati F, Zhang Z. Encapsulation of health-promoting ingredients: applications in foodstuffs. Int J Food Sci Nutr 2016; 67:888-918. [DOI: 10.1080/09637486.2016.1205552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Montiel R, Martín-Cabrejas I, Peirotén Á, Medina M. Reuterin, lactoperoxidase, lactoferrin and high hydrostatic pressure treatments on the characteristics of cooked ham. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Montiel R, Martín-Cabrejas I, Medina M. Natural antimicrobials and high-pressure treatments on the inactivation of Salmonella Enteritidis and Escherichia coli O157:H7 in cold-smoked salmon. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2573-2578. [PMID: 26268416 DOI: 10.1002/jsfa.7378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND High hydrostatic pressure (HHP) combined with reuterin and lactoperoxidase system (LPS) has exerted antimicrobial activity against Listeria monocytogenes in cold-smoked salmon at chilled temperatures. Therefore the purpose of this work was to evaluate the effect of HHP combined with reuterin, LPS and lactoferrin (LF) on the survival of Salmonella enterica subsp. enterica serovar Enteritidis and Escherichia coli O157:H7 in cold-smoked salmon stored at 4 and 10 °C. RESULTS Salmonella Enteritidis and E. coli O157:H7 were reduced more than 3 log colony-forming units (CFU) g(-1) by the pressure treatment (450 MPa/5 min). LPS slightly diminished pathogen levels throughout storage, whereas no effect was recorded when reuterin or LF was added. The Salmonella population was below the detection limit (<1 log CFU g(-1) ) during the storage of HHP-treated smoked salmon at 4 and 10 °C. The antimicrobial activity of HHP against E. coli O157:H7 was increased when 450 MPa was applied in combination with LPS in cold-smoked salmon at 4 and 10 °C. CONCLUSION HHP at 450 MPa/5 min inactivated S. Enteritidis in cold-smoked salmon and in combination with LPS would be useful as a hurdle technology approach against E. coli O157:H7, even under mild temperature abuse conditions. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raquel Montiel
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, E-28040, Madrid, Spain
| | - Izaskun Martín-Cabrejas
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, E-28040, Madrid, Spain
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, E-28040, Madrid, Spain
| |
Collapse
|
8
|
Murdock C, Chikindas ML, Matthews KR. The Pepsin Hydrolysate of Bovine Lactoferrin Causes a Collapse of the Membrane Potential in Escherichia coli O157:H7. Probiotics Antimicrob Proteins 2016; 2:112-9. [PMID: 26781120 DOI: 10.1007/s12602-010-9039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study, the ability of bovine lactoferrin hydrolysate (LfH) to disrupt the cytoplasmic membrane of Escherichia coli O157:H7 was investigated. Lactoferrin and LfH antimicrobial activities were compared against E. coli O157:H7 and E. coli O157:H7 spheroplasts. The effect of LfH on the cytoplasmic membrane of E. coli O157:H7 cells was determined by evaluating potassium efflux (K(+)), dissipation of ATP and membrane potential (ΔΨ). LfH produced a rapid efflux of potassium ions, a decrease in intracellular levels of ATP coupled with a substantial increase in extracellular ATP levels and a complete dissipation of the ΔΨ. The results suggest that LfH causes a collapse of the membrane integrity by pore formation in the inner membrane, leading to the death of the cell. Moreover, the mechanism of action of LfH on E. coli O157:H7 appears to involve an interference with the inner membrane integrity based on experiments using E. coli O157:H7 spheroplasts.
Collapse
Affiliation(s)
- Christopher Murdock
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901-8520, USA
| | - Michael L Chikindas
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901-8520, USA
| | - Karl R Matthews
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ, 08901-8520, USA.
| |
Collapse
|
9
|
Montiel R, Martín-Cabrejas I, Medina M. Reuterin, lactoperoxidase, lactoferrin and high hydrostatic pressure on the inactivation of food-borne pathogens in cooked ham. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Novel approaches to improve the intrinsic microbiological safety of powdered infant milk formula. Nutrients 2015; 7:1217-44. [PMID: 25685987 PMCID: PMC4344585 DOI: 10.3390/nu7021217] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/29/2015] [Indexed: 02/07/2023] Open
Abstract
Human milk is recognised as the best form of nutrition for infants. However; in instances where breast-feeding is not possible, unsuitable or inadequate, infant milk formulae are used as breast milk substitutes. These formulae are designed to provide infants with optimum nutrition for normal growth and development and are available in either powdered or liquid forms. Powdered infant formula is widely used for convenience and economic reasons. However; current manufacturing processes are not capable of producing a sterile powdered infant formula. Due to their immature immune systems and permeable gastro-intestinal tracts, infants can be more susceptible to infection via foodborne pathogenic bacteria than other age-groups. Consumption of powdered infant formula contaminated by pathogenic microbes can be a cause of serious illness. In this review paper, we discuss the current manufacturing practices present in the infant formula industry, the pathogens of greatest concern, Cronobacter and Salmonella and methods of improving the intrinsic safety of powdered infant formula via the addition of antimicrobials such as: bioactive peptides; organic acids; probiotics and prebiotics.
Collapse
|
11
|
Nonthermal Inactivation ofCronobacter sakazakiiin Infant Formula Milk: A Review. Crit Rev Food Sci Nutr 2015; 56:1620-9. [DOI: 10.1080/10408398.2013.781991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Subramaniam S, Rajendran N, Muralidharan SB, Subramaniam G, Raju R, Sivasubramanian A. Dual role of select plant based nutraceuticals as antimicrobial agents to mitigate food borne pathogens and as food preservatives. RSC Adv 2015. [DOI: 10.1039/c5ra15039f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual role of commercially important nutraceuticals from plants that potentiate the therapeutic effect of commercial antibiotics to combat food pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Ravikumar Raju
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur 613402
- India
- Department of Chemistry
| | | |
Collapse
|
13
|
Théolier J, Fliss I, Jean J, Hammami R. Antimicrobial Peptides of Dairy Proteins: From Fundamental to Applications. FOOD REVIEWS INTERNATIONAL 2014. [DOI: 10.1080/87559129.2014.896017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Combined treatments of high-pressure with the lactoperoxidase system or lactoferrin on the inactivation of Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in beef carpaccio. Food Microbiol 2014; 41:27-32. [PMID: 24750810 DOI: 10.1016/j.fm.2014.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 12/23/2013] [Accepted: 01/04/2014] [Indexed: 11/24/2022]
Abstract
The effect of high hydrostatic pressure (HHP) treatments in combination with the lactoperoxidase system (LPOS) or activated lactoferrin (ALF) on Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Enteritidis and Escherichia coli O157:H7 was investigated in cured beef carpaccio stored at 8 °C or 22 °C during 7 d. HHP (450 MPa for 5 min) reduced pathogen levels by 1-3 log units and the antimicrobial effect remained during 7 d of storage under temperature abuse conditions at 8 °C and at 22 °C. The individual application of LPOS and ALF did not affect the survival of the three pathogens studied during storage. However, a synergistic bactericidal interaction between LPOS and HHP was observed against S. Enteritidis and E. coli O157:H7. Combined treatments of HHP with LPOS would be useful to reduce the intensity of pressurization treatments diminishing changes in the quality of meat products.
Collapse
|
15
|
Hu J, McCormick RJ, Means WJ, Zhu MJ. Polynucleotide phosphorylase is required for Escherichia coli O157:H7 growth above refrigerated temperature. Foodborne Pathog Dis 2013; 11:177-85. [PMID: 24328500 DOI: 10.1089/fpd.2013.1632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND The growth of Escherichia coli O157:H7 in contaminated dairy and other refrigerated food products due to temperature fluctuation poses a major food safety threat. Effective control or inhibition of E. coli O157:H7 growth depends on our understanding of mechanisms that regulate its growth at low temperature. We hypothesized that polynucleotide phosphorylase (PNPase) plays a critical role in E. coli O157:H7 low-temperature growth. METHODS To test this hypothesis, the pnp deletion mutant of E. coli O157:H7 was generated using the λ Red recombinase system, and the growth and survival of wild-type and pnp deletion mutant strains were compared at low temperatures. RESULTS The growth of pnp deletion mutant strains in Luria Broth (LB) and agar plate at 37°C was similar to their corresponding wild-type strains, while the deletion of pnp impaired E. coli O157:H7 growth in LB at 10°C and 22°C; growth impairment could be partially recovered in the mutant strains by ectopic expression of the pnp complementation plasmid, demonstrating that growth impairment was PNPase-specific. During 14 days of 10°C storage in both LB and milk, wild type strain EDL933 grew and reached >8 log10 colony-forming units per milliliter after 4 days of 10°C storage, while EDL933Δpnp gradually died off with effects more pronounced in milk, which were again mitigated by pnp overexpression. In addition, pnp deletion impaired the motility of E. coli O157:H7 but did not affect its susceptibility to H2O2. CONCLUSION PNPase is required for the growth of E. coli O157:H7 at low temperature; PNPase thus provides a molecular target to control the growth of E. coli O157:H7, which may have important practical applications in dairy and other food industry.
Collapse
Affiliation(s)
- Jia Hu
- 1 School of Food Science, Washington State University , Pullman, Washington
| | | | | | | |
Collapse
|
16
|
Heir E, Holck AL, Omer MK, Alvseike O, Måge I, Høy M, Rode TM, Sidhu MS, Axelsson L. Effects of post-processing treatments on sensory quality and Shiga toxigenic Escherichia coli reductions in dry-fermented sausages. Meat Sci 2013; 94:47-54. [PMID: 23376436 DOI: 10.1016/j.meatsci.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 12/21/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022]
Abstract
The effects of post-processing treatments on sensory quality and reduction of Shiga toxigenic Escherichia coli (STEC) in three formulations of two types of dry-fermented sausage (DFS; salami and morr) were evaluated. Tested interventions provided only marginal changes in sensory preference and characteristics. Total STEC reductions in heat treated DFS (32°C, 6days or 43°C, 24h) were from 3.5 to >5.5 log from production start. Storing of sausages (20°C, 1month) gave >1 log additional STEC reduction. Freezing and thawing of sausages in combination with storage (4°C, 1month) gave an additional 0.7 to 3.0 log reduction in STEC. Overall >5.5 log STEC reductions were obtained after storage and freezing/thawing of DFS with increased levels of glucose and salt. This study suggests that combined formulation optimisation and post-process strategies should be applicable for implementation in DFS production to obtain DFS with enhanced microbial safety and high sensory acceptance and quality.
Collapse
Affiliation(s)
- E Heir
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1431 Ås, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yoshitomi K, Zapata R, Jinneman K, Weagant S, Fedio W. Recovery of E. coli O157 strains after exposure to acidification at pH 2. Lett Appl Microbiol 2012; 54:499-503. [DOI: 10.1111/j.1472-765x.2012.03250.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Affiliation(s)
- Vijay K. Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038;
| | | | - Xianghe Yan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038;
| |
Collapse
|
19
|
Reduction of verotoxigenic Escherichia coli in production of fermented sausages. Meat Sci 2011; 89:286-95. [DOI: 10.1016/j.meatsci.2011.04.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/15/2023]
|
20
|
Imran M, Revol-Junelles AM, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S. Active food packaging evolution: transformation from micro- to nanotechnology. Crit Rev Food Sci Nutr 2010; 50:799-821. [PMID: 20924864 DOI: 10.1080/10408398.2010.503694] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Predicting which attributes consumers are willing to pay extra for has become straightforward in recent years. The demands for the prime necessity of food of natural quality, elevated safety, minimally processed, ready-to-eat, and longer shelf-life have turned out to be matters of paramount importance. The increased awareness of environmental conservation and the escalating rate of foodborne illnesses have driven the food industry to implement a more innovative solution, i.e. bioactive packaging. Owing to nanotechnology application in eco-favorable coatings and encapsulation systems, the probabilities of enhancing food quality, safety, stability, and efficiency have been augmented. In this review article, the collective results highlight the food nanotechnology potentials with special focus on its application in active packaging, novel nano- and microencapsulation techniques, regulatory issues, and socio-ethical scepticism between nano-technophiles and nano-technophobes. No one has yet indicated the comparison of data concerning food nano- versus micro-technology; therefore noteworthy results of recent investigations are interpreted in the context of bioactive packaging. The next technological revolution in the domain of food science and nutrition would be the 3-BIOS concept enabling a controlled release of active agents through bioactive, biodegradable, and bionanocomposite combined strategy.
Collapse
Affiliation(s)
- Muhammad Imran
- Laboratoire d'Ingénierie des Biomolécules, ENSAIA-INPL, Nancy Université, 2 avenue de la Forêt de Haye, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Heir E, Holck AL, Omer MK, Alvseike O, Høy M, Måge I, Axelsson L. Reduction of verotoxigenic Escherichia coli by process and recipe optimisation in dry-fermented sausages. Int J Food Microbiol 2010; 141:S0168-1605(10)00294-1. [PMID: 20965097 DOI: 10.1016/j.ijfoodmicro.2010.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/10/2010] [Accepted: 05/14/2010] [Indexed: 11/15/2022]
Abstract
Outbreaks of verotoxigenic Escherichia coli (VTEC) linked to dry-fermented sausages (DFSs) have emphasized the need for DFS manufacturers to introduce measures to obtain enhanced safety and still maintain the sensory qualities of their products. To our knowledge no data have yet been reported on non-O157:H7 VTEC survival in DFS. Here, the importance of recipe and process variables on VTEC (O157:H7 and O103:H25) reductions in two types of DFS, morr and salami, was determined through three statistically designed experiments. Linear regression and ANOVA analyses showed that no single variable had a dominant effect on VTEC reductions. High levels of NaCl, NaNO(2), glucose (low pH) and fermentation temperature gave enhanced VTEC reduction, while high fat and large casing diameter (a(w)) gave the opposite effect. Interaction effects were small. The process and recipe variables showed similar effects in morr and salami. In general, recipes combining high batter levels of salt (NaCl and NaNO(2)) and glucose along with high fermentation temperature that gave DFS with low final pH and a(w), provided approximately 3 log(10) reductions compared to approximately 1.5 log(10) reductions obtained for standard recipe DFS. Storage at 4°C for 2months provided log(10) 0.33-0.95 additional VTEC reductions and were only marginally affected by recipe type. Sensory tests revealed only small differences between the various recipes of morr and salami. By optimisation of recipe and process parameters, it is possible to obtain increased microbial safety of DFS while maintaining the sensory qualities of the sausages.
Collapse
Affiliation(s)
- E Heir
- Nofima Mat AS, Osloveien 1, N-1430 Ås, Norway
| | | | | | | | | | | | | |
Collapse
|
22
|
CONESA CELIA, ROTA CARMEN, CASTILLO EDUARDO, PÉREZ MARÍAD, CALVO MIGUEL, SÁNCHEZ LOURDES. Effect of heat treatment on the antibacterial activity of bovine lactoferrin against three foodborne pathogens. INT J DAIRY TECHNOL 2010. [DOI: 10.1111/j.1471-0307.2010.00567.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
McQuestin OJ, Shadbolt CT, Ross T. Quantification of the relative effects of temperature, pH, and water activity on inactivation of Escherichia coli in fermented meat by meta-analysis. Appl Environ Microbiol 2009; 75:6963-72. [PMID: 19767477 PMCID: PMC2786527 DOI: 10.1128/aem.00291-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 09/09/2009] [Indexed: 12/16/2022] Open
Abstract
Outbreaks of Escherichia coli infections linked to fermented meats have prompted much research into the kinetics of E. coli inactivation during fermented meat manufacture. A meta-analysis of data from 44 independent studies was undertaken that allowed the relative influences of pH, water activity (a(w)), and temperature on E. coli survival during fermented meat processing to be investigated. Data were reevaluated to determine rates of inactivation, providing 484 rate data points with various pH (2.8 to 6.14), a(w) (0.75 to 0.986), and temperature (-20 to 66 degrees C) values, product formulations, and E. coli strains and serotypes. When the data were presented as an Arrhenius model, temperature (0 to 47 degrees C) accounted for 61% of the variance in the ln(inactivation rate) data. In contrast, the pH or a(w) measured accounted for less than 8% of variability in the data, and the effects of other pH- and a(w)-based variables (i.e., total decrease and rates of reduction of those factors) were largely dependent on the temperature of the process. These findings indicate that although temperatures typically used in fermented meat manufacture are not lethal to E. coli per se, when other factors prevent E. coli growth (e.g., low pH and a(w)), the rate of inactivation of E. coli is dominated by temperature. In contrast, inactivation rates at temperatures above approximately 50 degrees C were characterized by smaller z values than those at 0 to 47 degrees C, suggesting that the mechanisms of inactivation are different in these temperature ranges. The Arrhenius model developed can be used to improve product safety by quantifying the effects of changes in temperature and/or time on E. coli inactivation during fermented meat manufacture.
Collapse
Affiliation(s)
- Olivia J. McQuestin
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Hobart, Australia
| | - Craig T. Shadbolt
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Hobart, Australia
| | - Tom Ross
- Food Safety Centre, Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
24
|
Al-Nabulsi AA, Osaili TM, Al-Holy MA, Shaker RR, Ayyash MM, Olaimat AN, Holley RA. Influence of desiccation on the sensitivity of Cronobacter spp. to lactoferrin or nisin in broth and powdered infant formula. Int J Food Microbiol 2009; 136:221-6. [PMID: 19720412 DOI: 10.1016/j.ijfoodmicro.2009.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 04/29/2009] [Accepted: 08/04/2009] [Indexed: 11/15/2022]
Abstract
Although outbreaks caused by Cronobacter spp. (Enterobacter sakazakii) are rare, infections by this organism have a case-fatality rate which may reach 80%. Powdered infant milk formula (PIMF) is considered a major source for human infection with Cronobacter spp. The organism has the capability to survive in dry environments for long periods (approximately 2 years). Current interest in the use of natural antimicrobials including lactoferrin (LF) and nisin has developed because of the desire for preservative-free food products. The objective of the present study was to evaluate the antimicrobial activity of bovine LF or nisin against undesiccated and desiccated Cronobacter spp. cells in 0.2% peptone water (PW) and reconstituted PIMF at different temperatures. In 0.2% PW, 2.5 mg/ml LF was able to inactivate 4 log(10) CFU/ml of undesiccated cells of Cronobacter spp. in 4 h at 37 degrees C but at lower temperatures, higher concentrations of LF as well as longer exposure were needed to achieve the same effect as at 37 degrees C. Similarly, the effect of nisin against undesiccated cells of Cronobacter spp. was concentration and temperature dependent in 0.2% PW. It was found that 1500 IU/ml caused a 4 log(10) CFU/ml reduction of undesiccated cells of Cronobacter spp. at 21 degrees C and 37 degrees C. Desiccated Cronobacter spp. cells in 0.2% PW were more sensitive to LF action than were undesiccated cells. A 4 log(10) CFU/ml reduction was obtained with 2.5 mg/ml LF after 1 h at 21 and 37 degrees C or 8 h at 10 degrees C. In contrast, desiccated cells of Cronobacter spp. were more resistant to nisin. Furthermore, neither LF nor nisin had detectable antimicrobial activity against desiccated or undesiccated Cronobacter spp. in reconstituted PIFM. Heating at 55 degrees C for 5 min with nisin in reconstituted PIFM did not enhance the antimicrobial activity of nisin. Unexpectedly, nisin appeared to protect Cronobacter spp. from the damaging effects of heat treatment. The reduced antimicrobial activity of LF and nisin in reconstituted PIMF was potentially explained by the higher concentration of Ca(2+), Mg(2+) and Fe(3+) in the latter.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box (3030) Irbid, 22110, Jordan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Tiwari BK, Valdramidis VP, O'Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ. Application of natural antimicrobials for food preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5987-6000. [PMID: 19548681 DOI: 10.1021/jf900668n] [Citation(s) in RCA: 412] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this review, antimicrobials from a range of plant, animal, and microbial sources are reviewed along with their potential applications in food systems. Chemical and biochemical antimicrobial compounds derived from these natural sources and their activity against a range of pathogenic and spoilage microorganisms pertinent to food, together with their effects on food organoleptic properties, are outlined. Factors influencing the antimicrobial activity of such agents are discussed including extraction methods, molecular weight, and agent origin. These issues are considered in conjunction with the latest developments in the quantification of the minimum inhibitory (and noninhibitory) concentration of antimicrobials and/or their components. Natural antimicrobials can be used alone or in combination with other novel preservation technologies to facilitate the replacement of traditional approaches. Research priorities and future trends focusing on the impact of product formulation, intrinsic product parameters, and extrinsic storage parameters on the design of efficient food preservation systems are also presented.
Collapse
Affiliation(s)
- Brijesh K Tiwari
- Biosystems Engineering, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfied, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
26
|
Jin M, Davidson PM, Zivanovic S, Zhong Q. Production of corn zein microparticles with loaded lysozyme directly extracted from hen egg white using spray drying: Extraction studies. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.12.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Antibacterial activity of recombinant human lactoferrin from rice: effect of heat treatment. Biosci Biotechnol Biochem 2009; 73:1301-7. [PMID: 19502737 DOI: 10.1271/bbb.80814] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antibacterial activity of recombinant human lactoferrin from rice (rhLF) compared with that of human milk lactoferrin (hLF) was evaluated against Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes. The hydrolysates of rhLF and hLF were found to be more active than native proteins against E. coli O157:H7, and their activity was independent of their iron saturation. The effect of different heat treatments on the antibacterial activity of apo-rhLF was studied and compared with hLF. We observed that an HTST pasteurization treatment did not affect the antimicrobial activity of lactoferrin against the pathogens studied. Furthermore, the activity of apo-rhLF and hLF against E. coli O157:H7 and L. monocytogenes in UHT milk and whey was assayed, finding a decrease in the number of bacteria, although lower than that observed in a broth medium. This study shows the similar antibacterial activity of rhLF and hLF which is important in order to consider the addition of rhLF as a supplement in special products.
Collapse
|
28
|
del Olmo A, Morales P, Nuñez M. Bactericidal activity of lactoferrin and its amidated and pepsin-digested derivatives against Pseudomonas fluorescens in ground beef and meat fractions. J Food Prot 2009; 72:760-5. [PMID: 19435224 DOI: 10.4315/0362-028x-72.4.760] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The antibacterial activity of lactoferrin (LF) and its amidated and pepsin-digested derivatives (AMILF and PDLF, respectively) against Pseudomonas fluorescens ATCC 948 in ground beef was investigated. LF, AMILF, and PDLF at 1 mg/ml decreased bacterial counts by 1.9, 6.4, and 3.5 log units, respectively, after 1 h at 30 degrees C when the assays were performed in distilled water, but their bactericidal activity disappeared when added at 1 mg/g to ground beef held for 24 h at 5 degrees C. To identify meat components responsible for the loss of bactericidal activity, ground beef was homogenized and separated into fractions of different molecular weights. When cations were removed (fraction > 1 kDa), the bactericidal activity of AMILF was completely restored, whereas the effectiveness of LF and PDLF remained 1.0 and 0.4 log units lower, respectively, than the results obtained in distilled water. EDTA at 5 mM greatly enhanced the bactericidal activity of the three antimicrobials at 1 mg/ml in meat homogenate and in the presence of 5 mM sodium bicarbonate completely restored the bactericidal activity. However, when 1 mg/g AMILF, 5 mM sodium bicarbonate, and increasing EDTA concentrations were added to inoculated ground beef, bacterial counts declined by only 0.2, 0.4, and1.2 log units in the presence of 8, 32, and 128 mM EDTA, respectively, after 24 h at 5 degrees C.
Collapse
Affiliation(s)
- Ana del Olmo
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de la Coruña Km 7, Madrid 28040, Spain
| | | | | |
Collapse
|
29
|
Ko KY, Mendoncam AF, Ismail H, Ahn DU. Ethylenediaminetetraacetate and lysozyme improves antimicrobial activities of ovotransferrin against Escherichia coli O157:H7. Poult Sci 2009; 88:406-14. [PMID: 19151356 DOI: 10.3382/ps.2008-00218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the effect of EDTA, lysozyme, or the combination of EDTA and lysozyme on the antibacterial activity of ovotransferrin against Escherichia coli O157:H7. Ovotransferrin solutions (20 mg/mL) containing 100 mM NaHCO3 (OS) with added EDTA (2.0 or 2.5 mg/mL), lysozyme (1.0, 1.5, or 2.0 mg/mL), or both were prepared. The antibacterial activities of OS, OSE (OS+EDTA), or OSL (OS+lysozyme) against E. coli O157:H7 in model systems were investigated by turbidity and viability tests. In addition, OSE, OSL, or OSEL (OS+EDTA+lysozyme) was applied to irradiated pork chops and commercial hams to determine whether the solutions had antibacterial activity on meat products. The effect of the initial cell population on the antibacterial activity of OSE, OSL, and OSEL was determined. Ethylenediaminetetraacetate at 2 mg/mL plus OS induced a reduction of approximately 3 to 4 log in viable E. coli O157:H7 cells in brain heart infusion broth media, and 1 mg/mL of lysozyme plus OS resulted in a reduction of approximately 0.5 to 1.0 log during a 36-h incubation at 35 degrees C. However, neither OSE nor OSEL showed a significant antibacterial effect on pork chops and hams during storage at 10 degrees C. The initial cell number in media did not affect the antibacterial activity of OSE or OSEL against E. coli O157:H7. This study demonstrates that combinations of ovotransferrin, NaHCO3, and EDTA have the potential to control E. coli O157:H7.
Collapse
Affiliation(s)
- K Y Ko
- Department of Animal Science, and Department of Food Science and Human Nutrition, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
30
|
del Olmo A, Morales P, Nuñez M. Bactericidal effect of lactoferrin and its amidated and pepsin-digested derivatives on Pseudomonas fluorescens: influence of environmental and physiological factors. J Food Prot 2008; 71:2468-74. [PMID: 19244900 DOI: 10.4315/0362-028x-71.12.2468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The influence of environmental and physiological factors such as substrate composition and inoculum characteristics on the bactericidal activity of bovine lactoferrin (LF) and its amidated and pepsin-digested derivatives against Pseudomonas fluorescens was investigated. Amidated LF (AMILF) exerted the most potent bactericidal activity, with a 5.8-log decrease in P. fluorescens counts, and LF the lowest, with just a 1-log decrease, whereas pepsin-digested LF (PDLF) reduced bacterial counts by 2.7 log, after 1 h at 30 degrees C. Amidation of PDLF increased effectiveness by 1.2 log, whereas pepsin digestion of AMILF decreased effectiveness by 2.8 log. Bactericidal activity of LF and its derivatives was higher in Tris buffer than in phosphate buffer. The bactericidal effect of AMILF and PDLF was enhanced as medium pH was increased from 5.5 to 8.5, whereas LF showed higher activity under acidic or basic conditions than at neutral pH. The presence of cations affected the activity of LF and its derivatives, from a concentration of 10 mM for K+, 1 mM for Na+, and 0.1 mM for Ca2+, Co2+, CU2+, Mg2+, Zn2+, and Fe3+. Bactericidal effectiveness diminished as the bacterial inoculum was increased. Log-phase cultures (10-h incubation) were less sensitive to the bactericidal activity of LF and its derivatives than stationary cultures (20- and 30-h incubation). All these factors should be considered when applications of LF and its derivatives in foods and other complex systems are investigated.
Collapse
Affiliation(s)
- Ana del Olmo
- Departamento de Tecnología de los Alimentos, INIA, Carretera de la Coruña Km 7, Madrid 28040, Spain
| | | | | |
Collapse
|
31
|
Conesa C, Rota MC, Pérez MD, Calvo M, Sánchez L. Antimicrobial activity of recombinant human lactoferrin from Aspergillus awamori, human milk lactoferrin and their hydrolysates. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0924-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|