1
|
Purk L, Kitsiou M, Ioannou C, El Kadri H, Costello KM, Gutierrez Merino J, Klymenko O, Velliou EG. Unravelling the impact of fat content on the microbial dynamics and spatial distribution of foodborne bacteria in tri-phasic viscoelastic 3D models. Sci Rep 2023; 13:21811. [PMID: 38071223 PMCID: PMC10710490 DOI: 10.1038/s41598-023-48968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of the current study is to develop and characterise novel complex multi-phase in vitro 3D models, for advanced microbiological studies. More specifically, we enriched our previously developed bi-phasic polysaccharide (Xanthan Gum)/protein (Whey Protein) 3D model with a fat phase (Sunflower Oil) at various concentrations, i.e., 10%, 20%, 40% and 60% (v/v), for better mimicry of the structural and biochemical composition of real food products. Rheological, textural, and physicochemical analysis as well as advanced microscopy imaging (including spatial mapping of the fat droplet distribution) of the new tri-phasic 3D models revealed their similarity to industrial food products (especially cheese products). Furthermore, microbial growth experiments of foodborne bacteria, i.e., Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa and Lactococcus lactis on the surface of the 3D models revealed very interesting results, regarding the growth dynamics and distribution of cells at colony level. More specifically, the size of the colonies formed on the surface of the 3D models, increased substantially for increasing fat concentrations, especially in mid- and late-exponential growth phases. Furthermore, colonies formed in proximity to fat were substantially larger as compared to the ones that were located far from the fat phase of the models. In terms of growth location, the majority of colonies were located on the protein/polysaccharide phase of the 3D models. All those differences at microscopic level, that can directly affect the bacterial response to decontamination treatments, were not captured by the macroscopic kinetics (growth dynamics), which were unaffected from changes in fat concentration. Our findings demonstrate the importance of developing structurally and biochemically complex 3D in vitro models (for closer proximity to industrial products), as well as the necessity of conducting multi-level microbial analyses, to better understand and predict the bacterial behaviour in relation to their biochemical and structural environment. Such studies in advanced 3D environments can assist a better/more accurate design of industrial antimicrobial processes, ultimately, improving food safety.
Collapse
Affiliation(s)
- Lisa Purk
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Melina Kitsiou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Christina Ioannou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Oleksiy Klymenko
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK.
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK.
| |
Collapse
|
2
|
Sarkar D, Hunt I, Macdonald C, Wang B, Bowman JP, Tamplin ML. Modelling growth of Bacillus cereus in paneer by one-step parameter estimation. Food Microbiol 2023; 112:104231. [PMID: 36906319 DOI: 10.1016/j.fm.2023.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
Bacillus cereus phylogenetic group III and IV strains are commonly associated with food products and cause toxin mediated foodborne diseases. These pathogenic strains have been identified from milk and dairy products, such as reconstituted infant formula and several cheeses. Paneer is a fresh, soft cheese originating from India that is prone to foodborne pathogen contamination, such as by Bacillus cereus. However, there are no reported studies of B. cereus toxin formation in paneer or predictive models quantifying growth of the pathogen in paneer under different environmental conditions. This study assessed enterotoxin-producing potential of B. cereus group III and IV strains, isolated from dairy farm environments, in fresh paneer. Growth of a four-strain cocktail of toxin-producing B. cereus strains was measured in freshly prepared paneer incubated at 5-55 °C and modelled using a one-step parameter estimation combined with bootstrap re-sampling to generate confidence intervals for model parameters. The pathogen grew in paneer between 10 and 50 °C and the developed model fit the observed data well (R2 = 0.972, RMSE = 0.321 log10 CFU/g). The cardinal parameters for B. cereus growth in paneer along with the 95% confidence intervals were: μopt 0.812 log10 CFU/g/h (0.742, 0.917); Topt is 44.177 °C (43.16, 45.49); Tmin is 4.405 °C (3.973, 4.829); Tmax is 50.676 °C (50.367, 51.144). The model developed can be used in food safety management plans and risk assessments to improve safety of paneer while also adding to limited information on B. cereus growth kinetics in dairy products.
Collapse
Affiliation(s)
- Dipon Sarkar
- Centre of Food Safety & Innovation, University of Tasmania, Private Bag 54, Sandy Bay, Tasmania, 7005, Australia.
| | - Ian Hunt
- Centre of Food Safety & Innovation, University of Tasmania, Private Bag 54, Sandy Bay, Tasmania, 7005, Australia.
| | - Cameron Macdonald
- Centre of Food Safety & Innovation, University of Tasmania, Private Bag 54, Sandy Bay, Tasmania, 7005, Australia.
| | - Bing Wang
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 N 21st St, Lincoln, NE, 68588, United States.
| | - John P Bowman
- Centre of Food Safety & Innovation, University of Tasmania, Private Bag 54, Sandy Bay, Tasmania, 7005, Australia.
| | - Mark L Tamplin
- Centre of Food Safety & Innovation, University of Tasmania, Private Bag 54, Sandy Bay, Tasmania, 7005, Australia.
| |
Collapse
|
3
|
Tomczyńska-Mleko M, Terpiłowski K, Pérez-Huertas S, Sapiga V, Polischuk G, Sołowiej B, Nastaj M, Wesołowska-Trojanowska M, Mleko S. Co-Gelation of Pumpkin-Seed Protein with Egg-White Protein. Foods 2023; 12:foods12102030. [PMID: 37238850 DOI: 10.3390/foods12102030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this study was to investigate the gelation process of binary mixes of pumpkin-seed and egg-white proteins. The substitution of pumpkin-seed proteins with egg-white proteins improved the rheological properties of the obtained gels, i.e., a higher storage modulus, lower tangent delta, and larger ultrasound viscosity and hardness. Gels with a larger egg-white protein content were more elastic and more resistant to breaking structure. A higher concentration of pumpkin-seed protein changed the gel microstructure to a rougher and more particulate one. The microstructure was less homogenous, with a tendency to break at the pumpkin/egg-white protein gel interface. The decrease in the intensity of the amide II band with an increase in the pumpkin-seed protein concentration showed that the secondary structure of this protein evolved more toward a linear amino acid chain compared with the egg-white protein, which could have an impact on the microstructure. The supplementation of pumpkin-seed proteins with egg-white proteins caused a decrease in water activity from 0.985 to 0.928, which had important implications for the microbiological stability of the obtained gels. Strong correlations were found between the water activity and rheological properties of the gels; an improvement of their rheological properties resulted in a decrease in water activity. The supplementation of pumpkin-seed proteins with egg-white proteins resulted in more homogenous gels with a stronger microstructure and better water binding.
Collapse
Affiliation(s)
- Marta Tomczyńska-Mleko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 Str., 20-950 Lublin, Poland
| | - Konrad Terpiłowski
- Department of Interfacial Phenomena, Maria Curie Skłodowska University, Maria Curie-Skłodowska 3 Sq., 20-031 Lublin, Poland
| | | | - Viktoria Sapiga
- Department of Technology Milk and Dairy Products, National University of Food Technologies, 68 Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Galina Polischuk
- Department of Technology Milk and Dairy Products, National University of Food Technologies, 68 Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Bartosz Sołowiej
- Department of Dairy Technology and Functional Foods, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Maciej Nastaj
- Department of Dairy Technology and Functional Foods, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Marta Wesołowska-Trojanowska
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Stanisław Mleko
- Department of Dairy Technology and Functional Foods, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
4
|
Inactivation kinetics of Bacillus atrophaeus in liquid hydrogen peroxide for aseptic package sterilization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Martin CS, Jubelin G, Darsonval M, Leroy S, Leneveu-Jenvrin C, Hmidene G, Omhover L, Stahl V, Guillier L, Briandet R, Desvaux M, Dubois-Brissonnet F. Genetic, physiological, and cellular heterogeneities of bacterial pathogens in food matrices: Consequences for food safety. Compr Rev Food Sci Food Saf 2022; 21:4294-4326. [PMID: 36018457 DOI: 10.1111/1541-4337.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
In complex food systems, bacteria live in heterogeneous microstructures, and the population displays phenotypic heterogeneities at the single-cell level. This review provides an overview of spatiotemporal drivers of phenotypic heterogeneity of bacterial pathogens in food matrices at three levels. The first level is the genotypic heterogeneity due to the possibility for various strains of a given species to contaminate food, each of them having specific genetic features. Then, physiological heterogeneities are induced within the same strain, due to specific microenvironments and heterogeneous adaptative responses to the food microstructure. The third level of phenotypic heterogeneity is related to cellular heterogeneity of the same strain in a specific microenvironment. Finally, we consider how these phenotypic heterogeneities at the single-cell level could be implemented in mathematical models to predict bacterial behavior and help ensure microbiological food safety.
Collapse
Affiliation(s)
- Cédric Saint Martin
- MICALIS Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France.,Université Clermont Auvergne, INRAE, UMR454 MEDIS, Clermont-Ferrand, France
| | - Grégory Jubelin
- Université Clermont Auvergne, INRAE, UMR454 MEDIS, Clermont-Ferrand, France
| | - Maud Darsonval
- MICALIS Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, UMR454 MEDIS, Clermont-Ferrand, France
| | - Charlène Leneveu-Jenvrin
- MICALIS Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France.,Association pour le Développement de l'Industrie de la Viande (ADIV), Clermont-Ferrand, France
| | - Ghaya Hmidene
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| | - Lysiane Omhover
- Aerial, Technical Institute of Agro-Industry, Illkirch, France
| | - Valérie Stahl
- Aerial, Technical Institute of Agro-Industry, Illkirch, France
| | | | - Romain Briandet
- MICALIS Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR454 MEDIS, Clermont-Ferrand, France
| | | |
Collapse
|
6
|
Di Biase M, Le Marc Y, Bavaro AR, De Bellis P, Lonigro SL, Lavermicocca P, Postollec F, Valerio F. A Predictive Growth Model for Pro-technological and Probiotic Lacticaseibacillus paracasei Strains Fermenting White Cabbage. Front Microbiol 2022; 13:907393. [PMID: 35733952 PMCID: PMC9207389 DOI: 10.3389/fmicb.2022.907393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022] Open
Abstract
Bacterial strains belonging to Lacticaseibacillus paracasei species are generally used as starters in food fermentations and/or as probiotics. In the current study, the growth cardinal parameters of four L. paracasei strains (IMPC2.1, IMPC4.1, P40 and P101), isolated from table olives or human source, were determined. Strains were grown in liquid medium and incubated at several temperatures (10 values from 5.5°C–40°C) and pH (15 values from 3.2 to 9.1) along the growth range. The cardinal temperature model was used to describe temperature effects on the maximum specific growth rate of L. paracasei whereas new equations were developed for the effect of pH. The estimated Tmin values ranged between −0.97°C and 1.95°C and were lower than 0°C for strains IMPC4.1 and P101. Strain P40 was able to grow in the most restricted range of temperature (from 1.95°C to 37.46°C), while strain IMPC4.1 was estimated to survive at extreme conditions showing the lowest pHmin. Maximum specific growth rates of L. paracasei IMPC2.1 in white cabbage (Brassica oleracea var. capitata) were used to calculate the correction factor (Cf) defined as the bias between the bacterial maximum specific growth rate in broth and in the food matrix. A simple bi-linear model was also developed for the effect of temperature on the maximum population density reached in white cabbage. This information was further used to simulate the growth of L. paracasei strains in cabbage and predict the time to reach the targeted probiotic level (7 log10 CFU/g) using in silico simulations. This study demonstrates the potential of the predictive microbiology to predict the growth of beneficial and pro-technological strains in foods in order to optimize the fermentative process.
Collapse
Affiliation(s)
- Mariaelena Di Biase
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Yvan Le Marc
- ADRIA Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Creac'h Gwen, Quimper Cedex, France
| | - Anna Rita Bavaro
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Palmira De Bellis
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Stella Lisa Lonigro
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Paola Lavermicocca
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Florence Postollec
- ADRIA Food Technology Institute, UMT ACTIA 19.03 ALTER'iX, Creac'h Gwen, Quimper Cedex, France
| | - Francesca Valerio
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| |
Collapse
|
7
|
Studying the effect of oxygen availability and matrix structure on population density and inter-strain interactions of Listeria monocytogenes in different dairy model systems. Food Res Int 2022; 156:111118. [DOI: 10.1016/j.foodres.2022.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
|
8
|
Saint Martin C, Darsonval M, Grégoire M, Caccia N, Midoux L, Berland S, Leroy S, Dubois-Brissonnet F, Desvaux M, Briandet R. Spatial organisation of Listeria monocytogenes and Escherichia coli O157:H7 cultivated in gel matrices. Food Microbiol 2022; 103:103965. [DOI: 10.1016/j.fm.2021.103965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023]
|
9
|
Verheyen D, Van Impe JFM. The Inclusion of the Food Microstructural Influence in Predictive Microbiology: State-of-the-Art. Foods 2021; 10:foods10092119. [PMID: 34574229 PMCID: PMC8468028 DOI: 10.3390/foods10092119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Predictive microbiology has steadily evolved into one of the most important tools to assess and control the microbiological safety of food products. Predictive models were traditionally developed based on experiments in liquid laboratory media, meaning that food microstructural effects were not represented in these models. Since food microstructure is known to exert a significant effect on microbial growth and inactivation dynamics, the applicability of predictive models is limited if food microstructure is not taken into account. Over the last 10-20 years, researchers, therefore, developed a variety of models that do include certain food microstructural influences. This review provides an overview of the most notable microstructure-including models which were developed over the years, both for microbial growth and inactivation.
Collapse
Affiliation(s)
- Davy Verheyen
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Gebroeders de Smetstraat 1, 9000 Ghent, Belgium;
- OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, 3000 Leuven, Belgium
- CPMF2, Flemish Cluster Predictive Microbiology in Foods—www.cpmf2.be, 9000 Ghent, Belgium
| | - Jan F. M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Gebroeders de Smetstraat 1, 9000 Ghent, Belgium;
- OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, 3000 Leuven, Belgium
- CPMF2, Flemish Cluster Predictive Microbiology in Foods—www.cpmf2.be, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
10
|
Gkerekou MA, Athanaseli KG, Kapetanakou AE, Drosinos EH, Skandamis PN. Εvaluation of oxygen availability on growth and inter-strain interactions of L. monocytogenes in/on liquid, semi-solid and solid laboratory media. Int J Food Microbiol 2021; 341:109052. [PMID: 33515814 DOI: 10.1016/j.ijfoodmicro.2021.109052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The coexistence and interactions among Listeria monocytogenes strains in combination with the structural characteristics of foods, may influence their growth capacity and thus, the final levels at the time of consumption. In the present study, we aimed to evaluate the effect of oxygen availability in combination with substrate micro-structure on growth and inter-strain interactions of L. monocytogenes. L. monocytogenes strains, selected for resistance to different antibiotics (to enable distinct enumeration), belonging to serotypes 4b (C5, ScottA), 1/2a (6179) and 1/2b (PL25) and were inoculated in liquid (Tryptic Soy Broth supplemented with Yeast Extract - TSB-YE) and solid (TSB-YE supplemented with 0.6% and 1.2% agar) media (2-3 log CFU/mL, g or cm2), single or as two-strain cultures (1:1 strain-ratio). Aerobic conditions (A) were achieved with constant shaking or surface inoculation for liquid and solid media respectively, while static incubation or pour plated media corresponded to hypoxic environment (H). Anoxic conditions (An) were attained by adding 0.1% w/v sodium thioglycolate and paraffin overlay (for solid media). Growth was assessed during storage at 7 °C (n = 3 × 2). Inter-strain interactions were manifested by the difference in the final population between singly and co-cultured strains. Τhe extent of suppression increased with reduction in agar concentration, while the impact of oxygen availability was dependent on strain combination. During co-culture, in liquid and solid media, 6179 was suppressed by C5 by 4.0 (in TSB-YE under H) to 1.8 log units (in solid medium under An), compared to the single culture, which attained population of ca. 9.4 log CFU/mL or g. The growth of 6179 was also inhibited by ScottA by 2.7 and 1.9 log units, in liquid culture under H and An, respectively. Interestingly, in liquid medium under A, H and An, ScottA was suppressed by C5, by 3.3, 2.4 and 2.3 log units, respectively, while in solid media, growth inhibition was less pronounced. Investigating growth interactions in different environments could assist in explaining the dominance of L. monocytogenes certain serotypes.
Collapse
Affiliation(s)
- Maria A Gkerekou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Konstantina G Athanaseli
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Anastasia E Kapetanakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece.
| |
Collapse
|
11
|
Schelegueda LI, Zalazar AL, Herbas ET, Gliemmo MF, Campos CA. Effect of gellan gum, xylitol and natamycin on Zygosaccharomyces bailii growth and rheological characteristics in low sugar content model systems. Int J Biol Macromol 2020; 164:1657-1664. [PMID: 32777415 DOI: 10.1016/j.ijbiomac.2020.07.277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
This study evaluated the effect of some natural additives and the structure imparted by them on microbial growth and rheological characteristics in acidic model foods with reduced glycidic content. Systems were formulated using gellan gum, as gelling agent; xylitol, as aw depressor; and natamycin, as antimicrobial. Additive-free control systems were prepared. The pH was adjusted to 3.50 or 5.50 as required. Systems were inoculated with Zygosaccharomyces bailii. The effect of additives alone and combined on Z. bailii growth was studied. In some cases, the possible use of additives as yeast nutrients was evaluated. Furthermore, systems rheological characterization was performed. Additives and the structure given by gellan gum significantly affected yeast growth. Gellan gum initially slowed Z. bailii development, but as storage progressed, it acted as yeast carbon source, promoting its growth. A similar trend was observed when xylitol effect was studied. Natamycin inhibited yeast growth in all systems assayed. Additives modified the rheological characteristics of the gels and this effect depended on gellan gum concentration and pH. Obtained results emphasize the importance of considering the different effects that additives and their combinations can exert on the growth of deteriorating microorganisms and on the physical characteristics of gels.
Collapse
Affiliation(s)
- Laura Inés Schelegueda
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
| | - Aldana Lourdes Zalazar
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
| | - Elizeth Tania Herbas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina
| | - María Fernanda Gliemmo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
| | - Carmen Adriana Campos
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Verheyen D, Bolívar A, Pérez-Rodríguez F, Baka M, Skåra T, Van Impe JF. Isolating the effect of fat content on Listeria monocytogenes growth dynamics in fish-based emulsion and gelled emulsion systems. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Muramatsu Y, Dolan KD, Mishra DK. Factors influencing estimation of thermal inactivation parameters in low-moisture foods using a test cell. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Liu Y, Wang X, Liu B, Dong Q. One-Step Analysis for Listeria monocytogenes Growth in Ready-to-Eat Braised Beef at Dynamic and Static Conditions. J Food Prot 2019; 82:1820-1827. [PMID: 31596616 DOI: 10.4315/0362-028x.jfp-18-574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study aimed to estimate the growth parameters of Listeria monocytogenes growth in ready-to-eat (RTE) braised beef by one-step dynamic and static kinetic analysis. The Baranyi model and cardinal parameters model were integrated into a dynamic and static model to estimate the kinetic parameters under one dynamic condition (-20 to 40.0°C) and eight static conditions (4, 8, 15, 20, 30, 35, 37, and 40°C). Based on the dynamic and static methods, the respective dynamic and static results for estimated growth boundaries of L. monocytogenes in RTE braised beef were from -2.5 and -2.7°C to 40.5 and 40.7°C with optimal specific growth rates of 1.078 and 0.913 per h at temperatures of 35.7 and 35.0°C. Temperature effects on the specific growth rate and lag period were developed and used to simulate the change of the physiological state of inocula during the bacterial growth. Subsequently, three additional dynamic temperature profiles were implemented for external validation. The root mean square error of the model developed by dynamic regression (0.19 log CFU/g) is slightly better than that of the model developed by static regression (0.23 log CFU/g). Comparing the validation results, one-step dynamic analysis might be a preferable method for prediction, especially when the growth approaches the stationary phase. Generally, both one-step dynamic and static analyses could be used to accurately predict L. monocytogenes growth in RTE braised beef under fluctuating temperatures.
Collapse
Affiliation(s)
- Yangtai Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Baolin Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, People's Republic of China
| |
Collapse
|
15
|
Costello KM, Gutierrez‐Merino J, Bussemaker M, Smet C, Van Impe JF, Velliou EG. A multi‐scale analysis of the effect of complex viscoelastic models on
Listeria
dynamics and adaptation in co‐culture systems. AIChE J 2019. [DOI: 10.1002/aic.16761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Katherine M. Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering University of Surrey Guildford UK
| | | | - Madeleine Bussemaker
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering University of Surrey Guildford UK
| | - Cindy Smet
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+) KU Leuven, Sustainable Chemical Process Technology Ghent Belgium
| | - Jan F. Van Impe
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+) KU Leuven, Sustainable Chemical Process Technology Ghent Belgium
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering University of Surrey Guildford UK
| |
Collapse
|
16
|
Verheyen D, Xu XM, Govaert M, Baka M, Skåra T, Van Impe JF. Food Microstructure and Fat Content Affect Growth Morphology, Growth Kinetics, and Preferred Phase for Cell Growth of Listeria monocytogenes in Fish-Based Model Systems. Appl Environ Microbiol 2019; 85:e00707-19. [PMID: 31175191 PMCID: PMC6677851 DOI: 10.1128/aem.00707-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022] Open
Abstract
Food microstructure significantly affects microbial growth dynamics, but knowledge concerning the exact influencing mechanisms at a microscopic scale is limited. The food microstructural influence on Listeria monocytogenes (green fluorescent protein strain) growth at 10°C in fish-based food model systems was investigated by confocal laser scanning microscopy. The model systems had different microstructures, i.e., liquid, xanthan (high-viscosity liquid), aqueous gel, and emulsion and gelled emulsion systems varying in fat content. Bacteria grew as single cells, small aggregates, and microcolonies of different sizes (based on colony radii [size I, 1.5 to 5.0 μm; size II, 5.0 to 10.0 μm; size III, 10.0 to 15.0 μm; and size IV, ≥15 μm]). In the liquid, small aggregates and size I microcolonies were predominantly present, while size II and III microcolonies were predominant in the xanthan and aqueous gel. Cells in the emulsions and gelled emulsions grew in the aqueous phase and on the fat-water interface. A microbial adhesion to solvent assay demonstrated limited bacterial nonpolar solvent affinities, implying that this behavior was probably not caused by cell surface hydrophobicity. In systems containing 1 and 5% fat, the largest cell volume was mainly represented by size I and II microcolonies, while at 10 and 20% fat a few size IV microcolonies comprised nearly the total cell volume. Microscopic results (concerning, e.g., growth morphology, microcolony size, intercolony distances, and the preferred phase for growth) were related to previously obtained macroscopic growth dynamics in the model systems for an L. monocytogenes strain cocktail, leading to more substantiated explanations for the influence of food microstructural aspects on lag phase duration and growth rate.IMPORTANCEListeria monocytogenes is one of the most hazardous foodborne pathogens due to the high fatality rate of the disease (i.e., listeriosis). In this study, the growth behavior of L. monocytogenes was investigated at a microscopic scale in food model systems that mimic processed fish products (e.g., fish paté and fish soup), and the results were related to macroscopic growth parameters. Many studies have previously focused on the food microstructural influence on microbial growth. The novelty of this work lies in (i) the microscopic investigation of products with a complex composition and/or structure using confocal laser scanning microscopy and (ii) the direct link to the macroscopic level. Growth behavior (i.e., concerning bacterial growth morphology and preferred phase for growth) was more complex than assumed in common macroscopic studies. Consequently, the effectiveness of industrial antimicrobial food preservation technologies (e.g., thermal processing) might be overestimated for certain products, which may have critical food safety implications.
Collapse
Affiliation(s)
- Davy Verheyen
- BioTeC+, Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- OPTEC, Optimization in Engineering Center of Excellence, KU Leuven, Ghent, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, KU Leuven, Ghent, Belgium
| | - Xiang Ming Xu
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Marlies Govaert
- BioTeC+, Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- OPTEC, Optimization in Engineering Center of Excellence, KU Leuven, Ghent, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, KU Leuven, Ghent, Belgium
| | - Maria Baka
- BioTeC+, Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- OPTEC, Optimization in Engineering Center of Excellence, KU Leuven, Ghent, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, KU Leuven, Ghent, Belgium
| | | | - Jan F Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- OPTEC, Optimization in Engineering Center of Excellence, KU Leuven, Ghent, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, KU Leuven, Ghent, Belgium
| |
Collapse
|
17
|
Verheyen D, Bolívar A, Pérez-Rodríguez F, Baka M, Skåra T, Van Impe JF. Effect of food microstructure on growth dynamics of Listeria monocytogenes in fish-based model systems. Int J Food Microbiol 2018; 283:7-13. [DOI: 10.1016/j.ijfoodmicro.2018.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 05/31/2018] [Indexed: 11/26/2022]
|
18
|
Costello KM, Gutierrez-Merino J, Bussemaker M, Ramaioli M, Baka M, Van Impe JF, Velliou EG. Modelling the microbial dynamics and antimicrobial resistance development of Listeria in viscoelastic food model systems of various structural complexities. Int J Food Microbiol 2018; 286:15-30. [PMID: 30031225 DOI: 10.1016/j.ijfoodmicro.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/01/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Minimal processing for microbial decontamination, such as the use of natural antimicrobials, is gaining interest in the food industry as these methods are generally milder than conventional processing, therefore better maintaining the nutritional content and sensory characteristics of food products. The aim of this study was to quantify the impact of (i) structural composition and complexity, (ii) growth location and morphology, and (iii) the natural antimicrobial nisin, on the microbial dynamics of Listeria innocua. More specifically, viscoelastic food model systems of various compositions and internal structure were developed and characterised, i.e. monophasic Xanthan gum-based and biphasic Xanthan gum/Whey protein-based viscoelastic systems. The microbial dynamics of L. innocua at 10 °C, 30 °C and 37 °C were monitored and compared for planktonic growth in liquid, or in/on (immersed or surface colony growth) the developed viscoelastic systems, with or without a sublethal concentration of nisin. Microscopy imaging was used to determine the bacterial colony size and spatial organisation in/on the viscoelastic systems. Selective growth of L. innocua on the protein phase of the developed biphasic system was observed for the first time. Additionally, significant differences were observed in the colony size and distribution in the monophasic Xanthan gum-based systems depending on (i) the type of growth (surface/immersed) and (ii) the Xanthan gum concentration. Furthermore, the system viscosity in monophasic Xanthan gum-based systems had a protective role against the effects of nisin for immersed growth, and a further inhibitory effect for surface growth at a suboptimal temperature (10 °C). These findings give a systematic quantitative insight on the impact of nisin as an environmental challenge on the growth and spatial organisation of L. innocua, in viscoelastic food model systems of various structural compositions/complexities. This study highlights the importance of accounting for system structural composition/complexity when designing minimal food processing methods with natural antimicrobials.
Collapse
Affiliation(s)
- Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | | | - Madeleine Bussemaker
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Marco Ramaioli
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Maria Baka
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+), KU Leuven, Sustainable Chemical Process Technology, Campuses Ghent & Aalst, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Jan F Van Impe
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+), KU Leuven, Sustainable Chemical Process Technology, Campuses Ghent & Aalst, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK..
| |
Collapse
|
19
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Girones R, Herman L, Koutsoumanis K, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Takkinen J, Wagner M, Arcella D, Da Silva Felicio MT, Georgiadis M, Messens W, Lindqvist R. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J 2018; 16:e05134. [PMID: 32760461 PMCID: PMC7391409 DOI: 10.2903/j.efsa.2018.5134] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Food safety criteria for Listeria monocytogenes in ready-to-eat (RTE) foods have been applied from 2006 onwards (Commission Regulation (EC) 2073/2005). Still, human invasive listeriosis was reported to increase over the period 2009-2013 in the European Union and European Economic Area (EU/EEA). Time series analysis for the 2008-2015 period in the EU/EEA indicated an increasing trend of the monthly notified incidence rate of confirmed human invasive listeriosis of the over 75 age groups and female age group between 25 and 44 years old (probably related to pregnancies). A conceptual model was used to identify factors in the food chain as potential drivers for L. monocytogenes contamination of RTE foods and listeriosis. Factors were related to the host (i. population size of the elderly and/or susceptible people; ii. underlying condition rate), the food (iii. L. monocytogenes prevalence in RTE food at retail; iv. L. monocytogenes concentration in RTE food at retail; v. storage conditions after retail; vi. consumption), the national surveillance systems (vii. improved surveillance), and/or the bacterium (viii. virulence). Factors considered likely to be responsible for the increasing trend in cases are the increased population size of the elderly and susceptible population except for the 25-44 female age group. For the increased incidence rates and cases, the likely factor is the increased proportion of susceptible persons in the age groups over 45 years old for both genders. Quantitative modelling suggests that more than 90% of invasive listeriosis is caused by ingestion of RTE food containing > 2,000 colony forming units (CFU)/g, and that one-third of cases are due to growth in the consumer phase. Awareness should be increased among stakeholders, especially in relation to susceptible risk groups. Innovative methodologies including whole genome sequencing (WGS) for strain identification and monitoring of trends are recommended.
Collapse
|
20
|
Huang L. IPMP Global Fit – A one-step direct data analysis tool for predictive microbiology. Int J Food Microbiol 2017; 262:38-48. [DOI: 10.1016/j.ijfoodmicro.2017.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/07/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
21
|
Liu D, Wang Y, Wang Y, Zhang L, Luo L, Liu K, Ye C. Development of a Novel Listeria Enrichment Broth for the Isolation of Pathogenic Listeria. J Food Prot 2017; 80:1768-1776. [PMID: 28945113 DOI: 10.4315/0362-028x.jfp-16-529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Listeriosis, the disease caused by pathogenic Listeria species, can present severe symptoms in susceptible people. The goal of this study was to develop a novel enrichment broth, Listeria allose enrichment broth (LAEB), to improve isolation of Listeria monocytogenes and Listeria ivanovii from samples through incorporating a specific carbohydrate and reducing inhibitor concentrations. Other coexisting bacteria, particularly Listeria innocua, can interfere with the isolation of pathogenic Listeria in such ways as overgrowth of L. innocua and the generation of inhibitory metabolites. The incorporation of allose into the novel LAEB was effective for slowing the growth of L. innocua and other nontarget microorganisms. We determined that 35°C and pH 7.0 under aerobic conditions are optimal for Listeria growth in this medium. The novelty of the use of LAEB is the single enrichment procedure at 35°C for 24 h, obviating the need for a secondary enrichment medium. In 50 simulated samples, the sensitivity of the LAEB method (86%) was higher than that of the International Organization for Standardization (EN ISO) method (70%). In 142 naturally contaminated samples tested, the isolation rate for pathogenic Listeria with the LAEB method was 26.0% (37 of 142 samples), which was significantly higher than the 17.6% (25 of 142 samples) for the EN ISO method. Higher isolation rates and a quicker and easier protocol make the novel LAEB method an appropriate alternative for the isolation of pathogenic Listeria.
Collapse
Affiliation(s)
- Dongxin Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Changbai Road 155, Beijing 102206, People's Republic of China
| | - Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Changbai Road 155, Beijing 102206, People's Republic of China
| | - Yi Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Changbai Road 155, Beijing 102206, People's Republic of China
| | - Lu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Changbai Road 155, Beijing 102206, People's Republic of China
| | - Lijuan Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Changbai Road 155, Beijing 102206, People's Republic of China
| | - Kai Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Changbai Road 155, Beijing 102206, People's Republic of China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Changbai Road 155, Beijing 102206, People's Republic of China
| |
Collapse
|
22
|
Lobete MM, Noriega E, Batalha MA, de Beurme S, Van de Voorde I, Van Impe JF. Effect of tagatose on growth dynamics of Salmonella Typhimurium and Listeria monocytogenes in media with different levels of structural complexity and in UHT skimmed milk. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Baka M, Vercruyssen S, Cornette N, Van Impe JF. Dynamics of Listeria monocytogenes at suboptimal temperatures in/on fish-protein based model systems: Effect of (micro)structure and microbial distribution. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma. Int J Food Microbiol 2017; 240:47-56. [DOI: 10.1016/j.ijfoodmicro.2016.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/21/2016] [Accepted: 07/15/2016] [Indexed: 11/24/2022]
|
25
|
Baka M, Noriega E, Van Langendonck K, Van Impe JF. Influence of food intrinsic complexity on Listeria monocytogenes growth in/on vacuum-packed model systems at suboptimal temperatures. Int J Food Microbiol 2016; 235:17-27. [PMID: 27393885 DOI: 10.1016/j.ijfoodmicro.2016.06.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 04/26/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022]
Abstract
Food intrinsic factors e.g., food (micro)structure, compositional and physicochemical aspects, which are mutually dependent, influence microbial growth. While the effect of composition and physicochemical properties on microbial growth has been thoroughly assessed and characterised, the role of food (micro)structure still remains unravelled. Most studies on food (micro)structure focus on comparing planktonic growth in liquid (microbiological) media with colonial growth in/on solid-like systems or on real food surfaces. However, foods are not only liquids or solids; they can also be emulsions or gelled emulsions and have complex compositions. In this study, Listeria monocytogenes growth was studied on the whole spectrum of (micro)structure, in terms of food (model) systems. The model systems varied not only in (micro)structure, which was the target of the study, but also in compositional and physicochemical characteristics, which was an inevitable consequence of the (micro)structural variability. The compositional and physicochemical differences were mainly due to the presence or absence of fat and gelling agents. The targeted (micro)structures were: i) liquids, ii) aqueous gels, iii) emulsions and iv) gelled emulsions. Furthermore, the microbial dynamics were studied and compared in/on all these model systems, as well as on a compositionally predefined canned meat, developed in order to have equal compositional level to the gelled emulsion model system and represent a real food system. Frankfurter sausages were the targeted real foods, selected as a case study, to which the canned meat had similar compositional characteristics. All systems were vacuum packed and incubated at 4, 8 and 12°C. The most appropriate protocol for the preparation of the model systems was developed. The pH, water activity and resistance to penetration of the model systems were characterised. Results indicated that low temperature contributes to growth variations among the model systems. Additionally, the firmer the solid system, the faster L. monocytogenes grew on it. Finally, it was found that L. monocytogenes grows faster on canned meat and real Frankfurters, as found in a previous study, followed by liquids, aqueous gels, emulsions and gelled emulsions. This observation indicates that all model systems, developed in this study, underestimated L. monocytogenes growth. Despite some limitations, model systems are overall advantageous and therefore, their validation is always recommended prior to further use.
Collapse
Affiliation(s)
- Maria Baka
- CPMF2, Flemish Cluster Predictive Microbiology in Foods, Belgium(1); BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Belgium.
| | - Estefanía Noriega
- CPMF2, Flemish Cluster Predictive Microbiology in Foods, Belgium(1); BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Belgium.
| | - Kristof Van Langendonck
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Belgium
| | - Jan F Van Impe
- CPMF2, Flemish Cluster Predictive Microbiology in Foods, Belgium(1); BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Belgium.
| |
Collapse
|
26
|
Zalazar AL, Gliemmo MF, Campos CA. Effect of stabilizers, oil level and structure on the growth of Zygosaccharomyces bailii and on physical stability of model systems simulating acid sauces. Food Res Int 2016; 85:200-208. [PMID: 29544836 DOI: 10.1016/j.foodres.2016.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
The effect of xanthan gum, guar gum, oil and the structure promoted by these compounds on the growth of Zygosaccharomyces bailii and on physical stability of emulsified systems simulating acid sauces was studied. Furthermore, the effect of yeast growth on physical stability of emulsions was also evaluated. Yeast growth was evaluated by plate count and modeled by the modified Gompertz equation. Emulsions characteristics and their stability were determined by droplet size, zeta potential and rheological measurements. The latter was also used to evaluate structure's effect on yeast growth. Physical characteristics of emulsions depended on system composition. Yeasts slightly affected droplet size. Z. bailii growth was satisfactorily modeled by the modified Gompertz equation. The specific growth rate (μm) and the asymptotic value (A) obtained depended on xanthan gum, guar gum and oil content. Furthermore, the structure promoted by these compounds exerted a significant effect on growth. In general, an increase in the solid character and yield stress through the addition of xanthan gum promoted a decrease in A parameter. On the contrary, a decrease in the solid character through the addition of guar gum promoted an increase in the A parameter. The results obtained stressed that stabilizers, oil and their structuring ability play an important role on Z. bailii growth.
Collapse
Affiliation(s)
- Aldana L Zalazar
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones, Científicas y Técnicas de la República Argentina, Argentina
| | - María F Gliemmo
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones, Científicas y Técnicas de la República Argentina, Argentina
| | - Carmen A Campos
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones, Científicas y Técnicas de la República Argentina, Argentina.
| |
Collapse
|
27
|
Jeanson S, Floury J, Gagnaire V, Lortal S, Thierry A. Bacterial Colonies in Solid Media and Foods: A Review on Their Growth and Interactions with the Micro-Environment. Front Microbiol 2015; 6:1284. [PMID: 26648910 PMCID: PMC4664638 DOI: 10.3389/fmicb.2015.01284] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/31/2015] [Indexed: 01/26/2023] Open
Abstract
Bacteria, either indigenous or added, are immobilized in solid foods where they grow as colonies. Since the 80's, relatively few research groups have explored the implications of bacteria growing as colonies and mostly focused on pathogens in large colonies on agar/gelatine media. It is only recently that high resolution imaging techniques and biophysical characterization techniques increased the understanding of the growth of bacterial colonies, for different sizes of colonies, at the microscopic level and even down to the molecular level. This review covers the studies on bacterial colony growth in agar or gelatine media mimicking the food environment and in model cheese. The following conclusions have been brought to light. Firstly, under unfavorable conditions, mimicking food conditions, the immobilization of bacteria always constrains their growth in comparison with planktonic growth and increases the sensibility of bacteria to environmental stresses. Secondly, the spatial distribution describes both the distance between colonies and the size of the colonies as a function of the initial level of population. By studying the literature, we concluded that there systematically exists a threshold that distinguishes micro-colonies (radius < 100-200 μm) from macro-colonies (radius >200 μm). Micro-colonies growth resembles planktonic growth and no pH microgradients could be observed. Macro-colonies growth is slower than planktonic growth and pH microgradients could be observed in and around them due to diffusion limitations which occur around, but also inside the macro-colonies. Diffusion limitations of milk proteins have been demonstrated in a model cheese around and in the bacterial colonies. In conclusion, the impact of immobilization is predominant for macro-colonies in comparison with micro-colonies. However, the interaction between the colonies and the food matrix itself remains to be further investigated at the microscopic scale.
Collapse
Affiliation(s)
- Sophie Jeanson
- INRA, UMR1253, Science and Technology of Milk and EggsRennes, France
- AGROCAMPUS OUEST, UMR1253, Science and Technology of Milk and EggsRennes, France
| | - Juliane Floury
- INRA, UMR1253, Science and Technology of Milk and EggsRennes, France
- AGROCAMPUS OUEST, UMR1253, Science and Technology of Milk and EggsRennes, France
| | - Valérie Gagnaire
- INRA, UMR1253, Science and Technology of Milk and EggsRennes, France
- AGROCAMPUS OUEST, UMR1253, Science and Technology of Milk and EggsRennes, France
| | - Sylvie Lortal
- INRA, UMR1253, Science and Technology of Milk and EggsRennes, France
- AGROCAMPUS OUEST, UMR1253, Science and Technology of Milk and EggsRennes, France
| | - Anne Thierry
- INRA, UMR1253, Science and Technology of Milk and EggsRennes, France
- AGROCAMPUS OUEST, UMR1253, Science and Technology of Milk and EggsRennes, France
| |
Collapse
|
28
|
Smet C, Noriega E, Van Mierlo J, Valdramidis V, Van Impe J. Influence of the growth morphology on the behavior of Salmonella Typhimurium and Listeria monocytogenes under osmotic stress. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Skandamis PN, Jeanson S. Colonial vs. planktonic type of growth: mathematical modeling of microbial dynamics on surfaces and in liquid, semi-liquid and solid foods. Front Microbiol 2015; 6:1178. [PMID: 26579087 PMCID: PMC4625091 DOI: 10.3389/fmicb.2015.01178] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023] Open
Abstract
Predictive models are mathematical expressions that describe the growth, survival, inactivation, or biochemical processes of foodborne bacteria. During processing of contaminated raw materials and food preparation, bacteria are entrapped into the food residues, potentially transferred to the equipment surfaces (abiotic or inert surfaces) or cross-contaminate other foods (biotic surfaces). Growth of bacterial cells can either occur planktonically in liquid or immobilized as colonies. Colonies are on the surface or confined in the interior (submerged colonies) of structured foods. For low initial levels of bacterial population leading to large colonies, the immobilized growth differs from planktonic growth due to physical constrains and to diffusion limitations within the structured foods. Indeed, cells in colonies experience substrate starvation and/or stresses from the accumulation of toxic metabolites such as lactic acid. Furthermore, the micro-architecture of foods also influences the rate and extent of growth. The micro-architecture is determined by (i) the non-aqueous phase with the distribution and size of oil particles and the pore size of the network when proteins or gelling agent are solidified, and by (ii) the available aqueous phase within which bacteria may swarm or swim. As a consequence, the micro-environment of bacterial cells when they grow in colonies might greatly differs from that when they grow planktonically. The broth-based data used for modeling (lag time and generation time, the growth rate, and population level) are poorly transferable to solid foods. It may lead to an over-estimation or under-estimation of the predicted population compared to the observed population in food. If the growth prediction concerns pathogen bacteria, it is a major importance for the safety of foods to improve the knowledge on immobilized growth. In this review, the different types of models are presented taking into account the stochastic behavior of single cells in the growth of a bacterial population. Finally, the recent advances in the rules controlling different modes of growth, as well as the methodological approaches for monitoring and modeling such growth are detailed.
Collapse
Affiliation(s)
- Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, University of Athens Athens, Greece
| | - Sophie Jeanson
- Institut National de la Recherche Agronomique, UMR1253 Science and Technology of Milk and Eggs Rennes, France ; AGROCAMPUS OUEST, UMR1253 Science and Technology of Milk and Eggs Rennes, France
| |
Collapse
|
30
|
Smet C, Van Derlinden E, Mertens L, Noriega E, Van Impe JF. Effect of cell immobilization on the growth dynamics of Salmonella Typhimurium and Escherichia coli at suboptimal temperatures. Int J Food Microbiol 2015; 208:75-83. [PMID: 26057111 DOI: 10.1016/j.ijfoodmicro.2015.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/13/2015] [Accepted: 05/23/2015] [Indexed: 11/19/2022]
Abstract
Predictive microbiology has recently acknowledged the impact of the solid(like) food structure on microbial behavior. The presence of this solid(like) structure causes microorganisms to grow as colonies and no longer planktonically as in liquid. In this paper, the growth dynamics of Salmonella Typhimurium and Escherichia coli were studied as a function of temperature, considering different growth morphologies, i.e., (i) planktonic cells, (ii) immersed colonies and (iii) surface colonies. For all three growth morphologies, both microorganisms were grown in petri dishes. While E. coli was grown under optimal pH and water activity (aw), for S. Typhimurium pH and aw were adapted to 5.5 and 0.990. In order to mimic a solid(like) environment, 5% (w/v) gelatin was added. All petri dishes were incubated under static conditions at temperatures in the range [8.0°C-22.0°C]. Cell density was determined via viable plate counting. This work demonstrates that the growth morphology (planktonic vs. colony) has a negligible effect on the growth dynamics as a function of temperature. The observation of almost equal growth rates for planktonic cultures and colonies is in contrast to literature where, mostly, a difference is observed, i.e., μplanktonic cells≥μimmersed colonies≥μsurface colonies. This difference might be due to shaking of the liquid culture in these studies, which results in a nutrient and oxygen rich environment, in contrast to the diffusion-limited gel system. Experiments also indicate that lag phases for solid(like) systems are similar to those for the planktonic cultures, as can be found in literature for similar growth conditions. Considering the maximum cell density, no clear trend was deducted for either of the microorganisms. This study indicates that the growth parameters in the suboptimal temperature range do not depend on the growth morphology. For the considered experimental conditions, models previously developed for liquid environments can be used for solid(like) systems.
Collapse
Affiliation(s)
- Cindy Smet
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, Belgium(1); BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Eva Van Derlinden
- BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Laurence Mertens
- BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Estefanía Noriega
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, Belgium(1); BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| | - Jan F Van Impe
- CPMF(2) - Flemish Cluster Predictive Microbiology in Foods, Belgium(1); BioTeC - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Lobete MM, Fernandez EN, Van Impe JFM. Recent trends in non-invasive in situ techniques to monitor bacterial colonies in solid (model) food. Front Microbiol 2015; 6:148. [PMID: 25798133 PMCID: PMC4351626 DOI: 10.3389/fmicb.2015.00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/09/2015] [Indexed: 12/29/2022] Open
Abstract
Planktonic cells typically found in liquid systems, are routinely used for building predictive models or assessing the efficacy of food preserving technologies. However, freely suspended cells often show different susceptibility to environmental hurdles than colony cells in solid matrices. Limited oxygen, water and nutrient availability, metabolite accumulation and physical constraints due to cell immobilization in the matrix, are main factors affecting cell growth. Moreover, intra- and inter-colony interactions, as a consequence of the initial microbial load in solid systems, may affect microbial physiology. Predictive food microbiology approaches are moving toward a more realistic resemblance to food products, performing studies in structured solid systems instead of liquids. Since structured systems promote microbial cells to become immobilized and grow as colonies, it is essential to study the colony behavior, not only for food safety assurance systems, but also for understanding cell physiology and optimizing food production processes in solid matrices. Traditionally, microbial dynamics in solid systems have been assessed with a macroscopic approach by applying invasive analytical techniques; for instance, viable plate counting, which yield information about overall population. In the last years, this approach is being substituted by more mechanistically inspired ones at mesoscopic (colony) and microscopic (cell) levels. Therefore, non-invasive and in situ monitoring is mandatory for a deeper insight into bacterial colony dynamics. Several methodologies that enable high-throughput data collection have been developed, such as microscopy-based techniques coupled with image analysis and OD-based measurements in microplate readers. This research paper provides an overview of non-invasive in situ techniques to monitor bacterial colonies in solid (model) food and emphasizes their advantages and inconveniences in terms of accuracy, performance and output information.
Collapse
Affiliation(s)
- María M. Lobete
- Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
- Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Estefania Noriega Fernandez
- Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
- Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan F. M. Van Impe
- Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
- Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Aspridou Z, Moschakis T, Biliaderis C, Koutsoumanis K. Effect of the substrate's microstructure on the growth of Listeria monocytogenes. Food Res Int 2014; 64:683-691. [DOI: 10.1016/j.foodres.2014.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022]
|
33
|
Rivas EM, Gil de Prado E, Wrent P, de Silóniz MI, Barreiro P, Correa EC, Conejero F, Murciano A, Peinado JM. A simple mathematical model that describes the growth of the area and the number of total and viable cells in yeast colonies. Lett Appl Microbiol 2014; 59:594-603. [PMID: 25099389 DOI: 10.1111/lam.12314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/24/2014] [Accepted: 08/04/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED We propose a model, based on the Gompertz equation, to describe the growth of yeasts colonies on agar medium. This model presents several advantages: (i) one equation describes the colony growth, which previously needed two separate ones (linear increase of radius and of the squared radius); (ii) a similar equation can be applied to total and viable cells, colony area or colony radius, because the number of total cells in mature colonies is proportional to their area; and (iii) its parameters estimate the cell yield, the cell concentration that triggers growth limitation and the effect of this limitation on the specific growth rate. To elaborate the model, area, total and viable cells of 600 colonies of Saccharomyces cerevisiae, Debaryomyces fabryi, Zygosaccharomyces rouxii and Rhodotorula glutinis have been measured. With low inocula, viable cells showed an initial short exponential phase when colonies were not visible. This phase was shortened with higher inocula. In visible or mature colonies, cell growth displayed Gompertz-type kinetics. It was concluded that the cells growth in colonies is similar to liquid cultures only during the first hours, the rest of the time they grow, with near-zero specific growth rates, at least for 3 weeks. SIGNIFICANCE AND IMPACT OF THE STUDY Mathematical models used to predict microbial growth are based on liquid cultures data. Models describing growth on solid surfaces, highlighting the differences with liquids cultures, are scarce. In this work, we have demonstrated that a single Gompertz equation describes accurately the increase of the yeast colonies, up to the point where they reach their maximum size. The model can be used to quantify the differences in growth kinetics between solid and liquid media. Moreover, as all its parameters have biological meaning, it could be used to build secondary models predicting yeast growth on solid surfaces under several environmental conditions.
Collapse
Affiliation(s)
- E-M Rivas
- CEI Campus Moncloa, UCM-UPM, Madrid, Spain; Departamento de Microbiología III, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Boons K, Noriega E, Van den Broeck R, David CC, Hofkens J, Van Impe JF. Effect of microstructure on population growth parameters of Escherichia coli in gelatin-dextran systems. Appl Environ Microbiol 2014; 80:5330-9. [PMID: 24951795 PMCID: PMC4136113 DOI: 10.1128/aem.00817-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/14/2014] [Indexed: 12/20/2022] Open
Abstract
Current literature acknowledges the effect of food structure on bacterial dynamics. Most studies introduce this "structure" factor using a single gelling agent, resulting in a homogeneous environment, whereas in practice most food products are heterogeneous. Therefore, this study focuses on heterogeneous protein-polysaccharide mixtures, based on gelatin and dextran. These mixtures show phase separation, leading to a range of heterogeneous microstructures by adjusting relative concentrations of both gelling agents. Based on confocal microscope observations, the growth of Escherichia coli in gelatin-dextran systems was observed to occur in the dextran phase. To find a relation between microscopic and population behavior, growth experiments were performed in binary and singular gelatin-dextran systems and culture broth at 23.5°C, with or without adding 2.9% (wt/vol) NaCl. The Baranyi and Roberts growth model was fitted to the experimental data and parameter estimates were statistically compared. For salted binary mixtures, a decrease in the population maximum cell density was observed with increasing gelatin concentration. In this series, for one type of microstructure, i.e., a gelatin matrix phase with a disperse dextran phase, the maximum cell density decreased with decreasing percentage of dextran phase. However, this relation no longer held when other types of microstructure were observed. Compared to singular systems, adding a second gelling agent in the presence of NaCl had an effect on population lag phases and maximum cell densities. For unsalted media, the growth parameters of singular and binary mixtures were comparable. Introducing this information into mathematical models leads to more reliable growth predictions and enhanced food safety.
Collapse
Affiliation(s)
- Kathleen Boons
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Belgium‡ BioTeC, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Estefanía Noriega
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Belgium‡ BioTeC, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Rob Van den Broeck
- BioTeC, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | | | - Johan Hofkens
- Molecular Visualization and Photonics, KU Leuven, Leuven, Belgium
| | - Jan F Van Impe
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Belgium‡ BioTeC, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Predictive Microbiology. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
The effect of colony formation on the heat inactivation dynamics of Escherichia coli K12 and Salmonella typhimurium. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Physical sample structure as predictive factor in growth modeling of Listeria innocua in a white cheese model system. Food Microbiol 2013; 36:90-102. [DOI: 10.1016/j.fm.2013.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/26/2013] [Accepted: 04/17/2013] [Indexed: 11/20/2022]
|
38
|
Rhoades J, Kargiotou C, Katsanidis E, Koutsoumanis KP. Use of marination for controlling Salmonella enterica and Listeria monocytogenes in raw beef. Food Microbiol 2013; 36:248-53. [PMID: 24010604 DOI: 10.1016/j.fm.2013.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/14/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
The effect of marination on the survival and growth of the pathogens Salmonella enterica and Listeria monocytogenes on beef pieces was investigated. Five marinades were used: soy sauce base marinade without (SB) or with lactic acid (SBLA), red wine base marinade without (WB) or with 0.5% v/v oregano essential oil (WBO), and sterile saline used as control (C). Inoculated fresh beef pieces were marinated for 18 h at 5 °C, removed from the marinade and subjected to storage trials at 5 °C and 15 °C. Heat inactivation studies were also performed on the isolates after exposure to the marinades to determine if marination affects heat resistance of the pathogens. The marinades with antimicrobials caused a significant decrease in viable count of the pathogens during marinations at 5 °C for 18 h of up to 2.1 and 3.4 log cfu cm(-2) for Salmonella and L. monocytogenes, respectively. Marinades without antimicrobials were less bactericidal resulting to reductions ranging from 0.3 to 0.4 and 1.3 to 2.0 log cfu cm(-2) for Salmonella and L. monocytogenes, respectively. Growth of L. monocytogenes was observed in the controls at both tested temperatures, while growth of Salmonella was observed in the controls stored at 15 °C. No growth of the pathogens was observed in any of the marinated samples at both temperature tested. No significant changes of heat resistance of the tested pathogens after exposure to the marinades were observed demonstrating the enhanced safety of the marinated beef product.
Collapse
Affiliation(s)
- J Rhoades
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | |
Collapse
|
39
|
Boons K, Van Derlinden E, Mertens L, Peeters V, Van Impe JF. Effect of immobilization and salt concentration on the growth dynamics of Escherichia coli K12 and Salmonella typhimurium. J Food Sci 2013; 78:M567-74. [PMID: 23464757 DOI: 10.1111/1750-3841.12067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/06/2013] [Indexed: 11/29/2022]
Abstract
Up to now, it is generally observed that (i) the microbial growth domain is confined by structure-induced stress, or (ii) a solid(-like) environment can enhance microbial survival/growth. In most studies in solid(-like) systems, structure is induced by the addition of gelatin. The aim of this study was to evaluate the effect of other structure-inducing components on the growth dynamics. Both single and binary gel systems are used. Growth is studied when simultaneously exposed to salt stress. Experiments are performed in spectrophotometer tubes, filled with 1 mL of liquid, or structured inoculated brain heart infusion. Four different (combinations of) gelling agents are tested, that is, gelatin, xanthan gum, a 50% combination of xanthan gum and gelatin, and a 50% combination of carrageenan and gelatin. Experiments determine the growth behavior of both Escherichia coli (0% to 0.5% and 1%, 2%, 3%, 4%, and 5% NaCl) and Salmonella Typhimurium (0%, 1%, 2%, 3%, 4%, and 5% NaCl) at 23.5 and 27 °C. By means of plate counting, the growth dynamics are determined. At the studied conditions, growth of E. coli and Salmonella Typhimurium seems independent of the type of structure-inducing component. However, at higher concentrations of salt (>2%), lag phases are typically shorter in solid(-like) systems than in liquid media. For the conditions tested, the effect of a structured environment on growth rate and maximal cell density can be neglected.
Collapse
Affiliation(s)
- Kathleen Boons
- Chemical and Biochemical Process Technology and Control (BioTeC), KU Leuven W. de Croylaan 46, B-3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
40
|
Behavior of Escherichia coli in a heterogeneous gelatin-dextran mixture. Appl Environ Microbiol 2013; 79:3126-8. [PMID: 23435888 DOI: 10.1128/aem.03782-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a gelatin-dextran mixture, changing the (relative and/or absolute) concentration of the components leads to the formation of different microstructures. Confocal laser scanning microscopy illustrated that the nature of the microstructure determines the location and morphology of Escherichia coli colonies. Observations indicate that bacterial growth preferentially occurs in the dextran phase, regardless of the microstructure.
Collapse
|
41
|
|
42
|
Hereu A, Dalgaard P, Garriga M, Aymerich T, Bover-Cid S. Modeling the high pressure inactivation kinetics of Listeria monocytogenes on RTE cooked meat products. INNOV FOOD SCI EMERG 2012. [DOI: 10.1016/j.ifset.2012.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Martin B, Garriga M, Aymerich T. Pre-PCR treatments as a key factor on the probability of detection of Listeria monocytogenes and Salmonella in ready-to-eat meat products by real-time PCR. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Abstract
Food spoilage may be defined as a process that renders a product undesirable or unacceptable for consumption and is the outcome of the biochemical activity of a microbial community that eventually dominates according to the prevailing ecological determinants. Although limited information are reported, this activity has been attributed to quorum sensing (QS). Consequently, the potential role of cell-to-cell communication in food spoilage and food safety should be more extensively elucidated. Such information would be helpful in designing approaches for manipulating these communication systems, thereby reducing or preventing, for instance, spoilage reactions or even controlling the expression of virulence factors. Due to the many reports in the literature on the fundamental features of QS, e.g., chemistry and definitions of QS compounds, in this minireview, we only allude to the types and chemistry of QS signaling molecules per se and to the (bioassay-based) methods of their detection and quantification, avoiding extensive documentation. Conversely, we attempt to provide insights into (i) the role of QS in food spoilage, (ii) the factors that may quench the activity of QS in foods and review the potential QS inhibitors that might "mislead" the bacterial coordination of spoilage activities and thus may be used as biopreservatives, and (iii) the future experimental approaches that need to be undertaken in order to explore the "gray" or "black" areas of QS, increase our understanding of how QS affects microbial behavior in foods, and assist in finding answers as to how we can exploit QS for the benefit of food preservation and food safety.
Collapse
|
45
|
Evidence for lack of acquisition of tolerance in Salmonella enterica serovar Typhimurium ATCC 14028 after exposure to subinhibitory amounts of Origanum vulgare L. essential oil and carvacrol. Appl Environ Microbiol 2012; 78:5021-4. [PMID: 22544235 DOI: 10.1128/aem.00605-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overnight exposure of Salmonella enterica serovar Typhimurium to sublethal amounts of Origanum vulgare essential oil (OV) and carvacrol (CAR) did not result in direct and cross-bacterial protection. Cells subcultured with increasing amounts of OV or CAR survived up to the MIC of either compound, revealing few significant changes in bacterial susceptibility.
Collapse
|
46
|
Palacios-Chaves L, Zúñiga-Ripa A, Gutiérrez A, Gil-Ramírez Y, Conde-Álvarez R, Moriyón I, Iriarte M. Identification and functional analysis of the cyclopropane fatty acid synthase of Brucella abortus. Microbiology (Reading) 2012; 158:1037-1044. [DOI: 10.1099/mic.0.055897-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Leyre Palacios-Chaves
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Yolanda Gil-Ramírez
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
47
|
Knudsen GM, Nielsen MB, Grassby T, Danino-Appleton V, Thomsen LE, Colquhoun IJ, Brocklehurst TF, Olsen JE, Hinton JCD. A third mode of surface-associated growth: immobilization of Salmonella enterica serovar Typhimurium modulates the RpoS-directed transcriptional programme. Environ Microbiol 2012; 14:1855-75. [PMID: 22356617 DOI: 10.1111/j.1462-2920.2012.02703.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the growth of bacteria has been studied for more than a century, it is only in recent decades that surface-associated growth has received attention. In addition to the well-characterized biofilm and swarming lifestyles, bacteria can also develop as micro-colonies supported by structured environments in both food products and the GI tract. This immobilized mode of growth has not been widely studied. To develop our understanding of the effects of immobilization upon a food-borne bacterial pathogen, we used the IFR Gel Cassette model. The transcriptional programme and metabolomic profile of Salmonella enterica serovar Typhimurium ST4/74 were compared during planktonic and immobilized growth, and a number of immobilization-specific characteristics were identified. Immobilized S.Typhimurium did not express motility and chemotaxis genes, and electron microscopy revealed the absence of flagella. The expression of RpoS-dependent genes and the level of RpoS protein were increased in immobilized bacteria, compared with planktonic growth. Immobilized growth prevented the induction of SPI1, SPI4 and SPI5 gene expression, likely mediated by the FliZ transcriptional regulator. Using an epithelial cell-based assay, we showed that immobilized S.Typhimurium was significantly less invasive than planktonic bacteria, and we suggest that S.Typhimurium grown in immobilized environments are less virulent than planktonic bacteria. Our findings identify immobilization as a third type of surface-associated growth that is distinct from the biofilm and swarming lifestyles of Salmonella.
Collapse
Affiliation(s)
- Gitte M Knudsen
- Institute of Food Research, Norwich Research Park, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Microcalorimetric study of the growth of bacterial colonies of Lactococcus lactis IL1403 in agar gels. Food Microbiol 2011; 29:67-79. [PMID: 22029920 DOI: 10.1016/j.fm.2011.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/01/2011] [Accepted: 08/16/2011] [Indexed: 11/20/2022]
Abstract
Growth of Lactococcus lactis IL1403 in solid agar gels and liquid cultures at different glucose concentrations of 2, 10 and 20 g/L and different inoculation rates from 10(0) to 10(6) cfu/mL with the 10-fold increment was studied using thermal activity monitor TAM III. In parallel to calorimetric measurements the changes of glucose and lactic acid concentrations and pH of culture media were measured in order to obtain additional information for the interpretation of calorimetric power-time curves. Maximal specific growth rates of heat evolution proportional to growth rates of biomass μ(max) (W/h), heat produced during different growth stages Q(TOT) (J/mL), Q(ExP) (J/mL) and duration of lag-phases λ (h) were obtained by processing calorimetric curves. The sizes of colonies were measured also at the end of growth using microscope. The data obtained together with calculated heat yield coefficient Y(Q) (J/cfu) allowed to analyze and describe quantitatively the growth of individual colonies and develop a model of multistage growth of a typical colony of L. lactis in 1% agar gel. Microcalorimetry used in combination with other relevant methods is a very powerful and precise tool in studying solid-state fermentations.
Collapse
|
49
|
Lianou A, Koutsoumanis KP. A stochastic approach for integrating strain variability in modeling Salmonella enterica growth as a function of pH and water activity. Int J Food Microbiol 2011; 149:254-61. [PMID: 21794942 DOI: 10.1016/j.ijfoodmicro.2011.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/08/2011] [Accepted: 07/03/2011] [Indexed: 11/29/2022]
Abstract
Strain variability of the growth behavior of foodborne pathogens has been acknowledged as an important issue in food safety management. A stochastic model providing predictions of the maximum specific growth rate (μ(max)) of Salmonella enterica as a function of pH and water activity (a(w)) and integrating intra-species variability data was developed. For this purpose, growth kinetic data of 60 S. enterica isolates, generated during monitoring of growth in tryptone soy broth of different pH (4.0-7.0) and a(w) (0.964-0.992) values, were used. The effects of the environmental parameters on μ(max) were modeled for each tested S. enterica strain using cardinal type and gamma concept models for pH and a(w), respectively. A multiplicative without interaction-type model, combining the models for pH and a(w), was used to describe the combined effect of these two environmental parameters on μ(max). The strain variability of the growth behavior of S. enterica was incorporated in the modeling procedure by using the cumulative probability distributions of the values of pH(min), pH(opt) and a(wmin) as inputs to the growth model. The cumulative probability distribution of the observed μ(max) values corresponding to growth at pH 7.0-a(w) 0.992 was introduced in the place of the model's parameter μ(opt). The introduction of the above distributions into the growth model resulted, using Monte Carlo simulation, in a stochastic model with its predictions being distributions of μ(max) values characterizing the strain variability. The developed model was further validated using independent growth kinetic data (μ(max) values) generated for the 60 strains of the pathogen at pH 5.0-a(w) 0.977, and exhibited a satisfactory performance. The mean, standard deviation, and the 5th and 95th percentiles of the predicted μ(max) distribution were 0.83, 0.08, and 0.69 and 0.96h(-1), respectively, while the corresponding values of the observed distribution were 0.73, 0.09, and 0.61 and 0.85h(-1). The stochastic modeling approach developed in this study can be useful in describing and integrating the strain variability of S. enterica growth kinetic behavior in quantitative microbiology and microbial risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | |
Collapse
|
50
|
Mejlholm O, Gunvig A, Borggaard C, Blom-Hanssen J, Mellefont L, Ross T, Leroi F, Else T, Visser D, Dalgaard P. Predicting growth rates and growth boundary of Listeria monocytogenes — An international validation study with focus on processed and ready-to-eat meat and seafood. Int J Food Microbiol 2010; 141:137-50. [DOI: 10.1016/j.ijfoodmicro.2010.04.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 04/15/2010] [Accepted: 04/24/2010] [Indexed: 11/16/2022]
|