1
|
Kramer A, Lexow F, Bludau A, Köster AM, Misailovski M, Seifert U, Eggers M, Rutala W, Dancer SJ, Scheithauer S. How long do bacteria, fungi, protozoa, and viruses retain their replication capacity on inanimate surfaces? A systematic review examining environmental resilience versus healthcare-associated infection risk by "fomite-borne risk assessment". Clin Microbiol Rev 2024:e0018623. [PMID: 39388143 DOI: 10.1128/cmr.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYIn healthcare settings, contaminated surfaces play an important role in the transmission of nosocomial pathogens potentially resulting in healthcare-associated infections (HAI). Pathogens can be transmitted directly from frequent hand-touch surfaces close to patients or indirectly by staff and visitors. HAI risk depends on exposure, extent of contamination, infectious dose (ID), virulence, hygiene practices, and patient vulnerability. This review attempts to close a gap in previous reviews on persistence/tenacity by only including articles (n = 171) providing quantitative data on re-cultivable pathogens from fomites for a better translation into clinical settings. We have therefore introduced the new term "replication capacity" (RC). The RC is affected by the degree of contamination, surface material, temperature, relative humidity, protein load, organic soil, UV-light (sunlight) exposure, and pH value. In general, investigations into surface RC are mainly performed in vitro using reference strains with high inocula. In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4 protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the upper bounds of risks when using such data for clinical decision-making. Information on RC after surface contamination could be seen as an opportunity to choose the most appropriate infection prevention and control (IPC) strategies. To help with decision-making, pathogens characterized by an increased nosocomial risk for transmission from inanimate surfaces ("fomite-borne") are presented and discussed in this systematic review. Thus, the review offers a theoretical basis to support local risk assessments and IPC recommendations.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Franziska Lexow
- Department for Infectious Diseases, Unit 14: Hospital Hygiene, Infection Prevention and Control, Robert Koch Institute, Berlin, Germany
| | - Anna Bludau
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University Göttingen, Göttingen, Germany
| | - Antonia Milena Köster
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University Göttingen, Göttingen, Germany
| | - Martin Misailovski
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University Göttingen, Göttingen, Germany
- Department of Geriatrics, University of Göttingen Medical Center, Göttingen, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology - Virology, University Medicine Greifswald, Greifswald, Germany
| | - Maren Eggers
- Labor Prof. Dr. G. Enders MVZ GbR, Stuttgart, Germany
| | - William Rutala
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Stephanie J Dancer
- Department of Microbiology, University Hospital Hairmyres, Glasgow, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Simone Scheithauer
- Department of Infection Control and Infectious Diseases, University Medical Center Göttingen (UMG), Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Pinto L, Cervellieri S, Netti T, Lippolis V, Baruzzi F. Antibacterial Activity of Oregano ( Origanum vulgare L.) Essential Oil Vapors against Microbial Contaminants of Food-Contact Surfaces. Antibiotics (Basel) 2024; 13:371. [PMID: 38667047 PMCID: PMC11047463 DOI: 10.3390/antibiotics13040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
The antimicrobial effect of eight essential oils' vapors against pathogens and spoilage bacteria was assayed. Oreganum vulgare L. essential oil (OVO) showed a broad antibacterial effect, with Minimum Inhibitory Concentration (MIC) values ranging from 94 to 754 µg cm-3 air, depending on the bacterial species. Then, gaseous OVO was used for the treatment of stainless steel, polypropylene, and glass surfaces contaminated with four bacterial pathogens at 6-7 log cfu coupon-1. No viable cells were found after OVO treatment on all food-contact surfaces contaminated with all pathogens, with the exception of Sta. aureus DSM 799 on the glass surface. The antimicrobial activity of OVO after the addition of beef extract as a soiling agent reduced the Sta. aureus DSM 799 viable cell count by more than 5 log cfu coupon-1 on polypropylene and glass, while no viable cells were found in the case of stainless steel. HS-GC-MS analysis of the headspace of the boxes used for the antibacterial assay revealed 14 different volatile compounds with α-Pinene (62-63%), and p-Cymene (21%) as the main terpenes. In conclusion, gaseous OVO could be used for the microbial decontamination of food-contact surfaces, although its efficacy needs to be evaluated since it depends on several parameters such as target microorganisms, food-contact material, temperature, time of contact, and relative humidity.
Collapse
Affiliation(s)
| | | | | | | | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy; (L.P.); (S.C.); (T.N.); (V.L.)
| |
Collapse
|
3
|
Lake FB, Chen J, van Overbeek LS, Baars JJP, Abee T, den Besten HMW. Biofilm formation and desiccation survival of Listeria monocytogenes with microbiota on mushroom processing surfaces and the effect of cleaning and disinfection. Int J Food Microbiol 2024; 411:110509. [PMID: 38101188 DOI: 10.1016/j.ijfoodmicro.2023.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Microbial multispecies communities consisting of background microbiota and Listeria monocytogenes could be established on materials used in food processing environments. The presence, abundance and diversity of the strains within these microbial multispecies communities may be affected by mutual interactions and differences in resistance towards regular cleaning and disinfection (C&D) procedures. Therefore, this study aimed to characterize the growth and diversity of a L. monocytogenes strain cocktail (n = 6) during biofilm formation on polyvinyl chloride (PVC) and stainless steel (SS) without and with the presence of a diverse set of background microbiota (n = 18). L. monocytogenes and background microbiota strains were isolated from mushroom processing environments and experiments were conducted in simulated mushroom processing environmental conditions using mushroom extract as growth medium and ambient temperature (20 °C) as culturing temperature. The L. monocytogenes strains applied during monospecies biofilm incubation formed biofilms on both PVC and SS coupons, and four cycles of C&D treatment were applied with a chlorinated alkaline cleaning agent and a disinfection agent based on peracetic acid and hydrogen peroxide. After each C&D treatment, the coupons were re-incubated for two days during an incubation period for 8 days in total, and C&D resulted in effective removal of biofilms from SS (reduction of 4.5 log CFU/cm2 or less, resulting in counts below detection limit of 1.5 log CFU/cm2 after every C&D treatment), while C&D treatments on biofilms formed on PVC resulted in limited reductions (reductions between 1.2 and 2.4 log CFU/cm2, which equals a reduction of 93.7 % and 99.6 %, respectively). Incubation of the L. monocytogenes strains with the microbiota during multispecies biofilm incubation led to the establishment of L. monocytogenes in the biofilm after 48 h incubation with corresponding high L. monocytogenes strain diversity in the multispecies biofilm on SS and PVC. C&D treatments removed L. monocytogenes from multispecies biofilm communities on SS (reduction of 3.5 log CFU/cm2 or less, resulting in counts below detection limit of 1.5 log CFU/cm2 after every C&D treatment), with varying dominance of microbiota species during different C&D cycles. However, C&D treatments of multispecies biofilm on PVC resulted in lower reductions of L. monocytogenes (between 0.2 and 2.4 log CFU/cm2) compared to single species biofilm, and subsequent regrowth of L. monocytogenes and stable dominance of Enterobacteriaceae and Pseudomonas. In addition, planktonic cultures of L. monocytogenes were deposited and desiccated on dry surfaces without and with the presence of planktonic background microbiota cultures. The observed decline of desiccated cell counts over time was faster on SS compared to PVC. However, the application of C&D resulted in counts below the detection limit of 1.7 log CFU/coupon on both surfaces (reduction of 5.9 log CFU/coupon or less). This study shows that L. monocytogenes is able to form single and multispecies biofilms on PVC with high strain diversity following C&D treatments. This highlights the need to apply more stringent C&D regime treatments for especially PVC and similar surfaces to efficiently remove biofilm cells from food processing surfaces.
Collapse
Affiliation(s)
- Frank B Lake
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Jingjie Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming 650091, China
| | - Leo S van Overbeek
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Johan J P Baars
- Plant Breeding, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University and Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Tuytschaever T, Raes K, Sampers I. Listeria monocytogenes in food businesses: From persistence strategies to intervention/prevention strategies-A review. Compr Rev Food Sci Food Saf 2023; 22:3910-3950. [PMID: 37548605 DOI: 10.1111/1541-4337.13219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
In 2023, Listeria monocytogenes persistence remains a problem in the food business. A profound understanding of how this pathogen persists may lead to better aimed intervention/prevention strategies. The lack of a uniform definition of persistence makes the comparison between studies complex. Harborage sites offer protection against adverse environmental conditions and form the ideal habitat for the formation of biofilms, one of the major persistence strategies. A retarded growth rate, disinfectant resistance/tolerance, desiccation resistance/tolerance, and protozoan protection complete the list of persistence strategies for Listeria monocytogenes and can occur on themselves or in combination with biofilms. Based on the discussed persistence strategies, intervention strategies are proposed. By enhancing the focus on four precaution principles (cleaning and disinfection, infrastructure/hygienic design, technical maintenance, and work methodology) as mentioned in Regulation (EC) No. 852/2004, the risk of persistence can be decreased. All of the intervention strategies result in obtaining and maintaining a good general hygiene status throughout the establishment at all levels ranging from separate equipment to the entire building.
Collapse
Affiliation(s)
- Tessa Tuytschaever
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| |
Collapse
|
5
|
Bjørge Thomassen GM, Krych L, Knøchel S, Mehli L. Bacterial community development and diversity during the first year of production in a new salmon processing plant. Food Microbiol 2023; 109:104138. [DOI: 10.1016/j.fm.2022.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
|
6
|
Bhoite SS, Kolli D, Gomulinski MA, Chapman MR. Electrostatic interactions mediate the nucleation and growth of a bacterial functional amyloid. Front Mol Biosci 2023; 10:1070521. [PMID: 36756360 PMCID: PMC9900396 DOI: 10.3389/fmolb.2023.1070521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Bacterial biofilm formation can have severe impacts on human and environmental health. Enteric bacteria produce functional amyloid fibers called curli that aid in biofilm formation and host colonization. CsgA is the major proteinaceous component of curli amyloid fibers and is conserved in many gram-negative enteric bacteria. The CsgA amyloid core consists of five imperfect repeats (R1-R5). R2, R3, and R4 have aspartic acid (D) and glycine (G) residues that serve as "gatekeeper" residues by modulating the intrinsic aggregation propensity of CsgA. Here, using mutagenesis, salt-mediated charge screening, and by varying pH conditions, we show that the ability of CsgA variants to nucleate and form amyloid fibers is dictated by the charge state of the gatekeeper residues. We report that in Citrobacter youngae CsgA, certain arginine (R) and lysine (K) residues also act as gatekeeper residues. A mechanism of gatekeeping is proposed wherein R and K residues electrostatically interact with negatively charged D residues, tempering CsgA fiber formation.
Collapse
|
7
|
Detection by real-time PCR and conventional culture of Salmonella Typhimurium and Listeria monocytogenes adhered to stainless steel surfaces under dry conditions. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wang R, King DA, Kalchayanand N. Evaluation of Salmonella Biofilm Cell Transfer from Common Food Contact Surfaces to Beef Products. J Food Prot 2022; 85:632-638. [PMID: 34935943 DOI: 10.4315/jfp-21-334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Meat contamination by Salmonella enterica is a serious public health concern. Available data have suggested that biofilm formation at processing plants and contaminated contact surfaces might contribute to meat contamination. Because transfer from contact surfaces to food products via direct contact has been deemed the most common bacteria transmission route that can lead to contamination, we evaluated the effect of Salmonella biofilm forming ability, contact surface material, and beef surface tissue type on Salmonella biofilm transfer from hard surfaces to beef products. Salmonella biofilms developed on the common contact surfaces stainless steel (SS) and polyvinylchloride (PVC) were transferred consecutively via 30 s of direct contact to either lean muscle or adipose tissue surfaces of 15 pieces of beef trim. The Salmonella biofilm cells could be effectively transferred multiple times from the contact surfaces to the beef trim as indicated by quantifiable Salmonella cells on most meat samples. Biofilm forming ability had the most significant impact (P < 0.05) on transfer efficiency. More cells of Salmonella strains that formed strong biofilms were transferred after each contact and contaminated more meat samples with quantifiable cells compared with strains that formed weak biofilms. Contact surface materials also affected transferability. Salmonella biofilms on SS transferred more efficiently than did those on PVC. In contrast, the two types of meat surface tissues were not significantly different (P > 0.05) in biofilm transfer efficiency. Beef trim samples that were in contact with biofilms but did not have quantifiable Salmonella cells were positive for Salmonella after enrichment culture. Our results indicate the high potential of Salmonella biofilms on common contact surfaces in meat processing plants to cause product cross-contamination. HIGHLIGHTS
Collapse
Affiliation(s)
- Rong Wang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933, USA
| | - David A King
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933, USA
| | - Norasak Kalchayanand
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933, USA
| |
Collapse
|
9
|
Qian C, Huang M, Du Y, Song J, Mu H, Wei Y, Zhang S, Yin Z, Yuan C, Liu B, Liu B. Chemotaxis and Shorter O-Antigen Chain Length Contribute to the Strong Desiccation Tolerance of a Food-Isolated Cronobacter sakazakii Strain. Front Microbiol 2022; 12:779538. [PMID: 35058898 PMCID: PMC8764414 DOI: 10.3389/fmicb.2021.779538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen causing a lethality rate as high as 80% in infants. Desiccation tolerance ensures its survival in powdered infant formula (PIF) and contributes to the increased exposure to neonates, resulting in neonatal meningitis, septicemia, and necrotizing enterocolitis. This study showed that a food-isolated C. sakazakii G4023 strain exhibited a stronger desiccation tolerance than C. sakazakii ATCC 29544 strain. Considering the proven pathogenicity of G4023, it could be a big threat to infants. Transcriptome and proteome were performed to provide new insights into the desiccation adaptation mechanisms of G4023. Integrated analyses of these omics suggested that 331 genes were found regulated at both transcriptional and protein levels (≥2.0- and ≥1.5-fold, respectively). Deletion of chemotaxis system encoded genes cheA and cheW resulted in decreased tolerance in both short- and long-term desiccation. Reduced O-antigen chain length contributed to the biofilm formation and desiccation tolerance in the short term rather than the long term. In addition, biosynthesis of flagella, arginine and its transport system, and Fe/S cluster were also observed regulated in desiccated G4023. A better understanding of desiccation adaptation mechanisms of G4023 could in turn guide the operations during production and preservation of PIF or other food to reduce survival odds of G4023 and lower its exposure to get to infants.
Collapse
Affiliation(s)
- Chengqian Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Jingjie Song
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Huiqian Mu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Si Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Chao Yuan
- Department of Sanitary Toxicology and Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
10
|
Zhu J, Jiang X, Guan D, Kang Y, Li L, Cao F, Zhao B, Ma M, Zhao J, Li J. Effects of rehydration on physiological and transcriptional responses of a water-stressed rhizobium. J Microbiol 2022; 60:31-46. [PMID: 34826097 DOI: 10.1007/s12275-022-1325-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023]
Abstract
As a microsymbiont of soybean, Bradyrhizobium japonicum plays an important role in symbiotic nitrogen fixation and sustainable agriculture. However, the survival of B. japonicum cells under water-deplete (e.g., drought) and water-replete (e.g., flood) conditions is a major concern affecting their nitrogen-fixing ability by establishing the symbiotic relationship with the host. In this study, we isolated a water stress tolerant rhizobium from soybean root nodules and tested its survival under water-deplete conditions. The rhizobium was identified as Bradyrhizobium japonicum and named strain 5038. Interestingly, both plate counting and live/dead fluorescence staining assays indicate that a number of viable but non-culturable cells exist in the culture medium upon the rehydration process which could cause dilution stress. Bradyrhizobium japonicum 5038 cells increased production of exopolysaccharide (EPS) and trehalose when dehydrated, suggesting that protective responses were stimulated. As expected, cells reduced their production upon the subsequent rehydration. To examine differential gene expression of B. japonicum 5038 when exposed to water-deplete and subsequent water-replete conditions, whole-genome transcriptional analysis was performed under 10% relative humidity (RH), and subsequent 100% RH, respectively. A total of 462 differentially expressed genes (DEGs, > 2.0-fold) were identified under the 10% RH condition, while 3,776 genes showed differential expression during the subsequent rehydration (100% RH) process. Genes involved in signal transduction, inorganic ion transport, energy production and metabolisms of carbohydrates, amino acids, and lipids were far more up-regulated than down-regulated in the 10% RH condition. Notably, trehalose biosynthetic genes (otsAB, treS, and treYZ), genes ligD, oprB, and a sigma factor rpoH were significantly induced by 10% RH. Under the subsequent 100% RH condition, genes involved in transcription, translation, cell membrane regulation, replication and repair, and protein processing were highly up-regulated. Interestingly, most of 10%-RH inducible genes displayed rehydration-repressed, except three genes encoding heat shock (Hsp20) proteins. Therefore, this study provides molecular evidence for the switch of gene expression of B. japonicum cells when encountered the opposite water availability from water-deplete to water-replete conditions.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yaowei Kang
- Life Sciences College of Zhaoqing University, Zhaoqing, 526061, P. R. China
| | - Li Li
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| |
Collapse
|
11
|
Kim U, Kim JH, Oh SW. Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology. Crit Rev Food Sci Nutr 2021; 62:5783-5793. [PMID: 33663287 DOI: 10.1080/10408398.2021.1892585] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multi-species biofilms are ubiquitous worldwide and are a concern in the food industry. Multi-species biofilms have a higher resistance to antimicrobial therapies than mono-species biofilms. In addition, multi-species biofilms can cause severe foodborne diseases. To remove multi-species biofilms, controlling the formation process of extracellular polymeric substances (EPS) and quorum sensing (QS) effects is essential. EPS disruption, inhibition of QS, and disinfection have been utilized to remove multi-species biofilms. This review presents information on the formation and novel removal methods for multi-species biofilms.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| | - Jin-Hee Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| |
Collapse
|
12
|
Brauge T, Barre L, Leleu G, André S, Denis C, Hanin A, Frémaux B, Guilbaud M, Herry JM, Oulahal N, Anger B, Soumet C, Midelet G. European survey and evaluation of sampling methods recommended by the standard EN ISO 18593 for the detection of Listeria monocytogenes and Pseudomonas fluorescens on industrial surfaces. FEMS Microbiol Lett 2021; 367:5817843. [PMID: 32267937 PMCID: PMC7195815 DOI: 10.1093/femsle/fnaa057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/31/2020] [Indexed: 12/28/2022] Open
Abstract
The ready-to-eat products can be contaminated during processing by pathogen or spoilage bacteria, which persist in the industrial environment. Some bacterial species are able to form biofilms which protect them from environmental conditions. To check the bacterial contamination of the surfaces in the food industries, the professionals must regularly use surface sampling methods to detect the pathogen such as Listeria monocytogenes or the spoilage such as Pseudomonas fluorescens. In 2010, we designed and carried out a European survey to collect surface sampling information to detect or enumerate L. monocytogenes in food processing plants. A total of 137 questionnaires from 14 European Union Member States were returned. The outcome of this survey showed that the professionals preferred friction sampling methods with gauze pad, swab and sponges versus contact sampling methods. After this survey, we compared the effectiveness of these three friction sampling methods and the contact plates, as recommended in the standard EN ISO 18593 that was revised in 2018, on the recovery of L. monocytogenes and of P. fluorescens in mono-specie biofilms. This study showed no significant difference between the effectiveness of the four sampling methods to detach the viable and culturable bacterial population of theses mono-specie biofilms.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and parasitology of fishery and aquaculture products unit, Boulevard Bassin Napoléon 62200 Boulogne sur Mer, France
| | - Lena Barre
- ANSES, Laboratory for Food Safety, Salmonella - E. coli - Listeria unit, 14 Rue Pierre et Marie Curie 94700 Maisons-Alfort, France
| | - Guylaine Leleu
- ANSES, Laboratory for Food Safety, Bacteriology and parasitology of fishery and aquaculture products unit, Boulevard Bassin Napoléon 62200 Boulogne sur Mer, France
| | - Stéphane André
- CTCPA, Technical Centre for the Conservation of Agricultural Products, EMaiRIT'S Unit, 449 Avenue Clément Ader 84911 Avignon, France
| | - Catherine Denis
- ACTALIA, Food Safety, 310 Rue du Père Popiełujko 50000 Saint-Lô, France
| | - Aurélie Hanin
- ACTALIA, Food Safety, 310 Rue du Père Popiełujko 50000 Saint-Lô, France
| | - Bastien Frémaux
- IFIP, The French Research Institute for Pig and Pork Industry, 7 avenue du Général de Gaulle 94704 Maisons-Alfort, France
| | - Morgan Guilbaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood 91300 Massy, France
| | - Jean-Marie Herry
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood 91300 Massy, France
| | - Nadia Oulahal
- University of Lyon, Claude Bernard Lyon 1 University, Isara Lyon, BioDyMIA, Research Unit 3733, IUT Lyon 1, rue Henri de Boissieu 01000 Bourg en Bresse, France
| | - Béatrice Anger
- Anses, Fougeres Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Bâtiment Bioagopolis, 10 B rue Claude Bourgelat - Javené - CS 40608 - 35306 Fougères, France
| | - Christophe Soumet
- Anses, Fougeres Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, Bâtiment Bioagopolis, 10 B rue Claude Bourgelat - Javené - CS 40608 - 35306 Fougères, France
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and parasitology of fishery and aquaculture products unit, Boulevard Bassin Napoléon 62200 Boulogne sur Mer, France
| |
Collapse
|
13
|
Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms 2021; 9:microorganisms9020343. [PMID: 33572303 PMCID: PMC7916105 DOI: 10.3390/microorganisms9020343] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
For the prevention of infectious diseases, knowledge about transmission routes is essential. In addition to respiratory, fecal-oral, and sexual transmission, the transfer of pathogens via surfaces plays a vital role for human pathogenic infections-especially nosocomial pathogens. Therefore, information about the survival of pathogens on surfaces can have direct implications on clinical measures, including hygiene guidelines and disinfection strategies. In this review, we reviewed the existing literature regarding viral, bacterial, and fungal persistence on inanimate surfaces. In particular, the current knowledge of the survival time and conditions of clinically relevant pathogens is summarized. While many pathogens persist only for hours, common nosocomial pathogens can survive for days to weeks under laboratory conditions and thereby potentially form a continuous source of transmission if no adequate inactivation procedures are performed.
Collapse
|
14
|
Exploring the Role of Bacterial Extracellular Polymeric Substances for Sustainable Development in Agriculture. Curr Microbiol 2020; 77:3224-3239. [PMID: 32876713 DOI: 10.1007/s00284-020-02169-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
The incessant need to increase crop yields has led to the development of many chemical fertilizers containing NPK (nitrogen-phosphorous-potassium) which can degrade soil health in the long term. In addition, these fertilizers are often leached into nearby water bodies causing algal bloom and eutrophication. Bacterial secondary metabolites exuded into the extracellular space, termed extracellular polymeric substances (EPS) have gained commercial significance because of their biodegradability, non-toxicity, and renewability. In many habitats, bacterial communities faced with adversity will adhere together by production of EPS which also serves to bond them to surfaces. Typically, hygroscopic, EPS retain moisture in desiccating conditions and modulate nutrient exchange. Many plant growth-promoting bacteria (PGPR) combat harsh environmental conditions like salinity, drought, and attack of pathogens by producing EPS. The adhesive nature of EPS promotes soil aggregation and restores moisture thus combating soil erosion and promoting soil fertility. In addition, these molecules play vital roles in maintaining symbiosis and nitrogen fixation thus enhancing sustainability. Thus, along with other commercial applications, EPS show promising avenues for improving agricultural productivity thus helping to address land scarcity as well as minimizing environmental pollution.
Collapse
|
15
|
Faille C, Brauge T, Leleu G, Hanin A, Denis C, Midelet G. Comparison of the performance of the biofilm sampling methods (swab, sponge, contact agar) in the recovery of Listeria monocytogenes populations considering the seafood environment conditions. Int J Food Microbiol 2020; 325:108626. [DOI: 10.1016/j.ijfoodmicro.2020.108626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022]
|
16
|
Somrani M, Inglés MC, Debbabi H, Abidi F, Palop A. Garlic, Onion, and Cinnamon Essential Oil Anti-biofilms' Effect against Listeria monocytogenes. Foods 2020; 9:E567. [PMID: 32375294 PMCID: PMC7278783 DOI: 10.3390/foods9050567] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biofilms represent a serious problem for food industries due to their persistence in processing surfaces, from which they can cause food spoilage or, even worse, lead to foodborne diseases. Microorganisms immersed in biofilms are more resistant to biocides. The search for natural effective alternatives for the prevention and the control of biofilms has increased lately. The aim of this research was to test the antibacterial and the anti-biofilm activities of cinnamon, onion, and garlic essential oils against Listeria monocytogenes. The methodology highlighted first the effect of these essential oils on L. monocytogenes using disc diffusion and minimum inhibitory concentration (MIC) methods and then on initial cell attachment and six hours preformed biofilms. The inhibition of biofilms was assessed by crystal violet assay. Sulfides were the most abundant compounds present in onion and garlic essential oils, while cinnamaldehyde was predominant in cinnamon essential oil. MIC values were of 0.025 mg mL-1 for onion essential oil and 0.100 mg mL-1 for cinnamon and garlic. Onion essential oil inhibited initial cell attachment by 77% at 0.5 of the MIC dose, while at MIC, cinnamon and garlic essential oils inhibited the initial microbial adhesion completely. All three essential oils completely inhibited initial cell attachment when applied at 2 MIC. On the contrary, preformed biofilms were more resistant, and the inhibition rate ranged from 33% to 78%. In summary, this investigation revealed that the essential oils of garlic, onion, and cinnamon show an effective antibiofilm activity against L. monocytogenes and are promising natural antimicrobial alternatives for food processing facilities.
Collapse
Affiliation(s)
- Mariem Somrani
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain;
- Department of AgriFood Industries, UR17AGR01-PATIO, National Agronomic Institute of Tunisia, University of Carthage, 1082 Tunis, Tunisia;
| | | | - Hajer Debbabi
- Department of AgriFood Industries, UR17AGR01-PATIO, National Agronomic Institute of Tunisia, University of Carthage, 1082 Tunis, Tunisia;
| | - Ferid Abidi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, 1080 Tunis, Tunisia;
| | - Alfredo Palop
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain;
| |
Collapse
|
17
|
Greffe VRG, Michiels J. Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Appl Microbiol Biotechnol 2020; 104:3757-3770. [PMID: 32170388 DOI: 10.1007/s00253-020-10501-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Plant growth-promoting bacteria show great potential for use in agriculture although efficient application remains challenging to achieve. Cells often lose viability during inoculant production and application, jeopardizing the efficacy of the inoculant. Since desiccation has been documented to be the primary stress factor affecting the decrease in survival, obtaining xerotolerance in plant growth-promoting bacteria is appealing. The molecular damage that occurs by drying bacteria has been broadly investigated, although a complete view is still lacking due to the complex nature of the process. Mechanic, structural, and metabolic changes that occur as a result of water depletion may potentially afflict lethal damage to membranes, DNA, and proteins. Bacteria respond to these harsh conditions by increasing production of exopolysaccharides, changing composition of the membrane, improving the stability of proteins, reducing oxidative stress, and repairing DNA damage. This review provides insight into the complex nature of desiccation stress in bacteria in order to facilitate strategic choices to improve survival and shelf life of newly developed inoculants. KEY POINTS: Desiccation-induced damage affects most major macromolecules in bacteria. Most bacteria are not xerotolerant despite multiple endogenous adaption mechanisms. Sensitivity to drying severely hampers inoculant quality.
Collapse
Affiliation(s)
- Vincent Robert Guy Greffe
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. .,VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
18
|
Sajjad S, Ha JS, Seo SH, Yoon TS, Oh HM, Lee HG, Kang S. Differential proteomic analyses of green microalga Ettlia sp. at various dehydration levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:198-210. [PMID: 31756606 DOI: 10.1016/j.plaphy.2019.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Water deprivation could be a lethal stress for aquatic and aero-terrestrial organisms. Ettlia sp. is a unicellular photosynthetic freshwater microalga. In the present study, proteomic alterations and physiological characteristics of Ettlia sp. were analyzed to comprehend the molecular changes in dehydrated conditions. Varying levels of dehydration were achieved by incubating drained Ettlia sp. in different relative humidity environments for 24 hours. Using a comparative proteomic analysis, 52 differentially expressed protein spots were identified that could be divided into eight functional groups. The PCA analysis of normalized protein expression values demonstrated a clear segregation of protein expression profiles among different dehydration levels. Identified proteins could be grouped into four clusters based on their expression profiles. Proteins relating to photosynthesis comprised the largest group with 25% of the identified proteins that were decreased in dehydrated samples and belonged to cluster I. The photosynthetic activities were measured with rehydrated Ettlia sp. These results revealed that photosynthesis remained inhibited over extended time in response to dehydration. The expressions of reactive oxygen species (ROS) scavenger proteins increased in strong dehydration and were assigned to cluster III. Carbon metabolism proteins were suppressed, which might limit energy consumption, whereas glycolysis was activated at mild dehydration. The accumulation of desiccation-associated late embryogenesis proteins might inhibit the aggregation of housekeeping proteins. DNA protective proteins were expressed higher in the dehydrated state, which might reduce DNA damage, and membrane-stabilizing proteins increased in abundance in desiccation. These findings provide an understanding of Ettlia's adaptation and survival capabilities in a dehydrated state.
Collapse
Affiliation(s)
- Saba Sajjad
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ji-San Ha
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Republic of Korea
| | - Seong-Hyun Seo
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Life Science, Hanyang University, Haengdang 1-dong, Seongdong-gu, Seoul, Republic of Korea
| | - Tae-Sung Yoon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Center, KRIBB, Daejeon, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sunghyun Kang
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
19
|
Guo J, Gao Z, Li G, Fu F, Liang Z, Zhu H, Shan Y. Antimicrobial and antibiofilm efficacy and mechanism of essential oil from Citrus Changshan-huyou Y. B. chang against Listeria monocytogenes. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Lapointe C, Deschênes L, Ells TC, Bisaillon Y, Savard T. Interactions between spoilage bacteria in tri-species biofilms developed under simulated meat processing conditions. Food Microbiol 2019; 82:515-522. [PMID: 31027813 DOI: 10.1016/j.fm.2019.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/09/2019] [Accepted: 03/19/2019] [Indexed: 11/29/2022]
Abstract
The formation of biofilms in the food industry is a major issue, as they are a frequent source of contamination of products, which can result in significant economic losses for processors through spoilage of foods or pose serious health concerns for consumers when foodborne pathogens are present. In this study, experiments were carried out using CDC Biofilm Reactors to produce biofilms on two test surfaces (polystyrene and stainless steel coupons) under a regimen for simulated meat processing conditions (SMPC). This entailed a 12 day regimen of daily cycles of filling the reactors with a meat slurry and letting stand for 16 h, followed by draining and refilling with water for an 8 h period in order to mimic a possible scenario of fluctuating periods of nutrient availability and starvation in a meat processing facility. Strains of Pseudomonas fluorescens, Lactobacillus plantarum and Leuconostoc pseudomesenteroides were used for mono and mixed cultures biofilms as they are relevant spoilage bacteria in the meat processing industry. In monoculture, the viable cell densities (CFU/cm2) of the two lactic acid bacteria species tested were higher for biofilms grown on polystyrene as compared to those obtained on stainless steel, whereas viable cell numbers in P. fluorescens monoculture were surface-independent. Synergistic interactions were demonstrated during growth of multi-species biofilms. Results from experiments where one of the 3 strains was inoculated 24 h before introduction of the other two strains showed increased levels of L. plantarum within biofilms grown on both test surfaces. The model developed here serves as a baseline to study the interactions between potential spoilage bacteria during biofilm development.
Collapse
Affiliation(s)
- Caroline Lapointe
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Casavant W., Saint-Hyacinthe, Qc, Canada
| | - Louise Deschênes
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Casavant W., Saint-Hyacinthe, Qc, Canada
| | - Timothy C Ells
- Kentville Research and Development Centre, Agriculture and Agri-food Canada, 32 Main St., Kentville, NS, Canada
| | - Yanick Bisaillon
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Casavant W., Saint-Hyacinthe, Qc, Canada
| | - Tony Savard
- St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Casavant W., Saint-Hyacinthe, Qc, Canada.
| |
Collapse
|
21
|
Pang X, Yuk HG. Effects of the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens on survival of biofilm cells under food-related stresses and transfer to salmon. Food Microbiol 2019; 82:142-150. [PMID: 31027768 DOI: 10.1016/j.fm.2019.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
This study evaluated how the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens affects biofilm formation and biofilm cell response to food-related stress (desiccation or disinfection) as well as the transferability of L. monocytogenes to salmon products. The results showed that the colonization sequence did not affect the population of dual species biofilms. Furthermore, survival number of L. monocytogenes was 0.8 log CFU/cm2 higher when P. fluorescens was the first colonizer during desiccation or disinfectant treatment in comparison with dual-species biofilms with other colonization sequences. A lower transfer rate of L. monocytogenes biofilm cells from dual-species biofilms was observed as compared to single species biofilms. In particular, L. monocytogenes cells detached at a slower rate during transfer to 10 slices of salmon from dual-species biofilms first established by P. fluorescens. Confocal images revealed more exopolysaccharide production in dual-speciesbiofilms first established by P. fluorescens than in biofilms generated via other sequences. These results indicate that preexisting P. fluorescens biofilms on stainless steel can enhance resistance of L. monocytogenes to desiccation and disinfection, although this setup decreased the transfer rate of L. monocytogenes to salmon slices. Thus, this study highlights the risk of L. monocytogenes contamination in pre-formed Pseudomonas biofilms at salmon processing facilities.
Collapse
Affiliation(s)
- Xinyi Pang
- Food Science & Technology Programme, Department of Chemistry, National University of Singapore, Science Drive 4, 117543, Singapore
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro Jeungpyeong-gun, Chungbuk, 27909, Republic of Korea.
| |
Collapse
|
22
|
Abstract
Biofilms are surface-attached microbial communities with distinct properties, which have a tremendous impact on public health and food safety. In the meat industry, biofilms remain a serious concern because many foodborne pathogens can form biofilms in areas at meat plants that are difficult to sanitize properly, and biofilm cells are more tolerant to sanitization than their planktonic counterparts. Furthermore, nearly all biofilms in commercial environments consist of multiple species of microorganisms, and the complex interactions within the community significantly influence the architecture, activity, and sanitizer tolerance of the biofilm society. This review focuses on the effect of microbial coexistence on mixed biofilm formation with foodborne pathogens of major concern in the fresh meat industry and their resultant sanitizer tolerance. The factors that would affect biofilm cell transfer from contact surfaces to meat products, one of the most common transmission routes that could lead to product contamination, are discussed as well. Available results from recent studies relevant to the meat industry, implying the potential role of bacterial persistence and biofilm formation in meat contamination, are reviewed in response to the pressing need to understand the mechanisms that cause "high event period" contamination at commercial meat processing plants. A better understanding of these events would help the industry to enhance strategies to prevent contamination and improve meat safety.
Collapse
Affiliation(s)
- Rong Wang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933, USA
| |
Collapse
|
23
|
Du XJ, Wang XY, Dong X, Li P, Wang S. Characterization of the Desiccation Tolerance of Cronobacter sakazakii Strains. Front Microbiol 2018; 9:2867. [PMID: 30542333 PMCID: PMC6278591 DOI: 10.3389/fmicb.2018.02867] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/07/2018] [Indexed: 01/29/2023] Open
Abstract
Strong desiccation tolerance is an outstanding feature of Cronobacter sakazakii and can enable the bacterium to survive in a dry food matrix (such as milk powder) for a long time. Therefore, contamination of food possessing low water activity with C. sakazakii can increase the risk of infection in human beings, particularly in neonates and infants. However, the mechanism underlying the desiccation tolerance property of C. sakazakii is largely unknown. In this study, the desiccation tolerance characteristics of 42 C. sakazakii strains were analyzed. Simultaneously, the sequence types and biofilm formation abilities of the strains were investigated, and their correlations with desiccation tolerance were analyzed. The results showed no significant correlation between desiccation tolerance and sequence type. However, there was a positive correlation between biofilm formation ability and desiccation tolerance. Raman spectroscopy was employed to investigate the biofilm formed by strains with distinct desiccation tolerance levels, and the results showed that the levels of polysaccharide, proteins and carotenoid might play important roles in the resistance to dry environments. In addition, 10 genes involved in osmoprotectant synthesis or transport were selected, and their differential expression in strains with diverse desiccation tolerance levels was compared to investigate whether these genes were responsible for cytoprotection in the dry environment. The results revealed a great difference in gene expression among strains with different desiccation tolerance levels, suggesting that these genes play a regulatory role in the resistance of C. sakazakii to dry environments. Our study provides a useful reference for follow-up studies investigating the mechanism of desiccation tolerance in C. sakazakii.
Collapse
Affiliation(s)
- Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xiao-Yi Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xuan Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
24
|
Santos T, Théron L, Chambon C, Viala D, Centeno D, Esbelin J, Hébraud M. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms. J Proteomics 2018; 187:152-160. [PMID: 30071319 DOI: 10.1016/j.jprot.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
MALDI-TOF Mass spectrometry Imaging (MSI) is a surface-sampling technology that can determine spatial information and relative abundance of analytes directly from biological samples. Human listeriosis cases are due to the ingestion of contaminated foods with the pathogenic bacteria Listeria monocytogenes. The reduction of water availability in food workshops by decreasing the air relative humidity (RH) is one strategy to improve the control of bacterial contamination. This study aims to develop and implement an MSI approach on L. monocytogenes biofilms and proof of concept using a dehumidified stress condition. MSI allowed examining the distribution of low molecular weight proteins within the biofilms subjected to a dehumidification environment, mimicking the one present in a food workshop (10 °C, 75% RH). Furthermore, a LC-MS/MS approach was made to link the dots between MSI and protein identification. Five identified proteins were assigned to registered MSI m/z, including two cold-shock proteins and a ligase involved in cell wall biogenesis. These data demonstrate how imaging can be used to dissect the proteome of an intact bacterial biofilm giving new insights into protein expression relating to a dehumidification stress adaptation. Data are available via ProteomeXchange with identifier PXD010444. BIOLOGICAL SIGNIFICANCE The ready-to-eat food processing industry has the daily challenge of controlling the contamination of surfaces and machines with spoilage and pathogenic microorganisms. In some cases, it is a lost cause due to these microorganisms' capacity to withstand the cleaning treatments, like desiccation procedures. Such a case is the ubiquitous Gram-positive Bacterium Listeria monocytogenes. Its surface proteins have particular importance for the interaction with its environment, being important factors contributing to adaptation to stress conditions. There are few reproducibly techniques to obtain the surface proteins of Gram-positive cells. Here, we developed a workflow that enables the use of MALDI imaging on Gram-positive bacterium biofilms to study the impact of dehumidification on sessile cells. It will be of the most interest to test this workflow with different environmental conditions and potentially apply it to other biofilm-forming bacteria.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Laëtitia Théron
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Delphine Centeno
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France; INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France.
| |
Collapse
|
25
|
Esbelin J, Santos T, Hébraud M. Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiol 2018; 69:82-88. [DOI: 10.1016/j.fm.2017.07.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/09/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
|
26
|
Papaioannou E, Giaouris ED, Berillis P, Boziaris IS. Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges. Int J Food Microbiol 2017; 267:9-19. [PMID: 29275280 DOI: 10.1016/j.ijfoodmicro.2017.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
Abstract
The progressive ability of a six-strains L. monocytogenes cocktail to form biofilm on stainless steel (SS), under fish-processing simulated conditions, was investigated, together with the biocide tolerance of the developed sessile communities. To do this, the pathogenic bacteria were left to form biofilms on SS coupons incubated at 15°C, for up to 240h, in periodically renewable model fish juice substrate, prepared by aquatic extraction of sea bream flesh, under both mono-species and mixed-culture conditions. In the latter case, L. monocytogenes cells were left to produce biofilms together with either a five-strains cocktail of four Pseudomonas species (fragi, savastanoi, putida and fluorescens), or whole fish indigenous microflora. The biofilm populations of L. monocytogenes, Pseudomonas spp., Enterobacteriaceae, H2S producing and aerobic plate count (APC) bacteria, both before and after disinfection, were enumerated by selective agar plating, following their removal from surfaces through bead vortexing. Scanning electron microscopy was also applied to monitor biofilm formation dynamics and anti-biofilm biocidal actions. Results revealed the clear dominance of Pseudomonas spp. bacteria in all the mixed-culture sessile communities throughout the whole incubation period, with the in parallel sole presence of L. monocytogenes cells to further increase (ca. 10-fold) their sessile growth. With respect to L. monocytogenes and under mono-species conditions, its maximum biofilm population (ca. 6logCFU/cm2) was reached at 192h of incubation, whereas when solely Pseudomonas spp. cells were also present, its biofilm formation was either slightly hindered or favored, depending on the incubation day. However, when all the fish indigenous microflora was present, biofilm formation by the pathogen was greatly hampered and never exceeded 3logCFU/cm2, while under the same conditions, APC biofilm counts had already surpassed 7logCFU/cm2 by the end of the first 96h of incubation. All here tested disinfection treatments, composed of two common food industry biocides gradually applied for 15 to 30min, were insufficient against L. monocytogenes mono-species biofilm communities, with the resistance of the latter to significantly increase from the 3rd to 7th day of incubation. However, all these treatments resulted in no detectable L. monocytogenes cells upon their application against the mixed-culture sessile communities also containing the fish indigenous microflora, something probably associated with the low attached population level of these pathogenic cells before disinfection (<102CFU/cm2) under such mixed-culture conditions. Taken together, all these results expand our knowledge on both the population dynamics and resistance of L. monocytogenes biofilm cells under conditions resembling those encountered within the seafood industry and should be considered upon designing and applying effective anti-biofilm strategies.
Collapse
Affiliation(s)
- Eleni Papaioannou
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Greece
| | - Efstathios D Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece.
| | - Panagiotis Berillis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Greece
| | - Ioannis S Boziaris
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Greece
| |
Collapse
|
27
|
Hingston P, Chen J, Dhillon BK, Laing C, Bertelli C, Gannon V, Tasara T, Allen K, Brinkman FSL, Truelstrup Hansen L, Wang S. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress. Front Microbiol 2017; 8:369. [PMID: 28337186 PMCID: PMC5340757 DOI: 10.3389/fmicb.2017.00369] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/22/2017] [Indexed: 01/11/2023] Open
Abstract
The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance relative to those harboring a premature stop codon (PMSC) in this gene. Similarly, isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid tolerance. We also identified nine new L. monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in addition to screening for the presence of full-length inlA and a plasmid, could help food processors and food agency investigators determine why certain isolates might be persisting in a food processing environment. Additionally, increased sequencing of L. monocytogenes isolates in combination with stress tolerance profiling, will enhance the ability to identify genetic elements associated with higher risk strains.
Collapse
Affiliation(s)
- Patricia Hingston
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| | - Jessica Chen
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| | - Bhavjinder K. Dhillon
- Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Chad Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of CanadaLethbridge, AB, Canada
| | - Claire Bertelli
- Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Victor Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of CanadaLethbridge, AB, Canada
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, University of ZurichZurich, Switzerland
| | - Kevin Allen
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Lisbeth Truelstrup Hansen
- Division for Microbiology and Production, National Food Institute, Technical University of DenmarkKongens Lyngby, Denmark
| | - Siyun Wang
- Department of Food, Nutrition, and Health, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
28
|
Lee Y, Wang C. Morphological Change and Decreasing Transfer Rate of Biofilm-Featured Listeria monocytogenes EGDe. J Food Prot 2017; 80:368-375. [PMID: 28199146 DOI: 10.4315/0362-028x.jfp-16-226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Listeria monocytogenes , a lethal foodborne pathogen, has the ability to resist the hostile food processing environment and thus frequently contaminates ready-to-eat foods during processing. It is commonly accepted that the tendency of L. monocytogenes ' to generate biofilms on various surfaces enhances its resistance to the harshness of the food processing environment. However, the role of biofilm formation in the transferability of L. monocytogenes EGDe remains controversial. We examined the growth of Listeria biofilms on stainless steel surfaces and their effect on the transferability of L. monocytogenes EGDe. The experiments were a factorial 2 × 2 design with at least three biological replicates. Through scanning electron microscopy, a mature biofilm with intensive aggregates of cells was observed on the surface of stainless steel after 3 or 5 days of incubation, depending on the initial level of inoculation. During biofilm development, L. monocytogenes EGDe carried out binary fission vigorously before a mature biofilm was formed and subsequently changed its cellular morphology from rod shaped to sphere shaped. Furthermore, static biofilm, which was formed after 3 days of incubation at 25°C, significantly inhibited the transfer rate of L. monocytogenes EGDe from stainless steel blades to 15 bologna slices. During 7 days of storage at 4°C, however, bacterial growth rate was not significantly impacted by whether bacteria were transferred from biofilm and the initial concentrations of transferred bacteria on the slice. In conclusion, this study is the first to report a distinct change in morphology of L. monocytogenes EGDe at the late stage of biofilm formation. More importantly, once food is contaminated by L. monocytogenes EGDe, contamination proceeds independently of biofilm development and the initial level of contamination when food is stored at 4°C, even if contamination with L. monocytogenes EGDe was initially undetectable before storage.
Collapse
Affiliation(s)
- Yuejia Lee
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
29
|
Listeria monocytogenes ability to survive desiccation: Influence of serotype, origin, virulence, and genotype. Int J Food Microbiol 2017; 248:82-89. [PMID: 28288399 DOI: 10.1016/j.ijfoodmicro.2017.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/12/2017] [Accepted: 02/18/2017] [Indexed: 11/22/2022]
Abstract
Listeria monocytogenes, a bacterium that is responsible for listeriosis, is a very diverse species. Desiccation resistance has been rarely studied in L. monocytogenes, although it is a stress that is largely encountered by this microorganism in food-processing environments and that could be managed to prevent its presence. The objective of this study was to evaluate the resistance of 30 L. monocytogenes strains to moderate desiccation (75% relative humidity) and evaluate the correlation of such resistance with the strains' virulence, serotype and genotype. The results showed a great heterogeneity of strains regarding their ability to survive (loss of cultivability between 0.4 and 2.0 log). Strains were classified into three groups according to desiccation resistance (sensitive, intermediate, or resistant), and the strain repartition was analyzed relative to serotype, virulence level and environmental origin of the strains. No correlation was found between isolate origin and desiccation resistance. All serotype 1/2b strains were classified into the group of resistant strains. Virulent and hypovirulent strains were distributed among the three groups of desiccation resistance. Finally, a genomic comparison was performed based on 31 genes that were previously identified as being involved in desiccation resistance. The presence of those genes was localized among the genomes of some strains and compared regarding strain-resistance levels. High nucleotide conservation was identified between resistant and desiccation-sensitive strains. In conclusion, the findings regarding the strains of serotype 1/2b indicate potential serotype-specific resistance to desiccation, and thus, to relative humidity fluctuations potentially encountered in food-related environments. The genomic comparison of 31 genes associated to desiccation tolerance did not reveal differences among four strains which have different level of resistance to desiccation.
Collapse
|
30
|
Zhang QQ, Ye KP, Juneja VK, Xu X. Response surface model for the reduction of Salmonella
biofilm on stainless steel with lactic acid, ethanol, and chlorine as controlling factors. J Food Saf 2017. [DOI: 10.1111/jfs.12332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiu Qin Zhang
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing Agricultural University; Nanjing 210095 China
| | - Ke Ping Ye
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Vijay K. Juneja
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing Agricultural University; Nanjing 210095 China
| | - Xinglian Xu
- College of Food Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
- U.S. Department of Agriculture; Eastern Regional Research Center Agricultural Research Service; 600 East Mermaid Lane Wyndmoor Pennsylvania 19038 USA
| |
Collapse
|
31
|
Inhibition of Staphylococcus aureus by antimicrobial biofilms formed by competitive exclusion microorganisms on stainless steel. Int J Food Microbiol 2016; 238:165-171. [DOI: 10.1016/j.ijfoodmicro.2016.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 11/21/2022]
|
32
|
Faille C, Bihi I, Ronse A, Ronse G, Baudoin M, Zoueshtiagh F. Increased resistance to detachment of adherent microspheres and Bacillus spores subjected to a drying step. Colloids Surf B Biointerfaces 2016; 143:293-300. [PMID: 27022869 DOI: 10.1016/j.colsurfb.2016.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/29/2016] [Accepted: 03/15/2016] [Indexed: 11/30/2022]
Abstract
In various environments, including that of food processing, adherent bacteria are often subjected to drying conditions. These conditions have been shown to result in changes in the ability of biofilms to cross-contaminate food in contact with them. In this study, we investigated the consequences of a drying step on the further ability of adherent bacterial spores to resist detachment. An initial series of experiment was set up with latex microspheres as a model. A microsphere suspension was deposited on a glass slide and incubated at 25, 35 and 50°C for times ranging from 1h to 48h. By subjecting the dried slides to increasing water flow rates, we showed that both time and temperature affected the ease of microsphere detachment. Similar observations were made for three Bacillus spores despite differences in their surface properties, especially regarding their surface physicochemistry. The differences in ease of adherent spore detachment could not be clearly linked to the minor changes in spore morphology, observed after drying in various environmental conditions. In order to explain the increased interaction between spheres or spores and glass slides, the authors made several assumptions regarding the possible underlying mechanisms: the shape of the liquid bridge between the sphere and the substratum, which is greatly influenced by the hydrophilic/hydrophobic characters of both surfaces; the accumulation of soil at the liquid/air interface; the presence of trapped nano-bubbles around and/or under the sphere.
Collapse
Affiliation(s)
- Christine Faille
- UMR UMET: UMET, CNRS, INRA, Univ. Lille 1, 59650 Villeneuve d'Ascq, France.
| | - Ilyesse Bihi
- IEMN, LIA LICS: Univ. Lille 1, UMR CNRS 8520, IEMN, 59652 Villeneuve d'Ascq, France
| | - Annette Ronse
- UMR UMET: UMET, CNRS, INRA, Univ. Lille 1, 59650 Villeneuve d'Ascq, France
| | - Gilles Ronse
- UMR UMET: UMET, CNRS, INRA, Univ. Lille 1, 59650 Villeneuve d'Ascq, France
| | - Michael Baudoin
- IEMN, LIA LICS: Univ. Lille 1, UMR CNRS 8520, IEMN, 59652 Villeneuve d'Ascq, France
| | - Farzam Zoueshtiagh
- IEMN, LIA LICS: Univ. Lille 1, UMR CNRS 8520, IEMN, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
33
|
The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 2016; 221:37-53. [PMID: 26803272 DOI: 10.1016/j.ijfoodmicro.2015.12.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022]
Abstract
In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.
Collapse
|
34
|
Leong D, Alvarez-Ordóñez A, Zaouali S, Jordan K. Examination of Listeria monocytogenes in Seafood Processing Facilities and Smoked Salmon in the Republic of Ireland. J Food Prot 2015; 78:2184-90. [PMID: 26613913 DOI: 10.4315/0362-028x.jfp-15-233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis, a relatively rare but life-threatening disease primarily affecting immunocompromised individuals. The aim of this study was to determine the prevalence of L. monocytogenes in the seafood processing industry in the Republic of Ireland. The occurrence of L. monocytogenes was determined by regular sampling of both food samples and processing environment swabs at eight seafood processing facilities over two calendar years. All samples were analyzed by the International Organization for Standardization 11290-1 standard method, and the isolates were characterized by PCR, pulsed-field gel electrophoresis, serotyping, and the occurrence of some genes related to survival under stress (SSI-1, Tn6188, and bcrABC). A prevalence of 2.5% in 508 samples (433 environmental swabs and 75 food samples) was found. From the isolates obtained, eight different pulsed-field gel electrophoresis profiles were identified, two occurring in more than one facility and one occurring in food and the environment. Five of the eight pulsotypes identified contained at least one of the three stress survival-related genes tested. The tolerance of the isolates to benzalkonium chloride, a representative quaternary ammonium compound, was also examined and ranged from 5.5 ± 0.5 to 8.5 ± 0.5 ppm of benzalkonium chloride. To evaluate the ability of smoked salmon to support the growth of L. monocytogenes, including the T4 widespread pulsotype that was isolated, a challenge test was performed on cold-smoked salmon obtained from two separate producers. The results showed clearly that both types of smoked salmon supported the growth of L. monocytogenes. Although occurrence of L. monocytogenes on seafood was low, this study showed that the smoked salmon used in this study can support the growth of L. monocytogenes; therefore, vigilance is required in the processing facilities to reduce the associated risk.
Collapse
Affiliation(s)
- Dara Leong
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | | - Sarah Zaouali
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.
| |
Collapse
|
35
|
Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiol 2015; 49:41-55. [DOI: 10.1016/j.fm.2015.01.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 11/21/2022]
|
36
|
Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis. Appl Environ Microbiol 2015; 81:5350-62. [PMID: 26025900 DOI: 10.1128/aem.01134-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm(2) relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses.
Collapse
|
37
|
Role of sigB and osmolytes in desiccation survival of Listeria monocytogenes in simulated food soils on the surface of food grade stainless steel. Food Microbiol 2015; 46:443-451. [DOI: 10.1016/j.fm.2014.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/05/2014] [Accepted: 09/12/2014] [Indexed: 11/24/2022]
|
38
|
Wang J, Ray AJ, Hammons SR, Oliver HF. Persistent and TransientListeria monocytogenesStrains from Retail Deli Environments Vary in Their Ability to Adhere and Form Biofilms and Rarely HaveinlAPremature Stop Codons. Foodborne Pathog Dis 2015; 12:151-8. [PMID: 25569840 DOI: 10.1089/fpd.2014.1837] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jingjin Wang
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana
| | - Andrea J. Ray
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana
| | - Susan R. Hammons
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana
| | - Haley F. Oliver
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana
| |
Collapse
|
39
|
Lee HY, Chai LC, Mahyudin NA, Nishibuchi M, Son R. Transfer of Listeria monocytogenes between abiotic surfaces under different weights. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Daneshvar Alavi HE, Truelstrup Hansen L. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces. BIOFOULING 2013; 29:1253-1268. [PMID: 24102145 DOI: 10.1080/08927014.2013.835805] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study investigated the dynamics of static biofilm formation (100% RH, 15 °C, 48-72 h) and desiccation survival (43% RH, 15 °C, 21 days) of Listeria monocytogenes, in dual species biofilms with the common spoilage bacteria, Pseudomonas fluorescens, Serratia proteamaculans and Shewanella baltica, on the surface of food grade stainless steel. The Gram-negative bacteria reduced the maximum biofilm population of L. monocytogenes in dual species biofilms and increased its inactivation during desiccation. However, due to the higher desiccation resistance of Listeria relative to P. fluorescens and S. baltica, the pathogen survived in greater final numbers. In contrast, S. proteamaculans outcompeted the pathogen during the biofilm formation and exhibited similar desiccation survival, causing the N21 days of Serratia to be ca 3 Log10(CFU cm(-2)) greater than that of Listeria in the dual species biofilm. Microscopy revealed biofilm morphologies with variable amounts of exopolymeric substance and the presence of separate microcolonies. Under these simulated food plant conditions, the fate of L. monocytogenes during formation of mixed biofilms and desiccation depended on the implicit characteristics of the co-cultured bacterium.
Collapse
Affiliation(s)
- Hessam Edin Daneshvar Alavi
- a Food Science Program, Faculty of Engineering, Department of Process Engineering and Applied Science , Dalhousie University , Halifax , Canada
| | | |
Collapse
|
41
|
Ganegama Arachchi GJ, Cridge AG, Dias-Wanigasekera BM, Cruz CD, McIntyre L, Liu R, Flint SH, Mutukumira AN. Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. ACTA ACUST UNITED AC 2013; 40:1105-16. [DOI: 10.1007/s10295-013-1313-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
Abstract
Listeria monocytogenes is a food-borne pathogen which causes listeriosis and is difficult to eradicate from seafood processing environments; therefore, more effective control methods need to be developed. This study investigated the effectiveness of three bacteriophages (LiMN4L, LiMN4p and LiMN17), individually or as a three-phage cocktail at ≈9 log10 PFU/ml, in the lysis of three seafood-borne L. monocytogenes strains (19CO9, 19DO3 and 19EO3) adhered to a fish broth layer on stainless steel coupon (FBSSC) and clean stainless steel coupon (SSC), in 7-day biofilm, and dislodged biofilm cells at 15 ± 1 °C. Single phage treatments (LiMN4L, LiMN4p or LiMN17) decreased bacterial cells adhered to FBSSC and SSC by ≈3–4.5 log units. Phage cocktail reduced the cells on both surfaces (≈3.8–4.5 and 4.6–5.4 log10 CFU/cm2, respectively), to less than detectable levels after ≈75 min (detection limit = 0.9 log10 CFU/cm2). The phage cocktail at ≈5.8, 6.5 and 7.5 log10 PFU/cm2 eliminated Listeria contamination (≈1.5–1.7 log10 CFU/cm2) on SSC in ≈15 min. One-hour phage treatments (LiMN4p, LiMN4L and cocktail) in three consecutive applications resulted in a decrease of 7-day L. monocytogenes biofilms (≈4 log10 CFU/cm2) by ≈2–3 log units. Single phage treatments reduced dislodged biofilm cells of each L. monocytogenes strain by ≈5 log10 CFU/ml in 1 h. The three phages were effective in controlling L. monocytogenes on stainless steel either clean or soiled with fish proteins which is likely to occur in seafood processing environments. Phages were more effective on biofilm cells dislodged from the surface compared with undisturbed biofilm cells. Therefore, for short-term phage treatments of biofilm it should be considered that some disruption of the biofilm cells from the surface prior to phage application will be required.
Collapse
Affiliation(s)
- Geevika J Ganegama Arachchi
- grid.148374.d 0000 0001 0696 9806 Institute of Food Nutrition and Human Health Massey University Albany Campus, North Shore City 0745 Auckland New Zealand
| | - Andrew G Cridge
- grid.29980.3a 0000000419367830 Laboratory for Evolution and Development, Biochemistry Department University of Otago 9054 Dunedin New Zealand
| | | | - Cristina D Cruz
- grid.27859.31 The New Zealand Institute for Plant and Food Research Limited Private Bag 92169 1142 Auckland New Zealand
| | - Lynn McIntyre
- grid.417899.a 0000000121673798 Harper Adams University Edgmond, Newport TF10 8NB Shropshire UK
| | - Rachel Liu
- grid.148374.d 0000 0001 0696 9806 Institute of Food Nutrition and Human Health Massey University Albany Campus, North Shore City 0745 Auckland New Zealand
| | - Steve H Flint
- grid.148374.d 0000 0001 0696 9806 Institute of Food Nutrition and Human Health Massey University Albany Campus, North Shore City 0745 Auckland New Zealand
| | - Anthony N Mutukumira
- grid.148374.d 0000 0001 0696 9806 Institute of Food Nutrition and Human Health Massey University Albany Campus, North Shore City 0745 Auckland New Zealand
| |
Collapse
|
42
|
Hingston PA, Stea EC, Knøchel S, Hansen T. Role of initial contamination levels, biofilm maturity and presence of salt and fat on desiccation survival of Listeria monocytogenes on stainless steel surfaces. Food Microbiol 2013; 36:46-56. [DOI: 10.1016/j.fm.2013.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 11/29/2022]
|
43
|
Salazar JK, Wu Z, Yang W, Freitag NE, Tortorello ML, Wang H, Zhang W. Roles of a novel Crp/Fnr family transcription factor Lmo0753 in soil survival, biofilm production and surface attachment to fresh produce of Listeria monocytogenes. PLoS One 2013; 8:e75736. [PMID: 24066185 PMCID: PMC3774658 DOI: 10.1371/journal.pone.0075736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a foodborne bacterial pathogen and the causative agent of an infectious disease, listeriosis. L. monocytogenes is ubiquitous in nature and has the ability to persist in food processing environments for extended periods of time by forming biofilms and resisting industrial sanitization. Human listeriosis outbreaks are commonly linked to contaminated dairy products, ready-to-eat meats, and in recent years, fresh produce such as lettuce and cantaloupes. We identified a putative Crp/Fnr family transcription factor Lmo0753 that is highly specific to human-associated genetic lineages of L. monocytogenes. Lmo0753 possesses two conserved functional domains similar to the major virulence regulator PrfA in L. monocytogenes. To determine if Lmo0753 is involved in environmental persistence-related mechanisms, we compared lmo0753 deletion mutants with respective wild type and complementation mutants of two fully sequenced L. monocytogenes genetic lineage II strains 10403S and EGDe for the relative ability of growth under different nutrient availability and temperatures, soil survival, biofilm productivity and attachment to select fresh produce surfaces including romaine lettuce leaves and cantaloupe rinds. Our results collectively suggested that Lmo0753 plays an important role in L. monocytogenes biofilm production and attachment to fresh produce, which may contribute to the environmental persistence and recent emergence of this pathogen in human listeriosis outbreaks linked to fresh produce.
Collapse
Affiliation(s)
- Joelle K. Salazar
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois, United States of America
| | - Zhuchun Wu
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois, United States of America
| | - Weixu Yang
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois, United States of America
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Mary Lou Tortorello
- United States Food and Drug Administration, Bedford Park, Illinois, United States of America
| | - Hui Wang
- Food Safety Research Center, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois, United States of America
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
- * E-mail:
| |
Collapse
|
44
|
Abstract
Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. Bacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed by Escherichia coli.
Collapse
|
45
|
Jadhav S, Shah R, Bhave M, Palombo EA. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.05.071] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|