1
|
Abreu DCP, Vargas EA, Oliveira FADS, Uetanabaro APT, Pires PN, Bazzana MJF, Saczk AA. Study of co-occurrence of mycotoxins in cocoa beans in Brazil by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1049-1058. [PMID: 37505626 DOI: 10.1080/19440049.2023.2238838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
In this study, 135 samples of cocoa beans collected in the Amazon and Atlantic Forest regions of Brazil were analysed to evaluate the possible co-occurrence of 34 mycotoxins. The results indicate that 42% of the cocoa samples exhibited quantifiable levels for 11 mycotoxins: aflatoxins (AFs) B1, B2 and G1; ochratoxin A; citrinin; cyclopiazonic acid; tenuazonic acid; paxilline; sterigmatocystin; zearalenone and fumonisin B2. Of the samples, 18% exhibited the co-occurrence of up to six mycotoxins. No toxins belonging to the groups of trichothecenes or ergot alkaloids were detected. Contingency analysis of the incidence of mycotoxins did not show significant differences between the two regions evaluated. Seven samples were contaminated with AFs, while only one contained ochratoxin A above 10 μg kg-1. The accuracy of the method was evaluated by proficiency testing for ochratoxin A, where satisfactory Z-scores were obtained.
Collapse
Affiliation(s)
| | - Eugenia Azevedo Vargas
- Laboratory of Quality Control and Food Safety, National Agricultural Laboratory of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
2
|
Mateo EM, Tarazona A, Jiménez M, Mateo F. Lactic Acid Bacteria as Potential Agents for Biocontrol of Aflatoxigenic and Ochratoxigenic Fungi. Toxins (Basel) 2022; 14:807. [PMID: 36422981 PMCID: PMC9699002 DOI: 10.3390/toxins14110807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Aflatoxins (AF) and ochratoxin A (OTA) are fungal metabolites that have carcinogenic, teratogenic, embryotoxic, genotoxic, neurotoxic, and immunosuppressive effects in humans and animals. The increased consumption of plant-based foods and environmental conditions associated with climate change have intensified the risk of mycotoxin intoxication. This study aimed to investigate the abilities of eleven selected LAB strains to reduce/inhibit the growth of Aspergillus flavus, Aspergillus parasiticus, Aspergillus carbonarius, Aspergillus niger, Aspergillus welwitschiae, Aspergillus steynii, Aspergillus westerdijkiae, and Penicillium verrucosum and AF and OTA production under different temperature regiments. Data were treated by ANOVA, and machine learning (ML) models able to predict the growth inhibition percentage were built, and their performance was compared. All factors LAB strain, fungal species, and temperature significantly affected fungal growth and mycotoxin production. The fungal growth inhibition range was 0-100%. Overall, the most sensitive fungi to LAB treatments were P. verrucosum and A. steynii, while the least sensitive were A. niger and A. welwitschiae. The LAB strains with the highest antifungal activity were Pediococcus pentosaceus (strains S11sMM and M9MM5b). The reduction range for AF was 19.0% (aflatoxin B1)-60.8% (aflatoxin B2) and for OTA, 7.3-100%, depending on the bacterial and fungal strains and temperatures. The LAB strains with the highest anti-AF activity were the three strains of P. pentosaceus and Leuconostoc mesenteroides ssp. dextranicum (T2MM3), and those with the highest anti-OTA activity were Leuconostoc paracasei ssp. paracasei (3T3R1) and L. mesenteroides ssp. dextranicum (T2MM3). The best ML methods in predicting fungal growth inhibition were multilayer perceptron neural networks, followed by random forest. Due to anti-fungal and anti-mycotoxin capacity, the LABs strains used in this study could be good candidates as biocontrol agents against aflatoxigenic and ochratoxigenic fungi and AFL and OTA accumulation.
Collapse
Affiliation(s)
- Eva María Mateo
- Departamento de Microbiología y Ecología, Facultad de Medicina y Odontología, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Andrea Tarazona
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Misericordia Jiménez
- Departamento de Microbiología y Ecología, Facultad de Ciencias Biológicas, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| | - Fernando Mateo
- Departamento de Ingeniería Electrónica, ETSE, Universitat de Valencia, E-46100 Burjasot, Valencia, Spain
| |
Collapse
|
3
|
Enzyme immunoassays for the detection of mycotoxins in plant-based milk alternatives: pitfalls and limitations. Mycotoxin Res 2022; 38:265-274. [PMID: 36053453 PMCID: PMC9587108 DOI: 10.1007/s12550-022-00467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Plant-based milk alternatives (PBMAs) are a potential source of mycotoxin uptake. To ensure food safety, simple and rapid testing methods of PBMAs for mycotoxins are therefore required. This study investigated the applicability of enzyme immunoassay (EIA) methods for direct testing of PBMAs without sample extraction. Mycotoxin analyses included aflatoxin B1 (AFB1), sterigmatocystin (STC), ochratoxin A (OTA), deoxynivalenol (DON), and T-2/HT-2-toxin (T-2/HT-2). It was found that the PBMA matrix negatively affected the EIA to varying degrees, thus affecting the reliability of the results. A dilution of PBMAs of at least 1:8 was necessary to overcome matrix interference. This resulted in calculated detection limits of 0.4 µg/L (AFB1), 2 µg/L (STC), 0.08 µg/L (OTA), 16 µg/L (DON), and 0.4 µg/L (T-2/HT-2). After analysis of 54 PBMA products from German retail stores, positive results in at least one test system were obtained for 23 samples. However, most positive results were near the calculated detection limit. Control analyses of selected samples by LC–MS/MS for AFB1, STC, and OTA qualitatively confirmed the presence of trace amounts of STC in some samples, but quantitative agreement was poor. It was concluded that the high diversity of ingredients used in PBMAs led to a highly variable degree of sample matrix interference even in a 1:8 dilution. Since the use of higher dilutions conflicts with the need to achieve low detection limits, the application of EIA for routine mycotoxin analysis in PBMA for mycotoxins requires further study on the development of a feasible sample preparation method.
Collapse
|
4
|
Delgado-Ospina J, Molina-Hernandez JB, Viteritti E, Maggio F, Fernández-Daza FF, Sciarra P, Serio A, Rossi C, Paparella A, Chaves-López C. Advances in understanding the enzymatic potential and production of ochratoxin A of filamentous fungi isolated from cocoa fermented beans. Food Microbiol 2022; 104:103990. [DOI: 10.1016/j.fm.2022.103990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
|
5
|
The Role of Fungi in the Cocoa Production Chain and the Challenge of Climate Change. J Fungi (Basel) 2021; 7:jof7030202. [PMID: 33802148 PMCID: PMC7999002 DOI: 10.3390/jof7030202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.
Collapse
|
6
|
Filamentous fungi diversity in the natural fermentation of Amazonian cocoa beans and the microbial enzyme activities. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01488-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Frisvad J, Hubka V, Ezekiel C, Hong SB, Nováková A, Chen A, Arzanlou M, Larsen T, Sklenář F, Mahakarnchanakul W, Samson R, Houbraken J. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol 2019; 93:1-63. [PMID: 30108412 PMCID: PMC6080641 DOI: 10.1016/j.simyco.2018.06.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.
Collapse
Affiliation(s)
- J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Rémo, Nigeria
| | - S.-B. Hong
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea
| | - A. Nováková
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - A.J. Chen
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - M. Arzanlou
- Department of Plant Protection, University of Tabriz, Tabriz, Iran
| | - T.O. Larsen
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - W. Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
8
|
The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. Int J Food Microbiol 2019; 301:41-50. [PMID: 31085407 DOI: 10.1016/j.ijfoodmicro.2019.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/12/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022]
Abstract
Fermentation is an essential process step to develop precursor compounds for aroma and flavour characteristics of chocolate, as well as preventing germination of the cocoa bean. Despite the importance of the role of microorganisms during the chocolate production, to date, there are some discrepancies of the "cocobiota" community found during fermentation and the impact of starter culture in fermented cocoa beans. This review provides both a detailed overview of the starter cultures used in fermented cocoa beans and the microbial diversity involved during this process, and an in-depth discussion of the methods used to identify these microorganisms. In this review, we included only published articles from 2008 to 2018 in English language. A total of forty-seven studies contributed to the description of the cocobiota from 13 different countries. In detail, we observed that the most common fermentation method used is the wooden box, followed by heap. Interestingly, 37% of the studies cited in this review did not mention the type of cocoa variety studied. Most of the techniques used to identify the microbiota are fingerprinting based (DGGE); however, few studies have been using next-generation technologies to elucidate the possible functions and interactions among microbes. Our results showed a greater diversity of yeasts if compared with bacterial involved in the fermentation. This review will help researchers seeking to design starter cultures to drive cocoa bean fermentation, and thus achieve a homogenous mass of fermented cocoa beans as well as serve as a guide for assessing methodologies for the identification of microorganisms.
Collapse
|
9
|
Pires PN, Vargas EA, Gomes MB, Vieira CBM, Santos EAD, Bicalho AAC, Silva SDC, Rezende RP, Oliveira ISD, Luz EDMN, Trovatti Uetanabaro AP. Aflatoxins and ochratoxin A: occurrence and contamination levels in cocoa beans from Brazil. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:815-824. [DOI: 10.1080/19440049.2019.1600749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Polyane Novais Pires
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazaré de Andrade, Ilhéus, Bahia, Brazil
| | - Eugênia Azevedo Vargas
- Laboratório de Controle de Qualidade e Segurança Alimentar (LACQSA), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Batista Gomes
- Laboratório de Controle de Qualidade e Segurança Alimentar (LACQSA), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Belo Horizonte, Minas Gerais, Brazil
| | - Caroline Brasil Melo Vieira
- Laboratório de Controle de Qualidade e Segurança Alimentar (LACQSA), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Belo Horizonte, Minas Gerais, Brazil
| | - Eliene Alves dos Santos
- Laboratório de Controle de Qualidade e Segurança Alimentar (LACQSA), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Angélica Cangussu Bicalho
- Laboratório de Controle de Qualidade e Segurança Alimentar (LACQSA), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Belo Horizonte, Minas Gerais, Brazil
| | | | - Rachel Passos Rezende
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazaré de Andrade, Ilhéus, Bahia, Brazil
| | - Idjane Santana De Oliveira
- Centro Acadêmico de Vitória – CAV, Universidade Federal de Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil
| | - Edna Dora Martins Newman Luz
- Centro de Pesquisa do Cacau - CEPEC, Setor de Fitopatologia, Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC), Ilhéus, Bahia, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazaré de Andrade, Ilhéus, Bahia, Brazil
| |
Collapse
|
10
|
Kabak B. Aflatoxins and ochratoxin A in chocolate products in Turkey. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2019; 12:225-230. [PMID: 30961454 DOI: 10.1080/19393210.2019.1601641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This survey describes the occurrence and levels of AFs and OTA in chocolate products consumed in Turkey. A total of 130 samples, including bitter chocolate, milk chocolate and chocolate wafers were analysed for these mycotoxins by high-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD). The values of recovery (81-92%) and precision (RSD < 9%) fulfilled the requirements of EC Regulation No. 401/2006. OTA was the most prevalent mycotoxin, with an incidence of 46.7% in bitter chocolate, 22.8% in milk chocolate and 17.4% in chocolate wafers, ranging from 0.18 to 0.75 μg kg-1. AFs were detected in 13.3% of bitter chocolate, in 19.6% of milk chocolate and in 8.7% of chocolate wafers, in concentrations ranging from 0.15 to 2.04 μg kg-1.
Collapse
Affiliation(s)
- Bulent Kabak
- Faculty of Engineering, Department of Food Engineering, Hitit University, Corum, Turkey
| |
Collapse
|
11
|
Alternative Splicing of the Aflatoxin-Associated Baeyer⁻Villiger Monooxygenase from Aspergillus flavus: Characterisation of MoxY Isoforms. Toxins (Basel) 2018; 10:toxins10120521. [PMID: 30563144 PMCID: PMC6315744 DOI: 10.3390/toxins10120521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 01/24/2023] Open
Abstract
Aflatoxins are carcinogenic mycotoxins that are produced by the filamentous fungus Aspergillus flavus, a contaminant of numerous food crops. Aflatoxins are synthesised via the aflatoxin biosynthesis pathway, with the enzymes involved encoded by the aflatoxin biosynthesis gene cluster. MoxY is a type I Baeyer–Villiger monooxygenase (BVMO), responsible for the conversion of hydroxyversicolorone (HVN) and versicolorone (VN) to versiconal hemiacetal acetate (VHA) and versiconol acetate (VOAc), respectively. Using mRNA data, an intron near the C-terminus was identified that is alternatively spliced, creating two possible MoxY isoforms which exist in vivo, while analysis of the genomic DNA suggests an alternative start codon leading to possible elongation of the N-terminus. These four variants of the moxY gene were recombinantly expressed in Escherichia coli, and their activity evaluated with respect to their natural substrates HVN and VN, as well as surrogate ketone substrates. Activity of the enzyme is absolutely dependent on the additional 22 amino acid residues at the N-terminus. Two MoxY isoforms with alternative C-termini, MoxYAltN and MoxYAltNC, converted HVN and VN, in addition to a range of ketone substrates. Stability and flavin-binding data suggest that MoxYAltN is, most likely, the dominant isoform. MoxYAltNC is generated by intron splicing, in contrast to intron retention, which is the most prevalent type of alternative splicing in ascomycetes. The alternative C-termini did not alter the substrate acceptance profile, or regio- or enantioselectivity of the enzyme, but did significantly affect the solubility and stability.
Collapse
|
12
|
Abstract
This review is mainly centered on beverages obtained from tropical crops, including tea, nut milk, coffee, cocoa, and those prepared from fruits. After considering the epidemiological data found on the matrices above, the focus was given to recent methodological approaches to assess the most relevant mycotoxins. Aspects such as singularities among the mycotoxin and the beverage in which their were found, and the economic effects and repercussions that the mycotoxin-tainted ingredients have on the beverage industry were pointed out. Finally, the burden of their consumption through beverages, including risk and health effects on humans, was addressed as well.
Collapse
|
13
|
Taniwaki MH, Pitt JI, Magan N. Aspergillus species and mycotoxins: occurrence and importance in major food commodities. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Gómez JV, Tarazona A, Mateo-Castro R, Gimeno-Adelantado JV, Jiménez M, Mateo EM. Selected plant essential oils and their main active components, a promising approach to inhibit aflatoxigenic fungi and aflatoxin production in food. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1581-1595. [DOI: 10.1080/19440049.2017.1419287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- José Vicente Gómez
- Microbiology and Ecology Department, University of Valencia, Valencia, Spain
| | - Andrea Tarazona
- Microbiology and Ecology Department, University of Valencia, Valencia, Spain
| | | | | | | | - Eva M. Mateo
- Microbiology Service, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
| |
Collapse
|
15
|
LAMP-based group specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices, and dried fruit using neutral red for visible-light signal detection. Int J Food Microbiol 2017; 266:241-250. [PMID: 29272724 DOI: 10.1016/j.ijfoodmicro.2017.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/10/2023]
Abstract
Aflatoxins can be produced by 21 species within sections Flavi (16 species), Ochraceorosei (2), and Nidulantes (3) of the fungal genus Aspergillus. They pose risks to human and animal health due to high toxicity and carcinogenicity. Detecting aflatoxin producers can help to assess toxicological risks associated with contaminated commodities. Species specific molecular assays (PCR and LAMP) are available for detection of major producers, but fail to detect species of minor importance. To enable rapid and sensitive detection of several aflatoxin producing species in a single analysis, a nor1 gene-specific LAMP assay was developed. Specificity testing showed that among 128 fungal species from 28 genera, 15 aflatoxigenic species in section Flavi were detected, including synonyms of A. flavus and A. parasiticus. No cross reactions were found with other tested species. The detection limit of the assay was 9.03pg of A. parasiticus genomic DNA per reaction. Visual detection of positive LAMP reactions under daylight conditions was facilitated using neutral red to allow unambiguous distinction between positive and negative assay results. Application of the assay to the detection of A. parasiticus conidia revealed a detection limit of 211 conidia per reaction after minimal sample preparation. The usefulness of the assay was demonstrated in the analysis of aflatoxinogenic species in samples of rice, nuts, raisins, dried figs, as well as powdered spices. Comparison of LAMP results with presence/absence of aflatoxins and aflatoxin producing fungi in 50 rice samples showed good correlation between these parameters. Our study suggests that the developed LAMP assay is a rapid, sensitive and user-friendly tool for surveillance and quality control in our food industry.
Collapse
|
16
|
Maciel LF, Felício ALDSM, Miranda LCR, Pires TC, Bispo EDS, Hirooka EY. Aflatoxins and ochratoxin A in different cocoa clones (Theobroma cacao L.) developed in the southern region of Bahia, Brazil. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:134-143. [PMID: 29090642 DOI: 10.1080/19440049.2017.1397293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brazil is the sixth largest producer of cocoa beans in the world, after Côte d'Ivoire, Ghana, Indonesia, Nigeria and Cameroon. The southern region of Bahia stands out as the country's largest producer, accounting for approximately 60% of production. Due to damage caused by infestation of the cocoa crop with the fungus Moniliophthora perniciosa, which causes 'witch's broom disease', research in cocoa beans has led to the cloning of species that are resistant to the disease; however, there is little information about the development of other fungal genera in these clones, such as Aspergillus, which do not represent a phytopathogenicity problem but can grow during the pre-processing of cocoa beans and produce mycotoxins. Thus, the aim of this work was to determine the presence of aflatoxin (AF) and ochratoxin A (OTA) in cocoa clones developed in Brazil. Aflatoxin and ochratoxin A contamination were determined in 130 samples from 13 cocoa clones grown in the south of Bahia by ultra-performance liquid chromatography with a fluorescence detector. The method was evaluated for limit of detection (LOD) (0.05-0.90 μg kg-1), limit of quantification (0.10-2.50 μg kg-1) and recovery (RSD) (89.40-95.80%) for AFB1, AFB2, AFG1, AFG2 and OTA. Aflatoxin contamination was detected in 38% of the samples in the range of <LOD-17.795 μg kg-1, with AFB1 in 25% of the total samples, whereas ochratoxin A was positive in 18% of the samples in the range of <LOD-274.90 μg kg-1.
Collapse
Affiliation(s)
- Leonardo Fonseca Maciel
- a Department of Bromatological Analyses, Pharmacy College , Federal University of Bahia , Salvador , Brazil.,b Department of Food Science and Technology , State University of Londrina , Londrina , Brazil
| | | | | | - Tassia Cavalcante Pires
- a Department of Bromatological Analyses, Pharmacy College , Federal University of Bahia , Salvador , Brazil
| | - Eliete da Silva Bispo
- a Department of Bromatological Analyses, Pharmacy College , Federal University of Bahia , Salvador , Brazil
| | - Elisa Yoko Hirooka
- b Department of Food Science and Technology , State University of Londrina , Londrina , Brazil
| |
Collapse
|
17
|
|
18
|
Mateo EM, Gómez JV, Gimeno-Adelantado JV, Romera D, Mateo-Castro R, Jiménez M. Assessment of azole fungicides as a tool to control growth of Aspergillus flavus and aflatoxin B 1 and B 2 production in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:1039-1051. [PMID: 28349747 DOI: 10.1080/19440049.2017.1310400] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aspergillus flavus is a highly aflatoxin (AF)-producing species infecting maize and other crops. It is dominant in tropical regions, but it is also considered an emerging problem associated with climate change in Europe. The aim of this study was to assess the efficacy of azole fungicides (prochloraz, tebuconazole and a 2:1 (w/w) mixture of prochloraz plus tebuconazole) to control the growth of A. flavus and AF production in yeast-extract-sucrose (YES) agar and in maize kernels under different water activities (aw) and temperatures. Aflatoxins B1 and B2 were determined by LC with fluorescence detection and post-column derivatisation of AFB1. In YES medium and maize grains inoculated with conidia of A. flavus, the growth rate (GR) of the fungus and AFB1 and AFB2 production were significantly influenced by temperature and treatment. In YES medium and maize kernels, optimal temperatures for GR and AF production were 37 and 25°C, respectively. In maize kernels, spore germination was not detected at the combination 37ºC/0.95 aw; however, under these conditions germination was found in YES medium. All fungicides were more effective at 0.99 than 0.95 aw, and at 37 than 25ºC. Fungicides effectiveness was prochloraz > prochloraz plus tebuconazole (2:1) > tebuconazole. AFs were not detected in cultures containing the highest fungicide doses, and only very low AF levels were found in cultures containing 0.1 mg l-1 prochloraz or 5.0 mg l-1 tebuconazole. Azoles proved to be highly efficient in reducing A. flavus growth and AF production, although stimulation of AF production was found under particular conditions and low-dosage treatments. Maize kernels were a more favourable substrate for AF biosynthesis than YES medium. This paper is the first comparative study on the effects of different azole formulations against A. flavus and AF production in a semi-synthetic medium and in maize grain under different environmental conditions.
Collapse
Affiliation(s)
- Eva M Mateo
- a Microbiology and Ecology Department , University of Valencia , Valencia , Spain
| | - José Vicente Gómez
- a Microbiology and Ecology Department , University of Valencia , Valencia , Spain
| | | | - David Romera
- a Microbiology and Ecology Department , University of Valencia , Valencia , Spain
| | - Rufino Mateo-Castro
- b Analytical Chemistry Department , University of Valencia , Valencia , Spain
| | - Misericordia Jiménez
- a Microbiology and Ecology Department , University of Valencia , Valencia , Spain
| |
Collapse
|
19
|
Mateo EM, Gómez JV, Domínguez I, Gimeno-Adelantado JV, Mateo-Castro R, Gavara R, Jiménez M. Impact of bioactive packaging systems based on EVOH films and essential oils in the control of aflatoxigenic fungi and aflatoxin production in maize. Int J Food Microbiol 2017; 254:36-46. [PMID: 28525761 DOI: 10.1016/j.ijfoodmicro.2017.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 01/06/2023]
Abstract
Aspergillus flavus and A. parasiticus are the most common fungal species associated with aflatoxin (AF) contamination of cereals, especially maize, and other agricultural commodities. AFB1, the most frequent and toxic metabolite, is a powerful hepatotoxic, teratogenic and mutagenic compound. Effective strategies to control these fungal species and AFs in food and feed are required. Active packaging film containing essential oils (EO) is one of the most innovative food packaging concepts. In this study, ethylene-vinyl alcohol (EVOH) copolymer films incorporating EO from Origanum vulgare (ORE), Cinnamomum zeylanicum (CIN) or their major active constituents, carvacrol (CAR) and cinnamaldehyde (CINHO), respectively, were developed and assayed to control growth of A. flavus and A. parasiticus and AF production in maize grains under different aw and temperature regimens. EO doses assayed in cultures were in the range 0.25-4.0mg/Petri dish. The factors aw, temperature, type of EVOH-EO film and fungal species significantly influenced the ED50 values of all assayed films. Growth rate (GR) of both species was usually higher at 0.99 than at 0.96 aw and at 37°C than at 25°C. However, the contrary was found with regard to AF production. The order of efficacy of EVOH-EO films to control growth of both species and AF production was EVOH-CINHO>EVOH-CAR>EVOH-ORE>EVOH-CIN. The effective dose (ED50) (mg EO/plate) for EVOH-CINHO and EVOH-CIN films against A. flavus were in the ranges of 0.125 and 2.475-3.500 and against A. parasiticus in the ranges of 0.121-0.133 and 2.275-3.625, respectively. Under the assayed conditions, the ED90 for EVOH-CINHO film were 0.22-0.23mg/plate for both species. It was the most effective bioactive film to control fungal growth (vapour phase) and AF production, regardless of aw and temperature. This is the first study about the impact that interacting environmental conditions and bioactive EVOH-CINHO, EVOH-ORE, EVOH-CIN EVOH-CAR films have on the growth of aflatoxigenic fungi and on AF production in maize grains.
Collapse
Affiliation(s)
- Eva M Mateo
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - José V Gómez
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Irene Domínguez
- Packaging Lab, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Jose V Gimeno-Adelantado
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Rufino Mateo-Castro
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Rafael Gavara
- Packaging Lab, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
20
|
Martins LM, Sant'Ana AS, Iamanaka BT, Berto MI, Pitt JI, Taniwaki MH. Kinetics of aflatoxin degradation during peanut roasting. Food Res Int 2017; 97:178-183. [PMID: 28578039 DOI: 10.1016/j.foodres.2017.03.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 01/22/2023]
Abstract
This study investigated aflatoxin degradation during peanut roasting. First, peanuts contaminated with three initial aflatoxin concentrations (35, 332 and 695μg/kg) were roasted at 180°C for up to 20min. The percentage of aflatoxin degradation after 20min were 55, 64 and 81% for peanuts contaminated with aflatoxin at 35, 332 and 695μg/kg, respectively. This difference was statistically significant (p<0.05), showing that initial concentration influences aflatoxin reduction. Thereafter, peanut samples contaminated with an initial aflatoxin concentration of 85μg/kg were roasted at 160, 180 and 200°C for 5, 10, 15, 20 and 25min, then residual concentrations of aflatoxin were determined. Roasting at 160, 180 and 200°C resulted in an aflatoxin reduction of 61.6, 83.6 and 89.7%, respectively. This study has provided quantitative data reinforcing the fact that roasting alone is not enough to control aflatoxins in peanuts.
Collapse
Affiliation(s)
- Ligia M Martins
- Food Technology Institute - ITAL, Campinas, SP, Brazil; Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | | | - John I Pitt
- CSIRO Agriculture and Food, P.O. Box 52, North Ryde, NSW 1670, Australia
| | | |
Collapse
|
21
|
Udomkun P, Wiredu AN, Nagle M, Bandyopadhyay R, Müller J, Vanlauwe B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Abstract
Among numerous molecular methodologies developed for highly specific identification of filamentous fungi isolates, here we describe restriction digestion analysis of the ITS products as an easy method to identify isolates of filamentous fungi. This technique is a rapid and reliable method appropriate for routine identification of filamentous fungi. This can be used to screen large numbers of isolates from various environments in a short time. The use of different endonucleases allowed generating individual restriction profiles. The individual profiles obtained were combined into composite restriction patterns characteristic of a species. Eleven different genera can be differentiated and among them 41 different species.
Collapse
Affiliation(s)
- Sandrine Rousseaux
- Institut Universitaire de la Vigne et du Vin « Jules Guyot », Université de Bourgogne, BP 27877, 2 Rue Claude Ladrey, Dijon Cedex, 21078, France.
| | - Michèle Guilloux-Bénatier
- Institut Universitaire de la Vigne et du Vin « Jules Guyot », Université de Bourgogne, BP 27877, 2 Rue Claude Ladrey, Dijon Cedex, 21078, France
| |
Collapse
|
23
|
Incidence of Mycotoxins in Local and Branded Samples of Chocolates Marketed in Pakistan. J FOOD QUALITY 2017. [DOI: 10.1155/2017/1947871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present overview was intended to evaluate the degree of total aflatoxins and ochratoxin A contamination in different samples of bitter, dark, milk, and white chocolates marketed in Pakistan. For that exploration, two hundred (n=200) samples of chocolates, 100 branded and 100 local, were analyzed for mycotoxins profile by HPLC-FLD. The outcomes firmly sustained that the majority of the samples were contaminated with aflatoxins and ochratoxin A. The incidence of total aflatoxins and ochratoxin A in branded samples was 83% and 90%, whereas the local samples showed 91% and 97% contamination, respectively. The highest amount of total aflatoxins was found in branded dark chocolates, that is, 2.27 μg/kg, and maximum ochratoxin A level was detected white chocolates (2.06 μg/kg). On average, the local white chocolates and dark chocolates faced the highest level of total aflatoxins (3.35 μg/kg) and ochratoxin A (3.48 μg/kg), respectively. The local samples of chocolates were more contaminated with mycotoxins as compared to branded ones accredited to the lack of quality control and quality assurance during the manufacturing as well as packing processes. In recent years, consumption of chocolate is rapidly increasing especially by young generation, so monitoring of mycotoxin occurrence in them is a matter of great concern and more studies are required to comprehend the production of mycotoxins in these products.
Collapse
|
24
|
Szumski M, Grzywiński D, Prus W, Buszewski B. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. J Chromatogr A 2014; 1364:163-70. [DOI: 10.1016/j.chroma.2014.08.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/01/2014] [Accepted: 08/25/2014] [Indexed: 11/24/2022]
|
25
|
Copetti MV, Iamanaka BT, Pitt JI, Taniwaki MH. Fungi and mycotoxins in cocoa: from farm to chocolate. Int J Food Microbiol 2014; 178:13-20. [PMID: 24667314 DOI: 10.1016/j.ijfoodmicro.2014.02.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 11/16/2022]
Abstract
Cocoa is an important crop, as it is the raw material from which chocolate is manufactured. It is grown mainly in West Africa although significant quantities also come from Asia and Central and South America. Primary processing is carried out on the farm, and the flavour of chocolate starts to develop at that time. Freshly harvested pods are opened, the beans, piled in heaps or wooden boxes, are fermented naturally by yeasts and bacteria, then dried in the sun on wooden platforms or sometimes on cement or on the ground, where a gradual reduction in moisture content inhibits microbial growth. Beans are then bagged and marketed. In processing plants, the dried fermented beans are roasted, shelled and ground, then two distinct processes are used, to produce powdered cocoa or chocolate. Filamentous fungi may contaminate many stages in cocoa processing, and poor practices may have a strong influence on the quality of the beans. Apart from causing spoilage, filamentous fungi may also produce aflatoxins and ochratoxin A. This review deals with the growth of fungal species and formation of mycotoxins during the various steps in cocoa processing, as well as reduction of these contaminants by good processing practices. Methodologies for fungal and mycotoxin detection and quantification are discussed while current data about dietary exposure and regulation are also presented.
Collapse
Affiliation(s)
- Marina V Copetti
- Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil.
| | | | - John I Pitt
- CSIRO Animal, Food and Health Sciences, North Ryde, NSW 2113, Australia
| | - Marta H Taniwaki
- Instituto de Tecnologia de Alimentos, Campinas, SP 13070-178, Brazil
| |
Collapse
|
26
|
Lozano-Ojalvo D, Rodríguez A, Bernáldez V, Córdoba JJ, Rodríguez M. Influence of temperature and substrate conditions on the omt-1 gene expression of Aspergillus parasiticus in relation to its aflatoxin production. Int J Food Microbiol 2013; 166:263-9. [DOI: 10.1016/j.ijfoodmicro.2013.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/29/2022]
|
27
|
Turcotte AM, Scott PM, Tague B. Analysis of cocoa products for ochratoxin A and aflatoxins. Mycotoxin Res 2013; 29:193-201. [PMID: 23564311 PMCID: PMC3712181 DOI: 10.1007/s12550-013-0167-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/18/2022]
Abstract
Eighty-five samples of cocoa products sampled in Canada were analysed for ochratoxin A (OTA) and aflatoxins in 2011–2012. Inclusion of the aflatoxins in this survey required additional method development. Chocolate was extracted with methanol–water plus NaCl, while for cocoa two successive extractions with methanol and methanol–water were made. Extracts were cleaned on an AflaOchra immunoaffinity column (IAC). Determination was by reversed phase high performance liquid chromatography (HPLC). Detection of the aflatoxins was with a post-column photochemical reactor and of OTA by fluorescence detection. Mean limits of quantification (LOQ) of chocolate and cocoa powders were 0.16 ng/g (OTA) and 0.07 ng/g (aflatoxin B1), respectively. Survey results showed that the incidences of OTA above the LOQ in natural cocoa were 15/15 (mean 1.17 ng/g), 20/21 for alkalized cocoa (mean 1.06 ng/g), 9/9 for baking chocolate (mean 0.49 ng/g), 20/20 for dark chocolate (mean 0.39 ng/g), 7/10 for milk chocolate (mean 0.19 ng/g), 5/5 for cocoa liquor (mean 0.43 ng/g), and 0/5 for cocoa butter. These results confirm our previous work with OTA. In the same samples, incidences of aflatoxin B1 above the LOQ were 14/15 for natural cocoa (mean 0.86 ng/g), 20/21 for alkalized cocoa (mean 0.37 ng/g), 7/9 for baking chocolate (mean 0.22 ng/g), 16/20 for dark chocolate (mean 0.19 ng/g), 7/10 for milk chocolate (mean 0.09 ng/g), 4/5 for cocoa liquor (mean 0.43 ng/g), and 0/5 for cocoa butter. Both aflatoxins and OTA were confirmed by HPLC-MS/MS when OTA or aflatoxin levels found were above 2 ng/g in cocoa.
Collapse
|
28
|
Copetti MV, Iamanaka BT, Nester MA, Efraim P, Taniwaki MH. Occurrence of ochratoxin A in cocoa by-products and determination of its reduction during chocolate manufacture. Food Chem 2013; 136:100-4. [DOI: 10.1016/j.foodchem.2012.07.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|
29
|
Copetti MV, Iamanaka BT, Pereira JL, Lemes DP, Nakano F, Taniwaki MH. Co-occurrence of ochratoxin a and aflatoxins in chocolate marketed in Brazil. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.12.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Al-Hmoud N, Ibrahim MA, Al-Rousan H, Alseyah A. The Prevalence of Aflatoxinogenic Aspergillus parasiticus in Jordan. Int J Microbiol 2012; 2012:675361. [PMID: 22606204 PMCID: PMC3347748 DOI: 10.1155/2012/675361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 01/17/2012] [Accepted: 02/23/2012] [Indexed: 11/26/2022] Open
Abstract
Aflatoxins are potent carcinogens and produced by almost all Aspergillus parasiticus isolates and about 35% of Aspergillus flavus isolates. Chemical methods are used for detection of aflatoxins in food and feed. These methods cannot detect aflatoxinogenic fungi in samples, which contain undetectable amounts of aflatoxins. The objective of this research work was to ascertain the importance of molecular and microbiological methods in detection of aflatoxinogenic fungus A. parasiticus in food and feed samples in Jordan. Specific media for the detection of aflatoxins showed the prevalence of A. parasiticus (6-22%) in contaminated food and feed samples. HPLC method confirmed the presence of aflatoxins B1, B2, G1, and G2 in food sample contaminated with A. parasiticus. Primer set OmtBII-F and OmtBII-R amplified DNA fragment of 611 base pairs from genomic DNA of aflatoxinogenic A. parasiticus isolated from food and feed samples but could not amplify DNA fragment of nonaflatoxinogenic A. flavus. The results of this study showed the prevalence of aflatoxinogenic A. parasiticus in food and feed samples in Jordan and give further evidence of suitability of microbiological and molecular methods in detection of aflatoxins, which are reliable low-cost approach to determine food and feed biosafety.
Collapse
Affiliation(s)
- Nisreen Al-Hmoud
- Biosafety Unit, Royal Scientific Society, P.O. Box 1438, Amman 11941, Jordan
- Environmet Management Department, Princess Sumaya University for Technology, P.O. Box 1438, Amman 11941, Jordan
| | - Mohammed A. Ibrahim
- Biosafety Unit, Royal Scientific Society, P.O. Box 1438, Amman 11941, Jordan
- Environmet Management Department, Princess Sumaya University for Technology, P.O. Box 1438, Amman 11941, Jordan
| | - Hiyam Al-Rousan
- Biosafety Unit, Royal Scientific Society, P.O. Box 1438, Amman 11941, Jordan
| | - Abbas Alseyah
- Biosafety Unit, Royal Scientific Society, P.O. Box 1438, Amman 11941, Jordan
| |
Collapse
|
31
|
Copetti MV, Iamanaka BT, Pereira JL, Lemes DP, Nakano F, Taniwaki MH. Determination of aflatoxins in by-products of industrial processing of cocoa beans. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:972-8. [DOI: 10.1080/19440049.2012.660657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Marina V. Copetti
- a Departamento de Tecnologia e Ciência de Alimentos , Universidade Federal de Santa Maria (UFSM) , Santa Maria/RS , Brazil
| | - Beatriz T. Iamanaka
- b Instituto de Tecnologia de Alimentos (ITAL) , Avenida Brasil, 2880 – Vila Nova, Campinas/SP , Brazil
| | - José Luiz Pereira
- c Departamento de Ciência de Alimentos , Universidade Estadual de Campinas (UNICAMP) , Campinas/SP , Brazil
| | - Daniel P. Lemes
- b Instituto de Tecnologia de Alimentos (ITAL) , Avenida Brasil, 2880 – Vila Nova, Campinas/SP , Brazil
| | - Felipe Nakano
- b Instituto de Tecnologia de Alimentos (ITAL) , Avenida Brasil, 2880 – Vila Nova, Campinas/SP , Brazil
| | - Marta H. Taniwaki
- b Instituto de Tecnologia de Alimentos (ITAL) , Avenida Brasil, 2880 – Vila Nova, Campinas/SP , Brazil
| |
Collapse
|
32
|
Copetti MV, Iamanaka BT, Mororó RC, Pereira JL, Frisvad JC, Taniwaki MH. The effect of cocoa fermentation and weak organic acids on growth and ochratoxin A production by Aspergillus species. Int J Food Microbiol 2012; 155:158-64. [PMID: 22349177 DOI: 10.1016/j.ijfoodmicro.2012.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/24/2012] [Accepted: 01/31/2012] [Indexed: 10/14/2022]
Abstract
The acidic characteristics of cocoa beans have influence on flavor development in chocolate. Cocoa cotyledons are not naturally acidic, the acidity comes from organic acids produced by the fermentative microorganisms which grow during the processing of cocoa. Different concentrations of these metabolites can be produced according to the fermentation practices adopted in the farms, which could affect the growth and ochratoxin A production by fungi. This work presents two independent experiments carried out to investigate the effect of some fermentation practices on ochratoxin A production by Aspergillus carbonarius in cocoa, and the effect of weak organic acids such as acetic, lactic and citric at different pH values on growth and ochratoxin A production by A. carbonarius and Aspergillus niger in culture media. A statistical difference (ρ<0.05) in the ochratoxin A level in the cured cocoa beans was observed in some fermentation practices adopted. The laboratorial studies demonstrate the influence of organic acids on fungal growth and ochratoxin A production, with differences according to the media pH and the organic acid present. Acetic acid was the most inhibitory acid against A. carbonarius and A. niger. From the point of view of food safety, considering the amount of ochratoxin A produced, fermentation practices should be conducted towards the enhancement of acetic acid, although lactic and citric acids also have an important role in lowering the pH to improve the toxicity of acetic acid.
Collapse
Affiliation(s)
- Marina V Copetti
- Departamento de Tecnologia e Ciência de Alimentos, Centro de Ciências Rurais-CEP 97105-900, Universidade Federal de Santa Maria-UFSM, Santa Maria, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
Copetti MV, Iamanaka BT, Frisvad JC, Pereira JL, Taniwaki MH. Mycobiota of cocoa: From farm to chocolate. Food Microbiol 2011; 28:1499-504. [DOI: 10.1016/j.fm.2011.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/22/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
|