1
|
Brown SRB, Gensler CA, Sun L, D'Amico DJ. Evaluating the Efficacy of Ɛ-poly-lysine, Hydrogen Peroxide, and Lauric Arginate to Inhibit Listeria monocytogenes Biofilm Formation and Inactivate Mature Biofilms. J Food Prot 2024; 87:100399. [PMID: 39510503 DOI: 10.1016/j.jfp.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Preventing the introduction of Listeria monocytogenes, subsequent biofilm formation, and persistence in food processing environments is important for reducing the risk of cross-contamination of ready-to-eat foods. This study determined the effect of Ɛ-poly-lysine (EPL), hydrogen peroxide (HP), and lauric arginate (LAE) on L. monocytogenes biofilm formation and the inactivation of mature biofilms. For inhibition studies, biofilms of L. monocytogenes Scott A (serotype 4b) and 2014L-6025 (serotype 1/2b) were developed separately at 37 °C for 48 h in the presence of sub-inhibitory concentrations (SIC) of either EPL (10 ppm), HP (2 ppm), or LAE (1.5 ppm) on polystyrene plates and stainless-steel rounds. Inactivation was determined by exposing mature biofilms on each surface to each antimicrobial at their minimum bactericidal concentration (MBC), 10xMBC, or 100xMBC for 24 h at 37 °C. The presence of these antimicrobials at SIC did not inhibit biofilm formation on either surface and their effect on mature biofilms varied by strain and surface. Application of EPL at 1xMBC (100 ppm) for 24 h resulted in greater reductions in counts of both strains on polystyrene than HP (40 ppm) and LAE (5 ppm) under the same conditions at 1xMBC (P ≤ 0.0243). Exposure of mature biofilms to LAE at 10xMBC (50 ppm) for 1 h was more effective in reducing counts on polystyrene than HP at 10xMBC (400 ppm) for the same duration (P ≤ 0.0136), and both HP and LAE applied at 100xMBC (4,000 and 500 ppm, respectively) for 24 h more effectively inactivated mature biofilms of L. monocytogenes Scott A on polystyrene compared to EPL (10,000 ppm) (P ≤ 0.0307). Application of LAE at 10xMBC for 24 h was more effective at inactivating strain Scott A on stainless steel compared to 10xMBC of EPL (1,000 ppm) or HP (P ≤ 0.0430). Future studies are needed to determine the efficacy of these and other antimicrobials on additional strains and serotypes of L. monocytogenes at temperatures relevant to food production and storage.
Collapse
Affiliation(s)
- Stephanie R B Brown
- Dept. of Animal Science, University of Connecticut, 302B Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA
| | - Catherine A Gensler
- Dept. of Animal Science, University of Connecticut, 302B Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA
| | - Lang Sun
- Dept. of Animal Science, University of Connecticut, 302B Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA
| | - Dennis J D'Amico
- Dept. of Animal Science, University of Connecticut, 302B Ag. Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT 06269-4163, USA.
| |
Collapse
|
2
|
Wang L, Dekker M, Heising J, Zhao L, Fogliano V. Food matrix design can influence the antimicrobial activity in the food systems: A narrative review. Crit Rev Food Sci Nutr 2023; 64:8963-8989. [PMID: 37154045 DOI: 10.1080/10408398.2023.2205937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Antimicrobial agents are safe preservatives having the ability to protect foods from microbial spoilage and extend their shelf life. Many factors, including antimicrobials' chemical features, storage environments, delivery methods, and diffusion in foods, can affect their antimicrobial activities. The physical-chemical characteristics of the food itself play an important role in determining the efficacy of antimicrobial agents in foods; however the mechanisms behind it have not been fully explored. This review provides new insights and comprehensive knowledge regarding the impacts of the food matrix, including the food components and food (micro)structures, on the activities of antimicrobial agents. Studies of the last 10 years regarding the influences of the food structure on the effects of antimicrobial agents against the microorganisms' growth were summarized. The mechanisms underpinning the loss of the antimicrobial agents' activity in foods are proposed. Finally, some strategies/technologies to improve the protection of antimicrobial agents in specific food categories are discussed.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Matthijs Dekker
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Jenneke Heising
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Bombelli A, Araya-Cloutier C, Vincken JP, Abee T, den Besten HMW. Impact of food-relevant conditions and food matrix on the efficacy of prenylated isoflavonoids glabridin and 6,8-diprenylgenistein as potential natural preservatives against Listeria monocytogenes. Int J Food Microbiol 2023; 390:110109. [PMID: 36806890 DOI: 10.1016/j.ijfoodmicro.2023.110109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Prenylated isoflavonoids can be extracted from plants of the Leguminosae/Fabaceae family and have shown remarkable antimicrobial activity against Gram-positive food-borne pathogens, such as Listeria monocytogenes. Promising candidates from this class of compounds are glabridin and 6,8-diprenylgenistein. This research aimed to investigate the potential of glabridin and 6,8-diprenylgenistein as food preservatives against L. monocytogenes. Their antimicrobial activity was tested in vitro at various conditions relevant for food application, such as different temperatures (from 10 °C to 37 °C), pH (5 and 7.2), and in the presence or absence of oxygen. The minimum inhibitory concentrations of glabridin and 6,8-diprenylgenistein in vitro were between 0.8 and 12.5 μg/mL in all tested conditions. Growth inhibitory activities were similar at 10 °C compared to higher temperatures, although bactericidal activities decreased when the temperature decreased. Notably, lower pH (pH 5) increased the growth inhibitory and bactericidal activity of the compounds, especially for 6,8-diprenylgenistein. Furthermore, similar antimicrobial efficacies were shown anaerobically compared to aerobically at the tested conditions. Glabridin showed a more stable inhibitory and bactericidal activity when the temperature decreased compared to 6,8-diprenylgenistein. Therefore, we further determined the antimicrobial efficacy of glabridin against L. monocytogenes growth on fresh-cut cantaloupe at 10 °C. In these conditions, concentrations of glabridin of 50, 100 and 250 μg/g significantly reduced the growth of L. monocytogenes compared to the control, resulting on average in >1 Log CFU/g difference after 4 days compared to the control. Our results further underscored the importance of considering the food matrix when assessing the activity of novel antimicrobials. Overall, this study highlights the potential of prenylated isoflavonoids as naturally derived food preservatives.
Collapse
Affiliation(s)
- Alberto Bombelli
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands; Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Carla Araya-Cloutier
- Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Ma Y, Ma Y, Chi L, Wang S, Zhang D, Xiang Q. Lauric arginate ethyl ester: An update on the antimicrobial potential and application in the food systems. Front Microbiol 2023; 14:1125808. [PMID: 36910208 PMCID: PMC9995605 DOI: 10.3389/fmicb.2023.1125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lauric arginate ethyl ester (LAE), a cationic surfactant with low toxicity, displays excellent antimicrobial activity against a broad range of microorganisms. LAE has been approved as generally recognized as safe (GRAS) for widespread application in certain foods at a maximum concentration of 200 ppm. In this context, extensive research has been carried out on the application of LAE in food preservation for improving the microbiological safety and quality characteristics of various food products. This study aims to present a general review of recent research progress on the antimicrobial efficacy of LAE and its application in the food industry. It covers the physicochemical properties, antimicrobial efficacy of LAE, and the underlying mechanism of its action. This review also summarizes the application of LAE in various foods products as well as its influence on the nutritional and sensory properties of such foods. Additionally, the main factors influencing the antimicrobial efficacy of LAE are reviewed in this work, and combination strategies are provided to enhance the antimicrobial potency of LAE. Finally, the concluding remarks and possible recommendations for the future research are also presented in this review. In summary, LAE has the great potential application in the food industry. Overall, the present review intends to improve the application of LAE in food preservation.
Collapse
Affiliation(s)
- Yunfang Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Yanqing Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Lei Chi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Shaodan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Dianhe Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
| |
Collapse
|
5
|
Wang W, Chen YF, Wei ZF, Jiang JJ, Peng JQ, He QT, Xu WY, Liu HM. Microemulsion of Cinnamon Essential Oil Formulated with Tea Polyphenols, Gallic Acid, and Tween 80: Antimicrobial Properties, Stability and Mechanism of Action. Microorganisms 2022; 11:microorganisms11010002. [PMID: 36677295 PMCID: PMC9867123 DOI: 10.3390/microorganisms11010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The objective of this article was to combine tea polyphenols, gallic acid, and cinnamon essential oil to construct a natural extract-complex microemulsion system (NMs) with good antibacterial activity, antioxidant activity, and stability, as well as low irritation. NMs were characterized by particle size distribution, electrical conductivity, and light transmittance. The stability, as well as the antimicrobial, antioxidant, irritation, and antimicrobial mechanisms, of NMs were also studied. The results showed that NMs had a significant antimicrobial function against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus brasiliensis. The minimum inhibitory concentrations were 156 μg/mL, 62.5 μg/mL, 125 μg/mL, 250 μg/mL, and 125 μg/mL, respectively. Through the cell membrane permeability test and growth curve test of bacteria and fungi, we concluded that the NMs' mechanism of action on bacteria and fungi could be interpreted as NMs mainly altering the permeability of cell membranes to inhibit the growth of bacteria and fungi. The results of this study have important implications for utilizing plant extracts as natural preservatives for food and cosmetics.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Yin-Feng Chen
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ze-Feng Wei
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jing-Jing Jiang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia-Qian Peng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qi-Tong He
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wen-Ying Xu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-186-1677-8997
| |
Collapse
|
6
|
Pérez L, García MT, Pinazo A, Pérez-Matas E, Hafidi Z, Bautista E. Cationic Surfactants Based on Arginine-Phenylalanine and Arginine-Tryptophan: Synthesis, Aggregation Behavior, Antimicrobial Activity, and Biodegradation. Pharmaceutics 2022; 14:2602. [PMID: 36559096 PMCID: PMC9784262 DOI: 10.3390/pharmaceutics14122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cationic surfactants have great potential as drug vehicles and for use in gene therapy (cationic vesicles made from cationic surfactants can encapsulate RNA or DNA for cellular transfer). They can also be used as antimicrobial and antifungal agents to treat human infections. In an era of increasing antimicrobial resistance, the development of new biocompatible surfactants suitable for application as antimicrobial agents is of high interest. In this work, a library of amino acid-based surfactants was synthesized, characterized and tested for antimicrobial activity. The head group architecture (number and type of amino acids, density of cationic charge, ionic character) and the hydrophobic moiety (alkyl chain length and position of the hydrophobic group) were systematically modified, and the effect on the surfactant biological and aggregation behavior was studied. Thus, the pKa values, micellization process, antimicrobial efficiency and biodegradability were evaluated. The critical micelle concentration values of the surfactants depended on their hydrophobic character, but changes in the polar head as well as the position and length of the alkyl chain also significantly affected activity against some of the tested microorganisms. Moreover, biodegradability was closely related to the hydrophobic character of the surfactant and attachment of the alkyl chain to the polar head. The structure-activity relationships established here may open perspectives for the design of effective biodegradable antimicrobial materials that can overcome emerging resistance.
Collapse
Affiliation(s)
- Lourdes Pérez
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), c/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Gurtler JB, Garner CM. A Review of Essential Oils as Antimicrobials in Foods with Special Emphasis on Fresh Produce. J Food Prot 2022; 85:1300-1319. [PMID: 35588157 DOI: 10.4315/jfp-22-017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Consumer safety concerns over established fresh produce washing methods and the demand for organic and clean-label food has led to the exploration of novel methods of produce sanitization. Essential oils (EOs), which are extracted from plants, have potential as clean-label sanitizers because they are naturally derived and act as antimicrobials and antioxidants. In this review, the antimicrobial effects of EOs are explored individually and in combination, as emulsions, combined with existing chemical and physical preservation methods, incorporated into films and coatings, and in vapor phase. We examined combinations of EOs with one another, with EO components, with surfactants, and with other preservatives or preservation methods to increase sanitizing efficacy. Components of major EOs were identified, and the chemical mechanisms, potential for antibacterial resistance, and effects on organoleptic properties were examined. Studies have revealed that EOs can be equivalent or better sanitizing agents than chlorine; nevertheless, concentrations must be kept low to avoid adverse sensory effects. For this reason, future studies should address the maximum permissible EO concentrations that do not negatively affect organoleptic properties. This review should be beneficial to food scientists or industry personnel interested in the use of EOs for sanitization and preservation of foods, including fresh produce. HIGHLIGHTS
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| | - Christina M Garner
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| |
Collapse
|
8
|
Takhar SR, Ibarra-Sánchez LA, Miller MJ. Effect of antimicrobial treatments applied individually and in combination on the growth of Listeria monocytogenes in Queso Fresco at 3 different temperatures. JDS COMMUNICATIONS 2022; 3:307-311. [PMID: 36340902 PMCID: PMC9623663 DOI: 10.3168/jdsc.2022-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 12/02/2022]
Abstract
A combination of antimicrobial treatments provides a more effective approach against L. monocytogenes growth in QF. PlyP100 + NIS was the most effective treatment for L. monocytogenes growth in QF. Listeria monocytogenes can grow up to dangerously high levels regardless of the storage temperature in untreated QF. EPL + LAE are good candidates to further evaluate for improving safety of QF during cold storage. Temperature abuse dramatically reduces the effectiveness of the tested antilisterials in QF.
Queso fresco (QF), a fresh soft cheese, is one of the most popular Hispanic cheeses in the United States and is frequently associated with Listeria monocytogenes outbreaks. Listeria monocytogenes can grow and thrive at room temperature as well as refrigeration temperatures. A combination of antimicrobial agents provides a larger spectrum of listeriostatic and listeriocidal activity resulting in a more effective approach toward the control of L. monocytogenes. In this study, we evaluated the efficacy of 3 Food and Drug Administration-approved generally recognized as safe (GRAS) antimicrobials, nisin (NIS), lauric arginate ethyl ester (LAE), and ε-polylysine (EPL), and the endolysin PlyP100 individually and in combination for control of L. monocytogenes in QF at 4°C, 7°C, and 10°C. Additionally, growth curves of L. monocytogenes were obtained in BHI broth and QF at these temperatures. In order for an antimicrobial to be considered a postlethality treatment for L. monocytogenes, it should not allow an increase of more than 2-log over the product's shelf life. Three treatments, PlyP100, PlyP100 + NIS, and EPL + LAE, effectively kept the pathogen below the 2 log growth threshold at 4°C. However, at 7°C and 10°C, none of the antimicrobial treatments could inhibit L. monocytogenes growth (i.e., <2 log). Overall, our results suggest the importance of considering the effect of cold storage temperatures above 4°C on the antilisterial efficacy of antimicrobial treatments in QF.
Collapse
|
9
|
Chen S, Jiang W, Sun Z. Mechanism of fungal inhibition activity of Nα-lauroyl-L-arginine ethyl ester (LAE) and potential in control of Penicillium expansum on postharvest citrus 'Benimadonna' (Citrus reticulata × Citrus sinensis). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4668-4676. [PMID: 35174504 DOI: 10.1002/jsfa.11827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Citrus 'Benimadonna' (Citrus reticulata × Citrus sinensis) is a high-value perishable fruit; thus there is an urgent need for a preservation technology with high effectiveness and low safety risk from industries. Nα-Lauroyl-l-arginine ethyl ester hydrochloride (LAE) was applied to enhance preservability by compounding with natamycin, and a possible fungal inhibition mechanism based on the hypothesis of an impact on the cell membrane by surfactant was investigated. RESULTS In vitro testing showed that the minimum inhibitory concentration of LAE against Penicillium expansum (PE), isolated as the predominant spoilage-inducing fungus, was 32 mg L-1 and it was partially synergistic with natamycin. Subsequent in vivo testing proved the inhibition capacity. During 90 days' refrigerated preservation, spoilage rate was significantly decreased by preharvest spraying versus control without extra taste loss, and LAE showed an alleviating benefit on total pectin loss. Subsequently, electron microscopic imaging and intracellular protein levels of PE exposed to LAE indicated that LAE stress led to increased permeability and decreased cell integrity. Moreover, peroxidase, superoxide dismutase and catalase revealed that LAE enhanced oxidative stress, while pectinase was antagonized. CONCLUSION The present investigation first introduced LAE as a candidate active ingredient for citrus preservative. A theoretical basis was provided for the development of preservation technology for high-value perishable fruit. According to the authors' knowledge this study is the first report on the inhibition mechanism of LAE in terms of oxidative stress. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanqiao Chen
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Wei Jiang
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Zhidong Sun
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| |
Collapse
|
10
|
Hossain MI, Rahaman Mizan MF, Toushik SH, Roy PK, Jahid IK, Park SH, Ha SD. Antibiofilm effect of nisin alone and combined with food-grade oil components (thymol and eugenol) against Listeria monocytogenes cocktail culture on food and food-contact surfaces. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Shin H, Kwon CW, Lee MW, Yu H, Chang PS. Antibacterial characterization of erythorbyl laurate against Geobacillus stearothermophilus spores. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Chen H, Zhong Q. Physical and antimicrobial properties of self-emulsified nanoemulsions containing three synergistic essential oils. Int J Food Microbiol 2022; 365:109557. [DOI: 10.1016/j.ijfoodmicro.2022.109557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
|
13
|
Aminzare M, Moniri R, Hassanzad Azar H, Mehrasbi MR. Evaluation of antioxidant and antibacterial interactions between resveratrol and eugenol in carboxymethyl cellulose biodegradable film. Food Sci Nutr 2022; 10:155-168. [PMID: 35035918 PMCID: PMC8751429 DOI: 10.1002/fsn3.2656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/28/2021] [Indexed: 02/02/2023] Open
Abstract
The aim of present study was to compare the in vitro antioxidant and antibacterial properties of carboxymethyl cellulose (CMC) films containing resveratrol (RES) and eugenol (EUG), alone and in combination, and to calculate the dose interactions between them. At first, the total phenolic content of CMC films was evaluated. Then, their antioxidant and antibacterial effects of films were determined using DPPH, reducing power, disk diffusion, and broth dilution methods. Finally, concentrations of RES and EUG which showed better results in the CMC films were added in combination forms to calculate their antioxidant and antibacterial interactions. The results showed that addition of RES and/or EUG to CMC films increased the total phenolic content, free radicals scavenging activity, reducing power, and antibacterial activities of the films (p ≤ .05). Gram-positive bacteria were more susceptible than Gram-negatives. In addition, the combined use of RES and EUG in CMC films had synergistic antioxidant and antagonistic antibacterial effects. The best results belonged to the film containing RES (8 µg/ml) + EUG (8 mg/ml) (p ≤ .05). Considering the results of the present research, we can utilize CMC biodegradable film containing RES and EUG as a natural active packaging in food industry.
Collapse
Affiliation(s)
- Majid Aminzare
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Roya Moniri
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Hassan Hassanzad Azar
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| | - Mohammad Reza Mehrasbi
- Department of Food Safety and HygieneSchool of Public HealthZanjan University of Medical SciencesZanjanIran
| |
Collapse
|
14
|
Shi D, Shi H. The synergistic antibacterial effect and inhibition of biofilm formation of nisin in combination with terpenes against Listeria monocytogenes. Lett Appl Microbiol 2021; 75:632-642. [PMID: 34953143 DOI: 10.1111/lam.13636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
This study was to investigate the synergistic antibacterial effect and inhibition of biofilm formation of nisin in combination with terpenes (carvacrol, cinnamaldehyde, citral, and thymol) against Listeria monocytogenes. The bactericidal ranking of terpenes combined with nisin was carvacrol > cinnamaldehyde, citral > thymol. The minimum inhibitory concentration assay (MIC) of nisin and carvacrol when used together were determined to be 0.1563 mg/ml + 0.0195 mg/ml (nisin at MIC/2 + carvacrol at MIC/16). The addition of nisin at MIC/2 + carvacrol at MIC/2 caused more decrease in membrane potential than carvacrol or nisin at MIC individually. The decrease rates of hlyA and plcA gene expressions caused by nisin at MIC/2 + carvacrol at MIC/2 were significantly higher than those caused by carvacrol or nisin at MIC individually (P < 0.05). Nisin combined with carvacrol showed the highest inhibition activity to formation of L. monocytogenes biofilm on stainless steel and lettuce. The inhibition effect of nisin at MIC/2 + carvacrol at MIC/16 was significantly higher than that of nisin at MIC/2 and carvacrol at MIC/16 (P < 0.05).
Collapse
Affiliation(s)
- Dongling Shi
- College of Food Science, Southwest University, Chongqing, China, 400715
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing, China, 400715
| |
Collapse
|
15
|
Development of poly(vinyl alcohol)/starch/ethyl lauroyl arginate blend films with enhanced antimicrobial and physical properties for active packaging. Int J Biol Macromol 2021; 192:389-397. [PMID: 34627849 DOI: 10.1016/j.ijbiomac.2021.09.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Active packaging films have emerged as alternatives to replace petroleum-based packaging materials. In this work, poly(vinyl alcohol) (PVA)/starch/ethyl lauroyl arginate (LAE) films possessing enhanced properties were prepared. Scanning electron microscopy (SEM) showed that PVA and starch were compatible, the concentrations of LAE greatly affected the structural integrity. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction showed that the inclusion of LAE did not significantly affect the intermolecular interactions and crystal structures of the polymer matrix. With an increase of the LAE content, the tensile strength (TS) was slightly decreased due to the altered microstructures, the elongation at break (EB) significantly increased ascribed to the synergistic effect of acetic acid, glycerol and LAE. The values of TS and EB were 17.25 MPa and 586.08%, respectively when LAE was 10%. Active films showed good barrier properties from UV while retaining the transmittance in the visible light region. The films containing 1% of LAE exhibited antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), the inhibition zone of bacterial growth gradually expanded with increasing LAE content. This study demonstrates the potential of using LAE as the antibacterial agent for synthesizing natural-based polymeric films for active packaging applications.
Collapse
|
16
|
Effect of chitosan and lauric arginate edible coating on bacteriological quality, deterioration criteria, and sensory attributes of frozen stored chicken meat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Han Q, Yan X, Zhang R, Wang G, Zhang Y. Juglone Inactivates Pseudomonas aeruginosa through Cell Membrane Damage, Biofilm Blockage, and Inhibition of Gene Expression. Molecules 2021; 26:molecules26195854. [PMID: 34641398 PMCID: PMC8510502 DOI: 10.3390/molecules26195854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the strong drug resistance of Pseudomonas aeruginosa (P. aeruginosa), the inhibition effects of conventional disinfectants and antibiotics are not obvious. Juglone extracted from discarded walnut husk, as a kind of plant-derived antimicrobial agent, has the advantages of naturalness, high efficiency, and low residue, with a potential role in the inhibition of P. aeruginosa. This study elucidated the inhibitory effect of juglone on the growth of plankton and the formation of P. aeruginosa biofilm. The results showed that juglone (35 μg/mL) had an irreversible inhibitory effect on P. aeruginosa colony formation (about 107 CFU/mL). The integrity and permeability of the cell membrane were effectively destroyed, accompanied by disorder of the membrane permeability, mass leakage of the cytoplasm, and ATP consumption. Further studies manifested that juglone could induce the abnormal accumulation of ROS in cells and block the formation of the cell membrane. In addition, RT-qPCR showed that juglone could effectively block the expression of five virulence genes and two genes involved in the production of extracellular polymers, thereby reducing the toxicity and infection of P. aeruginosa and preventing the production of extracellular polymers. This study can provide support for the innovation of antibacterial technology toward P. aeruginosa in food.
Collapse
Affiliation(s)
| | | | | | - Guoliang Wang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| | - Youlin Zhang
- Correspondence: (G.W.); (Y.Z.); Tel.: +86-138-1830-0608 (Y.Z.)
| |
Collapse
|
18
|
Xu Y, Hou K, Gao C, Feng X, Cheng W, Wu D, Meng L, Yang Y, Shen X, Zhang Y, Tang X. Characterization of chitosan film with cinnamon essential oil emulsion co-stabilized by ethyl-N α-lauroyl-l-arginate hydrochloride and hydroxypropyl-β-cyclodextrin. Int J Biol Macromol 2021; 188:24-31. [PMID: 34364935 DOI: 10.1016/j.ijbiomac.2021.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
To improve the antimicrobial properties of chitosan films, cinnamon essential oil (CEO) nanoemulsion (1% and 3% v/v CEO) stabilized by ethyl-Nα-lauroyl-l-arginate hydrochloride (LAE) alone or co-stabilized by LAE and hydroxypropyl-β-cyclodextrin (HPCD) were incorporated into chitosan matrix. The micromorphology, physical and antimicrobial properties of the composite films were compared. The dense structure of the CEO nanoemulsion co-stabilized by LAE and HPCD reduced the water vapor permeability and water content. The incorporation of the CEO nanoemulsion co-stabilized by LAE and HPCD, reduced the adverse effects of CEO on the mechanical properties and microstructure of the film, and even slightly increased the tensile strength. In addition, the antimicrobial properties of chitosan films were enhanced due to the encapsulation and emulsification effect of HPCD and LAE on CEO. This work indicated that the prepared chitosan based edible films had the potential to be used in the field of food packaging to improve food safety.
Collapse
Affiliation(s)
- Yaoyao Xu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Kehong Hou
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weiwei Cheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuling Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
19
|
Shen X, Cong J, Mugendi J, Hanrahan I, Zhu MJ. Synergistic Effects of Lauric Arginate and Peracetic Acid in Reducing Listeria monocytogenes on Fresh Apples. Front Microbiol 2021; 12:641034. [PMID: 34220734 PMCID: PMC8249811 DOI: 10.3389/fmicb.2021.641034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Apples are naturally coated with a water-repelling hydrophobic wax layer, which may limit the antimicrobial efficacies of surface sanitizer solutions. Lauric arginate (LAE) is a cationic surfactant with antimicrobial efficacy against Listeria monocytogenes. In this study, we investigated the antimicrobial and the wettability effects of LAE in enhancing anti-L. monocytogenes efficacy of peracetic acid (PAA) and further verified the optimized treatment combinations in a pilot spray-bar brush bed system. Apples after 48 h of inoculation were treated with PAA surface sanitation in combination with different concentrations of LAE at 22 or 46°C. The effectiveness of PAA with LAE solutions in decontaminating L. monocytogenes significantly increased with the increased concentration of PAA (60-80 ppm) or LAE (0.01-0.05%) or the treatment temperature (from 22 to 46°C). A 30-120-sec wash by 80 ppm PAA with 0.01 and 0.05% LAE at 22°C reduced L. monocytogenes on apples by 2.10-2.25 and 2.48-2.58 log10 CFU/apple, respectively. Including LAE in the PAA solution decreased contact angles on apple surfaces. However, the increased wettability of the sanitizer solution may not be the main contributor to the enhanced antimicrobial efficacy of the PAA solution, given that the addition of Tween 80 or Tween 85 only slightly boosted the anti-L. monocytogenes efficacy of PAA solutions though both increased the wettability of the PAA solutions. The synergistic effects of PAA and LAE were further validated in a pilot spray-bar brush bed packing system, where a 30-sec spray wash with 80 ppm PAA and 0.05% LAE at 22 and 46°C caused 1.68 and 2.08 log reduction of Listeria on fresh apples, respectively. This study provides an improved PAA process/preventive strategy for ensuring microbial food safety of fresh apples that is applicable to commercial apple packing lines.
Collapse
Affiliation(s)
- Xiaoye Shen
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Jian Cong
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Joshua Mugendi
- School of Food Science, Washington State University, Pullman, WA, United States
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States
| |
Collapse
|
20
|
Tantala J, Rachtanapun P, Rachtanapun C. Synergistic Antimicrobial Activities of Thai Household Essential Oils in Chitosan Film. Polymers (Basel) 2021; 13:polym13091519. [PMID: 34065089 PMCID: PMC8125964 DOI: 10.3390/polym13091519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Foodborne pathogens mostly contaminate ready-to-eat (RTE) meat products by post-process contamination and cause foodborne disease outbreaks. Preventing post-process contamination and controlling microbial growth during storage by packing the RTE meats with active antimicrobial film from chitosan combined with the synergism of Thai household essential oils was investigated. Here, we analyzed antimicrobial activity and mechanical properties of chitosan films incorporated with essential oil of fingerroot (EOF) and holy basil (EOH) based on their fractional inhibitory concentration and isobolograms. We showed that antimicrobial activities of chitosan film and chitosan films formulated with EOF:EOH displayed a dramatical reduction of Listeria monocytogenes Scott A concentration by 7 Log in 12 h. Chitosan film incorporated with EOF:EOH at ratio 0.04:0.04% v/v/w strongly retarded growth of total viable count of L. monocytogenes on vacuum-packed bologna slices during seven days of storage at 4 and 10 °C. Combined EOF and EOH added to chitosan films did not alter thickness, elongation (%) and colors (L*, a* and b*) of the chitosan film, but it increased water vapor transmission rate and decreased film tensile strength. Results suggested that chitosan film had strong antibacterial properties. Its effectiveness in inhibiting foodborne pathogenic bacteria in ready-to-eat meat products was enhanced by adding a combination of EOF:EOH.
Collapse
Affiliation(s)
- Juthamas Tantala
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand;
- Center for Advanced Studied Agriculture and Food, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2562-5000 (ext. 5206)
| |
Collapse
|
21
|
Ethyl Lauroyl Arginate (LAE): Antimicrobial Activity of LAE-Coated Film for the Packaging of Raw Beef and Pork. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6643717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the antimicrobial activity of an ethyl lauroyl arginate- (LAE®-) coated film applied to the packaging of raw beef and pork was evaluated. Two different trials were performed for each meat species, aiming to evaluate the functionality of the film in contrasting the development of the natural microflora and of a specific target agent, Escherichia coli ATCC 25922. In the first trial, LAE-coated packaging was applied to test its activity towards the natural meat microflora over a period of 24 days at 6-7°C. The comparison with the control sample series showed a slight initial inhibitory activity on total viable count, followed by a growing trend. In the second trial, the antimicrobial activity of the LAE-coated film was evaluated on raw beef and pork voluntarily inoculated with Escherichia coli: an initial killing effect on E. coli was detected in both pork and beef meat (reduction around 0.7 and 1 log CFU/g, respectively), followed by a stable trend for the following storage period (24 days).
Collapse
|
22
|
Xu B, Fu J, Zhu L, Li Z, Jin M, Wang Y. Overall assessment of antibiotic substitutes for pigs: a set of meta-analyses. J Anim Sci Biotechnol 2021; 12:3. [PMID: 33413687 PMCID: PMC7792336 DOI: 10.1186/s40104-020-00534-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023] Open
Abstract
Background Antibiotic growth promoters are widely used to improve weight gain. However, the abuse of antibiotics can have many negative effects on people. Developing alternatives to antibiotics is an urgent need in livestock production. We aimed to perform a meta-analysis and network meta-analysis (NMA) to investigate the effects of feed additives as potential antibiotic substitutes (ASs) on bacteriostasis, growth performance, intestinal morphology and immunity. Furthermore, the primary, secondary, and tertiary ASs were defined by comparing their results with the results of antibiotics. Results Among 16,309 identified studies, 37 were summarized to study the bacteriostasis effects of feed additives, and 89 were included in the meta-analysis and NMA (10,228 pigs). We summarized 268 associations of 57 interventions with 32 bacteria. The order of bacteriostasis effects was as follows: antimicrobial peptides (AMPs) ≈ antibiotics>organic acids>plant extracts>oligosaccharides. We detected associations of 11 feed additives and 11 outcomes. Compared with a basal diet, plant extract, AMPs, probiotics, microelements, organic acids, bacteriophages, lysozyme, zymin, and oligosaccharides significantly improved growth performance (P < 0.05); organic acids, probiotics, microelements, lysozyme, and AMPs remarkably increased the villus height:crypt depth ratio (V/C) (P < 0.05); and plant extracts, zymin, microelements, probiotics, and organic acids notably improved immunity (P < 0.05). The optimal AMP, bacteriophage, lysozyme, microelements, oligosaccharides, organic acids, plants, plant extracts, probiotics, and zymin doses were 0.100%, 0.150%, 0.012%, 0.010%, 0.050%, 0.750%, 0.20%, 0.040%, 0.180%, and 0.100%, respectively. Compared with antibiotics, all investigated feed additives exhibited no significant difference in effects on growth performance, IgG, and diarrhoea index/rate (P > 0.05); AMPs and microelements significantly increased V/C (P < 0.05); and zymin significantly improved lymphocyte levels (P < 0.05). Furthermore, linear weighting sum models were used to comprehensively estimate the overall impact of each feed additive on pig growth and health. Conclusions Our findings suggest that AMPs and plant extracts can be used as primary ASs for weaned piglets and growing pigs, respectively. Bacteriophages, zymin, plants, probiotics, oligosaccharides, lysozyme, and microelements can be regarded as secondary ASs. Nucleotides and organic acids can be considered as tertiary ASs. Future studies should further assess the alternative effects of combinational feed additives.
Collapse
Affiliation(s)
- Bocheng Xu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Jie Fu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Luoyi Zhu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Zhi Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed of Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, People's Republic of China.
| |
Collapse
|
23
|
Almasi L, Radi M, Amiri S, Torri L. Fully dilutable Thymus vulgaris essential oil:acetic or propionic acid microemulsions are potent fruit disinfecting solutions. Food Chem 2020; 343:128411. [PMID: 33131952 DOI: 10.1016/j.foodchem.2020.128411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022]
Abstract
The aim of this study was to evaluate the effect of acetic (AA) or propionic (PA) acid as a cosurfactant on the microemulsion (ME) characteristics of Thymus vulgaris essential oil (TVO). The results showed that addition of propylene glycol to TVO/AA or PA:T80/water MEs gave dilutable systems with particles ~59 nm in diameter. Plain TVO showed the highest antimicrobial activity against E. coli, S. aureus, and S. typhi in in vitro antimicrobial tests, followed closely by AA/PA-MEs. The antimicrobial activity of AA/PA-MEs used as a washing solution on cucumber and strawberry samples was remarkably greater than those of free TVO, TVO nanoemulsions, and chlorhexidine solutions against E. coli and S. aureus. The sensory properties of the samples were not changed by the use of AA/PA-MEs at 0.05 or 0.1% TVO. The results introduce dilutable TVO:AA/PA-MEs for incorporation of TVO in aqueous systems for use as a fruit/vegetable disinfecting agent.
Collapse
Affiliation(s)
- Laleh Almasi
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| | - Mohsen Radi
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| | - Sedigheh Amiri
- Department of Food Science and Technology, Yasooj Branch, Islamic Azad University, Yasooj, Iran; Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| | - Luisa Torri
- University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, 12042 Pollenzo-Bra, Italy.
| |
Collapse
|
24
|
Bhat PA, Nazir N, Chat OA, Dar AA. Exploiting self-assembled soft systems based on surfactants, biopolymers and their mixtures for inhibition of Citral degradation under harsh acidic Conditions. Food Chem 2020; 340:128168. [PMID: 33011467 DOI: 10.1016/j.foodchem.2020.128168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/06/2023]
Abstract
The chemical instability of Citral in acidic conditions is viewed as hurdle to commercialize it in food/beverage industries. We attempted to stabilize citral in various single and mixed surfactant systems at pH 1.0 and temperature 25 °C. The study highlights the importance of amount and density of positive charge of cationic surfactants and oxyethylene content of nonionic surfactants at the interface of self-assembly in inhibiting citral degradation. The hybrid of Chitosan and P123 showed a significant increase in the half-life of citral compared to that in its individual components. The results of the study suggest that it is possible to stabilize citral in strong acidic environs having a pH as low as 1.0 using mixed surfactant or polymer-amphiphile systems with significant positive charge/number of oxyethylene in their single components. Such polymer-surfactant systems formulations if biocompatible/food grade may act as promising media to enhance shelf life of citral.
Collapse
Affiliation(s)
- Parvaiz Ahmad Bhat
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India; Department of Chemistry, Government Degree College Pulwama 192301, J&K, India
| | - Nighat Nazir
- Department of Chemistry, Islamia College of Science and Commerce, Hawal, Srinagar 190002, J&K, India
| | - Oyais Ahmad Chat
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India; Department of Chemistry, Government Degree College Pulwama 192301, J&K, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Department of Chemistry, University of Kashmir, Srinagar 190006, J&K, India.
| |
Collapse
|
25
|
Cho TJ, Park SM, Yu H, Seo GH, Kim HW, Kim SA, Rhee MS. Recent Advances in the Application of Antibacterial Complexes Using Essential Oils. Molecules 2020; 25:molecules25071752. [PMID: 32290228 PMCID: PMC7181228 DOI: 10.3390/molecules25071752] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Although antibacterial spectrum of essential oils (EOs) has been analyzed along with consumers’ needs on natural biocides, singular treatments generally require high concentration of EOs and long-term exposures to eliminate target bacteria. To overcome these limitations, antibacterial complex has been developed and this review analyzed previous reports regarding the combined antibacterial effects of EOs. Since unexpectable combined effects (synergism or antagonism) can be derived from the treatment of antibacterial complex, synergistic and antagonistic combinations have been identified to improve the treatment efficiency and to avoid the overestimation of bactericidal efficacy, respectively. Although antibacterial mechanism of EOs is not yet clearly revealed, mode of action regarding synergistic effects especially for the elimination of pathogens by using low quantity of EOs with short-term exposure was reported. Whereas comprehensive analysis on previous literatures for EO-based disinfectant products implies that the composition of constituents in antibacterial complexes is variable and thus analyzing the impact of constituting substances (e.g., surfactant, emulsifier) on antibacterial effects is further needed. This review provides practical information regarding advances in the EO-based combined treatment technologies and highlights the importance of following researches on the interaction of constituents in antibacterial complex to clarify the mechanisms of antibacterial synergism and/or antagonism.
Collapse
Affiliation(s)
- Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, 2511, Sejong-ro, Sejong 30019, Korea;
| | - Sun Min Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
| | - Hary Yu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
| | - Go Hun Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
| | - Hye Won Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
| | - Sun Ae Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.M.P.); (H.Y.); (G.H.S.); (H.W.K.)
- Correspondence: ; Tel.: +82-2-3290-3058
| |
Collapse
|
26
|
Loeffler M, Schwab V, Terjung N, Weiss J, McClements DJ. Influence of Protein Type on the Antimicrobial Activity of LAE Alone or in Combination with Methylparaben. Foods 2020; 9:E270. [PMID: 32131440 PMCID: PMC7143257 DOI: 10.3390/foods9030270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 11/25/2022] Open
Abstract
The cationic surfactant Lauric arginate (LAE) has gained approval for utilization in meat products (limit: 200 mg/kg). However, as for other antimicrobials, its activity is reduced when applied to complex food matrices. The current study therefore aims to better understand protein-antimicrobial agent-interactions and their influence on the antimicrobial activity of (i) LAE and (ii) methylparaben against Listeria innocua and Pseudomonas fluorescens in defined model systems (pH 6). Antimicrobials were utilized alone or in combination with nutrient broth containing either no protein or 2% bovine serum albumin, whey protein isolate, or soy protein hydrolysate. LAE was found to form complexes with all proteins due to electrostatic attraction, determined using microelectrophoretic and turbidity measurements. Minimal lethal concentrations of LAE were remarkably increased (4-13 fold) in the presence of proteins, with globular proteins having the strongest impact. Combinations of LAE (0-200 µg/mL) with the less structure-sensitive component methylparaben (approved concentration 0.1%) remarkably decreased the concentrations of LAE needed to strongly inhibit or even kill both, L. innocua and P. fluorescens in the presence of proteins. The study highlights the importance of ingredient interactions impacting microbial activity that are often not taken into account when examining antimicrobial components having different structure sensitivities.
Collapse
Affiliation(s)
- Myriam Loeffler
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; (M.L.); (V.S.); (N.T.); (J.W.)
| | - Verena Schwab
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; (M.L.); (V.S.); (N.T.); (J.W.)
| | - Nino Terjung
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; (M.L.); (V.S.); (N.T.); (J.W.)
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany; (M.L.); (V.S.); (N.T.); (J.W.)
| | | |
Collapse
|
27
|
Ma Q, Davidson PM, Zhong Q. Properties and potential food applications of lauric arginate as a cationic antimicrobial. Int J Food Microbiol 2020; 315:108417. [DOI: 10.1016/j.ijfoodmicro.2019.108417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 11/28/2022]
|
28
|
Wu D, Lu J, Zhong S, Schwarz P, Chen B, Rao J. Influence of nonionic and ionic surfactants on the antifungal and mycotoxin inhibitory efficacy of cinnamon oil nanoemulsions. Food Funct 2019; 10:2817-2827. [PMID: 31049507 DOI: 10.1039/c9fo00470j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The influence of ionic surfactants (cationic surfactant lauric arginate and anionic surfactant lysolecithin) on the physical properties, antifungal and mycotoxin inhibitory efficacy of Tween 80 stabilized cinnamon oil-in-water nanoemulsions was investigated. Nanoemulsion droplets of similar particle diameter (∼100 nm), but variable electrical characteristics, were formed by mixing 0.1 wt% ionic surfactant with 0.9 wt% Tween 80 before homogenization. The nanoemulsions were physically stable over 28 days at 23 °C. The antifungal activity (against mycelial growth and spore germination) and mycotoxin inhibitory activity of cinnamon oil nanoemulsions bearing positive, neutral, and negative charge surface was then evaluated against two chemotypes of Fusarium graminearum. In general, the cinnamon oil played a decisive role in the resulting antifungal and mycotoxin inhibitory activities. The surfactant charge had a limited impact on the antifungal mycotoxin inhibitory activities of cinnamon oil in the nanoemulsions. Both ionic surfactant-based cinnamon oil nanoemulsions showed greater activity in inhibiting mycelial growth and mycotoxin production of F. graminearum than those based on Tween 80. Treatment of mycelium with cinnamon oil nanoemulsions resulted in the loss of cytoplasm from fungal hyphae, and accounted for the antifungal action. These results have important implications for the design of essential oil based nanoemulsions as effective antifungal delivery systems in foods.
Collapse
Affiliation(s)
- Dianhui Wu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Synergistic Antimicrobial Activity by Light or Thermal Treatment and Lauric Arginate: Membrane Damage and Oxidative Stress. Appl Environ Microbiol 2019; 85:AEM.01033-19. [PMID: 31253679 DOI: 10.1128/aem.01033-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022] Open
Abstract
The need for more effective antimicrobials is critical for the food industry to improve food safety and reduce spoilage of minimally processed foods. The present study was initiated to develop an efficient and novel antimicrobial approach which combines physical treatments (UV-A or mild heat) and generally recognized as safe lauroyl arginate ethyl (LAE) to inactivate surrogate strains, including Escherichia coli and Listeria innocua Synergistic inactivation of bacteria resulted in an ∼6-log reduction of target bacteria, while individual treatments resulted in <1.5-log inactivation under the same set of conditions. In addition, the synergistic mechanism between LAE and UV-A/mild heat was evaluated by supplementing with a variety of antioxidants for suppressing oxidative stress and measurement of cell membrane damage by nucleic acid release. These results demonstrate that the synergistic antimicrobial activity of LAE and mild physical stresses was suppressed by supplementation with antioxidants. The research also compared LAE with another membrane-targeting lipopeptide antimicrobial agent, polymyxin B, to understand the uniqueness of LAE-induced synergy. Briefly, differences in modes of action between LAE and polymyxin B were characterized by comparing the MIC, damage to liposomes, and oxidative stress generation. These differences in the mode of action between LAE and polymyxin B suggested that both compounds target cell membrane but significantly differ in mechanisms, including membrane disruption and oxidative stress generation. Overall, this study illustrates synergistic antimicrobial activity of LAE with light or mild heat and indicates a novel oxidative stress pathway that enhances the activity of LAE beyond membrane damage.IMPORTANCE This study highlights an effective antimicrobial processing approach using a novel combination of lauroyl arginate ethyl (LAE) and two different physical treatments, light (UV-A) and mild heat. Both combinations demonstrated synergistic inactivation against a model Gram-negative bacterium or a Gram-positive bacterium or both by a >5-log reduction. Further mechanistic study revealed that oxidative stress is responsible for synergistic inactivation between LAE and UV-A, while both membrane damage and oxidative stress are responsible for the synergistic combination between LAE and mild heat. The mode of action of LAE was further compared to that of polymyxin B and analyzed using artificial membrane model systems and the addition of antioxidants. The proposed combination of LAE and common physical treatments may improve food preservation, food safety, and current sanitation processes for the food industry and the inactivation of pathogenic strains in biomedical environments.
Collapse
|
30
|
|
31
|
Villarreal-Lara R, Rodríguez-Sánchez DG, Díaz De La Garza RI, García-Cruz MI, Castillo A, Pacheco A, Hernández-Brenes C. Purified avocado seed acetogenins: Antimicrobial spectrum and complete inhibition of Listeria monocytogenes in a refrigerated food matrix. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1575908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Raúl Villarreal-Lara
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N.L., México
| | | | | | | | - Alejandro Castillo
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, N.L., México
| | | |
Collapse
|
32
|
Liu H, Zhao H, Lyu L, Huang Z, Fan S, Wu W, Li W. Synergistic effect of natural antifungal agents for postharvest diseases of blackberry fruits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3343-3349. [PMID: 30578531 DOI: 10.1002/jsfa.9551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Blackberry postharvest diseases are caused by fungal pathogens, and treatment of fruits with edible, natural products could reduce the postharvest losses and contribute to food sustainability. Based on the hypothesis that inhibition of fungal pathogens will significantly extend the shelf-life of food products, the effects of natural antifungal agents on fungal pathogens were tested. RESULTS Two pathogenic fungal isolates, Aspergillus japonicus and Gilbertella persicaria, from infected blackberry fruits were identified morphologically using scanning electron microscopy and confirmed by DNA sequence analysis. The inhibitory effects and synergistic action of natural antifungal agents against the two fungal isolates were investigated. The results obtained demonstrated that the natamycin, chitosan and ferulic acid exhibited significant antifungal activities against the tested strains based on the calculated minimum inhibitory concentration. The best antifungal activity was obtained using a combination of ferulic acid and natamycin, which generated a total synergistic effect on both tested strains with a fractional inhibitory concentration index of 0.281. Application of the selected agents on postharvest blackberry fruits reduced the rot ratio and weight loss and also increased fruit firmness. In addition, the shelf-life of fresh blackberry fruits was extended up to 12-15 days at 4 °C and 90 ± 5% relative humidity. CONCLUSION The combined utilization of ferulic acid and natamycin showed synergistic antifungal activity against two pathogenic fungal isolates, and extended the shelf life of fresh blackberry fruits up to 12-15 days. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongxia Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Huifang Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Zhengjin Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sufan Fan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Weilin Li
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
33
|
Michael P, Hansen E, Isaksson J, Andersen JH, Hansen KØ. Dendrobeaniamine A, a new alkaloid from the Arctic marine bryozoan Dendrobeania murrayana. Nat Prod Res 2019; 34:2059-2064. [PMID: 30784299 DOI: 10.1080/14786419.2019.1574788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The new guanidine alkaloid Dendrobeaniamine A (1) was isolated from the organic extract of the Arctic marine bryozoan Dendrobeania murrayana. The chemical structure of 1 was elucidated by spectroscopic experiments, including 1D and 2D NMR and HRESIMS analysis. Compound 1 is a lipoamino acid, consisting of a C12 fatty acid anchored to the amino acid arginine. The bioactivity of 1 was evaluated using cellular and biochemical assays, but the compound did not show cytotoxic, antimicrobial, anti-inflammatory or antioxidant activities.
Collapse
Affiliation(s)
- Priyanka Michael
- Marbio UiT-The Arctic University of Norway, Breivika, Tromsø, Norway
| | - Espen Hansen
- Marbio UiT-The Arctic University of Norway, Breivika, Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, UiT-The Arctic University of Norway, Breivika, Tromsø, Norway
| | | | - Kine Ø Hansen
- Marbio UiT-The Arctic University of Norway, Breivika, Tromsø, Norway
| |
Collapse
|
34
|
Bechstein DV, Popp J, Sudhaus-Joern N, Krischek C. Effect of ethyl-lauroyl-arginate hypochloride in combination with high hydrostatic pressure processing on the microbial load and physico-chemical characteristics of minced and portioned chicken breast meat. Poult Sci 2019; 98:966-976. [DOI: 10.3382/ps/pey427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
|
35
|
Zhang D, Gao X, Song X, Zhou W, Hong W, Tian C, Liu Y, Liu M. Luteolin Showed a Resistance Elimination Effect on Gentamicin by Decreasing MATE mRNA Expression in Trueperella pyogenes. Microb Drug Resist 2018; 25:619-626. [PMID: 30431396 DOI: 10.1089/mdr.2018.0097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Trueperella pyogenes is a common inhabitant of mucosal surfaces in animals and causes a variety of infections, including endometritis, mastitis, and liver abscessation, in dairy cows. Many antimicrobial agents are used for treatment of infections caused by T. pyogenes; however, antibiotic resistance has recently become a serious problem. The objective of this study was to characterize the effect of the efflux pump-encoding multidrug and toxic compound extrusion (MATE) gene on antibiotic resistance in T. pyogenes isolates from cows with signs of endometritis. As a compound from plants, luteolin showed antimicrobial activities in Escherichia coli and Staphylococcus aureus; therefore, we also investigated whether luteolin can eliminate antibiotic resistance. We constructed a MATE deletion mutant in BM-H06-3 to identify the function of MATE in antibiotic resistance. MATE mRNA expression was measured to identify the mechanism of luteolin in gentamicin resistance elimination effect in T. pyogenes. The T. pyogenes isolate BM-H06-3 became susceptible to gentamicin, amikacin, streptomycin, erythromycin, and roxithromycin after MATE deletion. No synergistic effect between luteolin and gentamicin was observed in eight isolates, which were randomly selected from 34 T. pyogenes isolates, but the isolates became susceptible to gentamicin after luteolin treatment at a subinhibitory concentration (1/4 minimum inhibitory concentration [MIC]) for 36 hr. Furthermore, luteolin can decrease MATE mRNA expression after luteolin treatment at a subinhibitory concentration (1/4 MIC). We found that the MATE gene was involved in antibiotic resistance and that luteolin induces a resistance elimination effect in T. pyogenes. Therefore, luteolin may be a potential agent to inhibit efflux pumps in multidrug-resistant T. pyogenes.
Collapse
Affiliation(s)
- Dexian Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Xiang Gao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Xuejiao Song
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Wei Zhou
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Wei Hong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Chunlian Tian
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yaochuan Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Mingchun Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
36
|
Ben Jemaa M, Falleh H, Saada M, Oueslati M, Snoussi M, Ksouri R. Thymus capitatus essential oil ameliorates pasteurization efficiency. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:3446-3452. [PMID: 30150803 PMCID: PMC6098768 DOI: 10.1007/s13197-018-3261-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 02/01/2023]
Abstract
This work aims to characterize Thymus capitatus essential oil and to investigate its preservative effects on raw milk quality alone or combined to pasteurization heat treatment. To study its preservative effect, 1 mg l-1 of T. capitatus essential oil, characterized by GC-MS, was added to pasteurized or raw milk. The evaluation of milk quality was made by consulting samples total acidities, peroxide values and their total microbial counts, as compared to control milks. Assays were made immediately and after every 48 h of incubation at room temperature throughout 6 days. Results showed that the incorporation of T. capitatus EO to pasteurized milk was the most efficient treatment that inhibited milk deterioration. Combining pasteurization to EO incorporation into raw milk inhibited completely the contaminant bacterial growth to the second day of incubation. Moreover, until the fourth day, no statistical differences have been recorded on the total acidity of incorporated and pasteurized milk samples, while raw milk acidity exceeded 55 g of lactic acid equivalent l-1. Considering milk fat oxidation, adding T. capitatus EO to pasteurized milk has significantly retarded milk peroxide production to day 4. In conclusion, Thymus capitatus essential oil, combined to pasteurization, presents an interesting potency to act as milk stabilizer.
Collapse
Affiliation(s)
- Mariem Ben Jemaa
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Hanen Falleh
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Mariem Saada
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Manel Oueslati
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Mejdi Snoussi
- Laboratoire de Traitement et de Recyclage des Eaux, Centre de Recherches et des Technologies des Eaux (CRTE), Technopole de Borj-Cédria, BP 273, 8020 Soliman, Tunisia
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
37
|
Growth of Listeria monocytogenes in pasteurized vanilla cream pudding as affected by storage temperature and the presence of cinnamon extract. Food Res Int 2018; 106:1114-1122. [DOI: 10.1016/j.foodres.2017.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/30/2017] [Accepted: 11/19/2017] [Indexed: 11/24/2022]
|
38
|
Antibacterial Films Made of Ionic Complexes of Poly(γ-glutamic acid) and Ethyl Lauroyl Arginate. Polymers (Basel) 2017; 10:polym10010021. [PMID: 30966055 PMCID: PMC6414889 DOI: 10.3390/polym10010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022] Open
Abstract
The biocide agent LAE (ethyl αN-lauroyl l-arginate chloride) was coupled with poly(γ-glutamic acid) (PGGA) to form stable ionic complexes with LAE:PGGA ratios of 1 and 0.5. The nanostructure adopted by these complexes and its response to thermal changes were examined in detail by Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) using synchrotron radiation in real time. A layered biphasic structure with LAE filling the space between the polypeptidic sheets was adopted in these complexes. The complexes were stable up to above 250 °C, non-water soluble, and were able to form consistent transparent films. The release of LAE from the complexes upon incubation in aqueous buffer was examined and found to depend on both pH and complex composition. The antibacterial activity of films made of these complexes against Gram-positive (L. monocytogenes and S. aureus) and Gram-negative (E. coli and S. enterica) bacteria was preliminary evaluated and was found to be very high against the formers and only moderate against the later. The bactericide activity displayed by the LAE·PGGA complexes was directly related with the amount of LAE that was released from the film to the environment.
Collapse
|
39
|
Kozak SM, Brown SRB, Bobak Y, D'Amico DJ. Control of Listeria monocytogenes in whole milk using antimicrobials applied individually and in combination. J Dairy Sci 2017; 101:1889-1900. [PMID: 29274970 DOI: 10.3168/jds.2017-13648] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/31/2017] [Indexed: 01/28/2023]
Abstract
Dairy product recalls and dairy-related illnesses are often the result of contamination with Listeria monocytogenes, which can occur throughout the dairy production and supply chains. The use of antimicrobial compounds is one practical approach for controlling pathogen survival and growth in foods. The goal of this study was to use fluid milk as a model system to identify listeristatic or listericidal treatments that show promise for application in fluid milk and for further evaluation in other dairy products (e.g., cheese). Caprylic acid (CA), ε-polylysine (EPL), hydrogen peroxide, lauric arginate (LAE), and sodium caprylate (SC) were added individually or in combination to whole milk inoculated with L. monocytogenes at ˜4 log10 cfu/mL. Samples were stored at 7°C for 21 d, and L. monocytogenes counts were determined weekly. Inhibitory concentrations of LAE (800 mg/L) and EPL (100-400 mg/L), as well as SC and CA (3,200 mg/L each), were identified. The addition of EPL at 800 mg/L reduced L. monocytogenes counts by >3 log10 cfu/mL from initial inoculation levels after 21 d. Addition of hydrogen peroxide to milk reduced counts by >3 log10 cfu/mL from initial inoculation within 24 h (400 and 800 mg/L) or by d 7 (200 mg/L). Although the combinatory treatments of EPL + CA, EPL + LAE, and LAE + SC were characterized as indifferent, EPL + SC worked synergistically to reduce L. monocytogenes populations in milk over 21 d. Overall, these data identify potential antimicrobial treatments to control L. monocytogenes in milk and serve as a foundation for the continued development of antimicrobial controls for L. monocytogenes in dairy products.
Collapse
Affiliation(s)
- Sarah M Kozak
- Department of Animal Science, Cell Biology, University of Connecticut, Storrs 06269
| | - Stephanie R B Brown
- Department of Animal Science, Cell Biology, University of Connecticut, Storrs 06269
| | - Yustyna Bobak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269
| | - Dennis J D'Amico
- Department of Animal Science, Cell Biology, University of Connecticut, Storrs 06269.
| |
Collapse
|
40
|
Zhang Y, Pan K, Zhong Q. Eugenol Nanoencapsulated by Sodium Caseinate: Physical, Antimicrobial, and Biophysical Properties. FOOD BIOPHYS 2017. [DOI: 10.1007/s11483-017-9509-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Fu Y, Deering AJ, Bhunia AK, Yao Y. Biofilm of Escherichia coli O157:H7 on cantaloupe surface is resistant to lauroyl arginate ethyl and sodium hypochlorite. Int J Food Microbiol 2017; 260:11-16. [PMID: 28843119 DOI: 10.1016/j.ijfoodmicro.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/25/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
Biofilms formed by Escherichia coli O157:H7 on cantaloupe rind were characterized in this study. Cantaloupe rind pieces inoculated with E. coli O157:H7 B6-914 was sampled after 2, 12, and 24h incubation for imaging with cryo-scanning electron microscopy (Cryo-SEM) or treating with lauroyl arginate ethyl (LAE) or sodium hypochlorite (SHC). Cryo-SEM images showed that E. coli O157:H7 formed a biofilm within 12h on the rind surface. For rind samples treated with LAE or SHC, the residual cell counts were significantly different (p<0.05) between 2 and 12h incubation, and between 2 and 24h of incubation. For the 2h incubation samples, E. coli O157:H7 was undetectable (>5-log reduction) after treatment with 2000μg/mL of LAE or SHC. In contrast, for 12h incubation samples, 2000μg/mL of LAE or SHC could only achieve 1.74 or 1.86-log reduction, respectively. The study showed the low efficacy of LAE and SHC on cantaloupe rind surface to reduce the E. coli biofilm, suggesting the needs for cantaloupe cleaning methods beyond washing with conventional antimicrobial agents.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Amanda J Deering
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Yuan Yao
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
42
|
Chen H, Zhong Q. Lactobionic acid enhances the synergistic effect of nisin and thymol against Listeria monocytogenes Scott A in tryptic soy broth and milk. Int J Food Microbiol 2017; 260:36-41. [PMID: 28843122 DOI: 10.1016/j.ijfoodmicro.2017.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is a Gram-positive opportunistic human pathogen and it remains a significant cause of foodborne illnesses. A variety of natural and synthetic compounds have been studied to inhibit the growth of L. monocytogenes in foods. Antimicrobial combinations with synergistic antilisterial properties can reduce the dose of each antimicrobial, which can be further enhanced by chelating compounds. Therefore, the objective of this study was to determine antilisterial properties of binary or ternary combinations of lactobionic acid (LBA), nisin, and thymol in tryptic soy broth (TSB), 2% reduced-fat milk, and whole milk. The results showed that the minimum inhibitory concentration (MIC) of nisin, thymol and LBA was 125IU/mL, 0.25mg/mL, and 10mg/mL, respectively. The ternary combination was the most effective in reducing MICs of antimicrobials, with the MIC of nisin, thymol, and LBA being 31.25IU/mL, 0.0625mg/mL, and 1.25mg/mL, respectively. In TSB with 0.6% yeast extract, L. monocytogenes grew in individual or binary antimicrobial treatments of 31.25IU/mL nisin, 0.0625mg/mL thymol, and 1.25mg/mL LBA within 24h at 32°C, while it was completely inhibited by the ternary combination. In 2% reduced-fat milk at 21°C, the ternary combination of nisin, thymol, and LBA at respective concentrations of 250IU/mL, 2mg/mL, and 10mg/mL completely inhibited the bacterium to below the detection limit in 72h while >2log (CFU/mL) bacteria was still detected in all the binary combinations after 120h. In whole milk, the combination of 500IU/mL nisin, 2mg/mL thymol, and 10mg/mL LBA reduced bacteria to around 2log (CFU/mL) in 4h at 21°C, and no bacterial recovery was observed after 5 d. This study suggested the potential of the ternary combination of nisin, thymol and LBA for food preservation.
Collapse
Affiliation(s)
- Huaiqiong Chen
- Department of Food Science, University of Tennessee Knoxville, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee Knoxville, USA.
| |
Collapse
|
43
|
Tolen TN, Ruengvisesh S, Taylor TM. Application of Surfactant Micelle-Entrapped Eugenol for Prevention of Growth of the Shiga Toxin-Producing Escherichia coli in Ground Beef. Foods 2017; 6:E69. [PMID: 28813002 PMCID: PMC5575644 DOI: 10.3390/foods6080069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 11/16/2022] Open
Abstract
Beef safety may be compromised by O157 and non-O157 Shiga toxin-producing Escherichia coli (STEC) contamination. The capacity of surfactant micelles loaded with the plant-derived antimicrobial eugenol to reduce STEC on beef trimmings that were later ground and refrigerated for five days at 5 ± 1 °C was tested to determine their utility for beef safety protection. STEC-inoculated trimmings were treated with free eugenol, micelle-encapsulated eugenol, 2% lactic acid (55 °C), sterile distilled water (25 °C), or left untreated (control). Following treatment, trimmings were coarse-ground and stored aerobically at 5 ± 1 °C. Ground beef was then sampled for STEC immediately post-grinding, and again at three and five days of storage. STEC minimum inhibitory concentrations (MICs) in liquid medium for free eugenol and 1% sodium dodecyl sulfate (SDS)-loaded micelles were 0.5% and 0.125%, respectively. STEC numbers on beef trimmings treated by sterile water (6.5 log10 CFU/g), free eugenol (6.5 log10 CFU/g), micelle-loaded eugenol (6.4 log10 CFU/g), and lactic acid (6.4 log10 CFU/g) did not differ compared to untreated controls (6.6 log10 CFU/g) (p = 0.982). Conversely, STEC were significantly reduced by refrigerated storage (0.2 and 0.3 log10 CFU/g at three and five days of storage, respectively) (p = 0.014). Antimicrobial treatments did not significantly decontaminate ground beef, indicating their low utility for beef safety protection.
Collapse
Affiliation(s)
- Tamra N Tolen
- Department of Animal Science, Texas A & M University, College Station, TX 77843-2471, USA.
| | - Songsirin Ruengvisesh
- Department of Nutrition and Food Science, Texas A & M University, College Station, TX 77843-2253, USA.
| | - Thomas M Taylor
- Department of Animal Science, Texas A & M University, College Station, TX 77843-2471, USA.
| |
Collapse
|
44
|
Kozak SM, Margison KM, D'amico DJ. Synergistic Antimicrobial Combinations Inhibit and Inactivate Listeria monocytogenes in Neutral and Acidic Broth Systems. J Food Prot 2017; 80:1266-1272. [PMID: 28691884 DOI: 10.4315/0362-028x.jfp-17-035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of antimicrobial compounds can be an effective approach to control Listeria monocytogenes in ready-to-eat foods, but it can also be limited by cost, restrictions on concentrations in foods, and potential changes to organoleptic properties. Combinatorial approaches that produce additive or synergistic effects allow for reductions in individual antimicrobial concentrations while achieving the same level of control. The present study determined the MIC and MBC of an antimicrobial compound when used alone or in binary combinations against L. monocytogenes in growth media adjusted to pH values 7.4 and 5.5 and characterized interactions as synergistic, additive, or antagonistic. Inhibitory and bactericidal concentrations were defined as changes in L. monocytogenes counts of ≤1.0 or ≥3.0 log CFU/mL compared with the starting inoculum, respectively. Individually, lauric arginate (LAE), hydrogen peroxide (HP), and ε-polylysine (EPL) inhibited L. monocytogenes growth at the lowest concentrations when applied alone in broth adjusted to pH 7.4. Similarly, LAE, EPL, and HP had the lowest MBCs in broth adjusted to both pH levels. The inhibitory efficacy of both caprylic acid and sodium caprylate (SC) increased at the lower pH, with reductions in MICs of >98%. In total, 35 and 19 additive or synergistic inhibitory and bactericidal combinations were identified at pH values 7.4 and 5.5, respectively. Combinations of acidified calcium sulfate with lactic acid (ACSL) and SC were among the most synergistic inhibitory groupings at both pH levels, whereas EPL+LAE were the most effective bactericides at pH 7.4. Combinations of SC with EPL or ACSL were also among the most effective bactericides at pH 5.5. These data serve as a foundation for developing more effective antimicrobial approaches for the control of L. monocytogenes in foods with different pH levels.
Collapse
Affiliation(s)
- Sarah M Kozak
- 1 Department of Animal Science, 302B Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, University of Connecticut, Storrs, Connecticut 06269; and
| | - Kyle M Margison
- 2 School of Pharmacy, 69 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Dennis J D'amico
- 1 Department of Animal Science, 302B Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, University of Connecticut, Storrs, Connecticut 06269; and
| |
Collapse
|
45
|
Moore A, Nannapaneni R, Kiess A, Sharma C. Evaluation of USDA approved antimicrobials on the reduction of Salmonella and Campylobacter in ground chicken frames and their effect on meat quality. Poult Sci 2017; 96:2385-2392. [DOI: 10.3382/ps/pew497] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022] Open
|
46
|
Sadekuzzaman M, Yang S, Kim HS, Mizan MFR, Ha SD. Evaluation of a novel antimicrobial (lauric arginate ester) substance against biofilm of Escherichia coli
O157:H7, Listeria monocytogenes
, and Salmonella
spp. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mohammad Sadekuzzaman
- School of Food Science and Technology; Chung-Ang University; 72-1 Nae-Ri, Daedeok- myeoun Anseong-si Gyeounggi-do 456-756 South Korea
- Department of Livestock Services; Dhaka People's Republic of Bangladesh
| | - Sungdae Yang
- School of Food Science and Technology; Chung-Ang University; 72-1 Nae-Ri, Daedeok- myeoun Anseong-si Gyeounggi-do 456-756 South Korea
| | - Hyung-Suk Kim
- School of Food Science and Technology; Chung-Ang University; 72-1 Nae-Ri, Daedeok- myeoun Anseong-si Gyeounggi-do 456-756 South Korea
| | - Md. Furkanur Rahaman Mizan
- School of Food Science and Technology; Chung-Ang University; 72-1 Nae-Ri, Daedeok- myeoun Anseong-si Gyeounggi-do 456-756 South Korea
| | - Sang-Do Ha
- School of Food Science and Technology; Chung-Ang University; 72-1 Nae-Ri, Daedeok- myeoun Anseong-si Gyeounggi-do 456-756 South Korea
| |
Collapse
|
47
|
Fu Y, Deering AJ, Bhunia AK, Yao Y. Pathogen biofilm formation on cantaloupe surface and its impact on the antibacterial effect of lauroyl arginate ethyl. Food Microbiol 2017; 64:139-144. [DOI: 10.1016/j.fm.2016.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
|
48
|
Manrique Y, Gibis M, Schmidt H, Weiss J. Influence of application sequence and timing of eugenol and lauric arginate (LAE) on survival of spoilage organisms. Food Microbiol 2017; 64:210-218. [DOI: 10.1016/j.fm.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 01/29/2023]
|
49
|
Nübling S, Hägele F, Wohlt D, Graf B, Schweiggert RM, Carle R, Schmidt H, Weiss A. Effects of Quillaja saponaria extract and N α -lauroyl- l -arginine ethyl ester on reducing selected foodborne pathogens in vitro and maintaining quality of fresh-cut endive ( Cichorium endivia L.) at pilot plant scale. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Joshi S, Howell AB, D'Souza DH. Blueberry proanthocyanidins against human norovirus surrogates in model foods and under simulated gastric conditions. Food Microbiol 2016; 63:263-267. [PMID: 28040178 DOI: 10.1016/j.fm.2016.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/21/2016] [Accepted: 11/30/2016] [Indexed: 01/04/2023]
Abstract
Blueberry proanthocyanidins (B-PAC) are known to decrease titers of human norovirus surrogates in vitro. The application of B-PAC as therapeutic or preventive options against foodborne viral illness needs to be determined using model foods and simulated gastric conditions in vitro. The objective of this study was to evaluate the antiviral effect of B-PAC in model foods (apple juice (AJ) and 2% reduced fat milk) and simulated gastrointestinal fluids against cultivable human norovirus surrogates (feline calicivirus; FCV-F9 and murine norovirus; MNV-1) over 24 h at 37 °C. Equal amounts of each virus (5 log PFU/ml) was mixed with B-PAC (1, 2 and 5 mg/ml) prepared either in AJ, or 2% milk, or simulated gastric fluids and incubated over 24 h at 37 °C. Controls included phosphate buffered saline, malic acid (pH 7.2), AJ, 2% milk or simulated gastric and intestinal fluids incubated with virus over 24 h at 37 °C. The tested viruses were reduced to undetectable levels within 15 min with B-PAC (1, 2 and 5 mg/ml) in AJ (pH 3.6). However, antiviral activity of B-PAC was reduced in milk. FCV-F9 was reduced by 0.4 and 1.09 log PFU/ml with 2 and 5 mg/ml B-PAC in milk, respectively and MNV-1 titers were reduced by 0.81 log PFU/ml with 5 mg/ml B-PAC in milk after 24 h. B-PAC at 5 mg/ml in simulated intestinal fluid reduced titers of the tested viruses to undetectable levels within 30 min. Overall, these results show the potential of B-PAC as preventive and therapeutic options for foodborne viral illnesses.
Collapse
Affiliation(s)
- Snehal Joshi
- The University of Tennessee-Knoxville, Department of Food Science and Technology, 2600 River Drive, Knoxville, TN 37966, USA
| | - Amy B Howell
- Marucci Center for Blueberry and Cranberry Research, Rutgers University, Chatsworth, NJ, USA
| | - Doris H D'Souza
- The University of Tennessee-Knoxville, Department of Food Science and Technology, 2600 River Drive, Knoxville, TN 37966, USA.
| |
Collapse
|