1
|
Sequino G, Valentino V, Esposito A, Volpe S, Torrieri E, De Filippis F, Ercolini D. Microbiome dynamics, antibiotic resistance gene patterns and spoilage-associated genomic potential in fresh anchovies stored in different conditions. Food Res Int 2024; 175:113788. [PMID: 38129066 DOI: 10.1016/j.foodres.2023.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Fresh fish is a highly perishable product and is easily spoiled by microbiological activity and chemical oxidation of lipids. However, microbial spoilage is the main factor linked with the rapid fish sensorial degradation due to the action of specific spoilage organisms (SSOs) that have the ability to dominate over other microorganisms and produce metabolites responsible for off-flavours. We explored the microbial dynamics in fresh anchovies stored in different packaging (air, modified atmosphere, under vacuum) and temperatures (0, 4 and 10 °C) using shotgun metagenomics, highlighting the selection of different microbial species according to the packaging type. Indeed, Pseudoalteromonas nigrifaciens, Psychrobacter cryohalolentis and Ps. immobilis, Pseudomonas deceptionensis and Vibrio splendidus have been identified as the main SSOs in aerobically stored anchovies, while Shewanella baltica, Photobacterium iliopiscarium, Ps. cryohalolentis and Ps. immobilis prevailed in VP and MAP. In addition, we identified the presence of spoilage-associated genes, leading to the potential production of biogenic amines and different off-flavors (H2S, TMA). In particular, the abundance of microbial genes leading to BA biosynthesis increased at higher storage temperature, while those related to H2S and TMA production were enriched in aerobically and VP packed anchovies, suggesting that MAP could be an effective strategy in delaying the production of these compounds. Finally, we provided evidence of the presence of a wide range of antibiotic resistance genes conferring resistance to different classes of antibiotic (β-lactams, tetracyclines, polymyxins, trimethoprims and phenicols) and highlighted that storage at higher temperature (4 and 10 °C) boosted the abundance of ARG-carrying taxa, especially in aerobically and MAP packed fish.
Collapse
Affiliation(s)
- Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Alessia Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefania Volpe
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elena Torrieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy.
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Corso Umberto I 40, 80138 Naples, Italy
| |
Collapse
|
2
|
Microbiota profile of filleted gilthead seabream (Sparus aurata) during storage at various conditions by 16S rRNA metabarcoding analysis. Food Res Int 2023; 164:112312. [PMID: 36737906 DOI: 10.1016/j.foodres.2022.112312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The aim of the present work was to study the microbiota profile of gilthead seabream (Sparus aurata) fillets stored either aerobically or under Modified Atmosphere Packaging (MAP) conditions at 0, 4, 8 and 12 °C, via 16S rRNA metabarcoding sequencing. Throughout storage, sensory assessment was also applied to estimate fillets' end of shelf-life. Results indicated that storage conditions strongly influenced the shelf-life of the fillets, since the sensorial attributes of air-stored samples deteriorated earlier than that of MAP-stored fillets, while higher temperatures also contributed to a more rapid products' end of shelf-life. Metataxonomic analysis indicated that Pseudomonas was by far the dominant genus at the end of fillet's shelf-life, in the vast majority of treatments, even though a sporadic but noteworthy presence of other genera (e.g, Shewanella, Carnobacterium, Brochothrix etc.) at the middle stages of MAP-stored fillets is also worth mentioning. On the other hand, a completely different profile as well as a more abundant bacterial diversity was observed at the end of shelf-life of MAP-stored fillets at 12 °C, in which Serratia was the most dominant bacterium, followed by Kluyvera, Hafnia, Rahnella and Raoultella, while Pseudomonas was detected in traces. The findings of the present work are very important, providing useful information about the spoilage status of gilthead seabream fillets during several storage conditions, triggering in parallel the need for further studies to enrich the current knowledge and help stakeholders develop innovative strategies that delay the growth of key spoiler players and consequently, retard spoilage course.
Collapse
|
3
|
Gadoin E, Desnues C, Bouvier T, Roque D'orbcastel E, Auguet JC, Crochemore S, Adingra A, Bettarel Y. Tracking spoilage bacteria in the tuna microbiome. FEMS Microbiol Ecol 2022; 98:6702722. [PMID: 36124730 DOI: 10.1093/femsec/fiac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Like other seafood products, tuna is highly perishable and sensitive to microbial spoilage. Its consumption, whether fresh or canned, can lead to severe food poisoning due to the activity of specific microorganisms, including histamine-producing bacteria. Yet, many grey areas persist regarding their ecology, conditions of emergence, and proliferation in fish. In this study, we used 16S rRNA barcoding to investigate postmortem changes in the bacteriome of fresh and brine-frozen yellowfin tuna (Thunnus albacares), until late stages of decomposition (i.e. 120 h). The results revealed that despite standard refrigeration storage conditions (i.e. 4°C), a diverse and complex spoilage bacteriome developed in the gut and liver. The relative abundance of spoilage bacterial taxa increased rapidly in both organs, representing 82% of the bacterial communities in fresh yellowfin tuna, and less than 30% in brine-frozen tuna. Photobacterium was identified as one of the dominant bacterial genera, and its temporal dynamics were positively correlated with histamine concentration in both gut and liver samples, which ultimately exceeded the recommended sanitary threshold of 50 ppm in edible parts of tuna. The results from this study show that the sanitary risks associated with the consumption of this widely eaten fish are strongly influenced by postcapture storage conditions.
Collapse
Affiliation(s)
- Elsa Gadoin
- MARBEC, Marine Biodiversity, Exploitation and Conservation, Université Montpellier, CNRS, Ifremer, IRD, 093 Place Eugène Bataillon 34090, Montpellier, France
| | - Christelle Desnues
- Campus Technologique et Scientifique de Luminy, 163 avenue de Luminy - Bat. Méditerranée, 13288 Marseille, France
| | - Thierry Bouvier
- MARBEC, Marine Biodiversity, Exploitation and Conservation, Université Montpellier, CNRS, Ifremer, IRD, 093 Place Eugène Bataillon 34090, Montpellier, France
| | - Emmanuelle Roque D'orbcastel
- MARBEC, Marine Biodiversity, Exploitation and Conservation, Université Montpellier, CNRS, Ifremer, IRD, 093 Place Eugène Bataillon 34090, Montpellier, France
| | - Jean-Christophe Auguet
- MARBEC, Marine Biodiversity, Exploitation and Conservation, Université Montpellier, CNRS, Ifremer, IRD, 093 Place Eugène Bataillon 34090, Montpellier, France
| | - Sandrine Crochemore
- MARBEC, Marine Biodiversity, Exploitation and Conservation, Université Montpellier, CNRS, Ifremer, IRD, 093 Place Eugène Bataillon 34090, Montpellier, France
| | - Antoinette Adingra
- Centre de Recherche Océanologiques (CRO)- 29 rue des pêcheurs, Zone 3, Treichville, BP V 18 00225 Abidjan, Cote d'Ivoire
| | - Yvan Bettarel
- MARBEC, Marine Biodiversity, Exploitation and Conservation, Université Montpellier, CNRS, Ifremer, IRD, 093 Place Eugène Bataillon 34090, Montpellier, France
| |
Collapse
|
4
|
Microbiota Succession of Whole and Filleted European Sea Bass ( Dicentrarchus labrax) during Storage under Aerobic and MAP Conditions via 16S rRNA Gene High-Throughput Sequencing Approach. Microorganisms 2022; 10:microorganisms10091870. [PMID: 36144472 PMCID: PMC9505548 DOI: 10.3390/microorganisms10091870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
In the present work, the profiles of bacterial communities of whole and filleted European sea bass (Dicentrarchus labrax), during several storage temperatures (0, 4, 8 and 12 °C) under aerobic and Modified Atmosphere Packaging (MAP) conditions, were examined via the 16S rRNA High-Throughput Sequencing (HTS) approach. Sensorial attributes were also assessed to determine products’ shelf-life. Results indicated that shelf-life was strongly dependent on handling, as well as on temperature and atmosphere conditions. HTS revealed the undisputed dominance of Pseudomonas from the very beginning and throughout storage period in the majority of treatments. However, a slightly different microbiota profile was recorded in MAP-stored fillets at the middle stages of storage, which mainly referred to the sporadic appearance of some bacteria (e.g., Carnobacterium, Shewanella, etc.) that followed the dominance of Pseudomonas. It is noticeable that a major difference was observed at the end of shelf-life of MAP-stored fillets at 12 °C, where the dominant microbiota was constituted by the genus Serratia, while the relative abundance of Pseudomonas and Brochothrix was more limited. Furthermore, at the same temperature under aerobic storage of both whole and filleted fish, Pseudomonas almost co-existed with Acinetobacter, while the presence of both Erwinia and Serratia in whole fish was noteworthy. Overall, the present study provides useful information regarding the storage fate and spoilage status of whole and filleted European sea bass, suggesting that different handling and storage conditions influence the shelf-life of sea bass by favoring or delaying the dominance of Specific Spoilage Organisms (SSOs), affecting in parallel to some extent the formation of their consortium that is responsible for products’ sensorial deterioration. Such findings enrich the current knowledge and should be used as a benchmark to develop specific strategies aiming to delay spoilage and thus increase the products’ added value.
Collapse
|
5
|
Zakrzewski AJ, Chajęcka-Wierzchowska W, Zadernowska A. Short Communication: Low Prevalence of Clinically Important Antibiotic-Resistant Strains among Non-Pathogenic Genera of the Tribe Klebsielleae. Foods 2022; 11:foods11152270. [PMID: 35954039 PMCID: PMC9368219 DOI: 10.3390/foods11152270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hafnia sp. and Serratia sp. belong to the Tribe Klebsielleae; although they are not considered pathogenic bacteria, there are many documented cases of diseases caused by these microorganisms. The aim of this study was to determine the antibiotic resistance profiles of strains belonging to the genus Hafnia and Serratia isolated from fish and shrimps. Phenotypic antibiotic resistance was determined using the semi-automatic Vitek 2 system (bioMérieux, Marcy-l’Étoile, France), while the presence of the extended-spectrum beta-lactamase, AmpC beta-lactamases, Klebsiella pneumoniae carbapenemases and Metallo-β-Lactamase producing strains were determined using the MIC Test Strip (Liofilchem, Roseto degli Abbruzzi, Italy). As a result of the conducted research, it was observed that a vast number of Hafnia sp. strains were resistant to cefalexin (84.61%), while Serratia sp. Strains to cefuroxime (79.41%) and nitrofurantoin (85.29%). In addition, it was observed that of all strains, only one had an ability to produce enzymes typical for β-lactamase-producing Enterobacterales. Although the strains of Hafnia sp. and Serratia sp. isolated from fish and shrimp are not characterized by frequent resistance to antibiotics, taking into account the constantly growing number of antibiotic-resistant strains, this may be a problem in the future, mainly due to gene transfer through mobile genetic elements and the acquisition of resistance expressed phenotypically through contact with stress factors. Therefore, studies monitoring the antibiotic resistance profile of these species should be carried out on a regular basis.
Collapse
|
6
|
The Adhesion and Spoilage of Shewanella putrefaciens in Tilapia. Foods 2022; 11:foods11131913. [PMID: 35804729 PMCID: PMC9266031 DOI: 10.3390/foods11131913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Shewanella putrefaciens is a typical spoilage bacteria organism in seafood. The adhesion ability of three S. putrefaciens strains (HR-15, JR-18, HC-71) isolated from putrefied tilapia were evaluated by mucus adhesion in vitro and intestinal adhesion in vivo. The results of the spoilage of the inoculated fish fillets and spoilage of the refrigerated fish both showed that the adhesion ability of S. putrefaciens was positively correlated with the spoilage ability. High-throughput sequencing and GC-MS results showed that S. putrefaciens with high adhesion ability also significantly changed the intestinal flora of fish, causing an increase in the intestinal bacteria such as Plesionomas, Macellibacteroides, Acinetobacter, and Legionella, which then led to the increase in volatile substances such as low-grade aldehydes, alcohols, and ketones in the fish, serious fatty acid oxidation, and excitement of the fishy smell.
Collapse
|
7
|
Saelens G, Houf K. Unraveling the microbiota of the fish parasite Pseudoterranova decipiens in codfish (Gadus morhua) reveals a fish-related bacterial community. Int J Food Microbiol 2022; 367:109591. [DOI: 10.1016/j.ijfoodmicro.2022.109591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 02/07/2023]
|
8
|
Anagnostopoulos DA, Parlapani FF, Boziaris IS. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century: Have we finished or just begun? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Antibacterial activity and mechanism of slightly acidic electrolyzed water against Shewanella putrefaciens and Staphylococcus saprophytic. Biochem Biophys Res Commun 2022; 592:44-50. [DOI: 10.1016/j.bbrc.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
|
10
|
Aizpurua O, Nyholm L, Morris E, Chaverri G, Herrera Montalvo LG, Flores-Martinez JJ, Lin A, Razgour O, Gilbert MTP, Alberdi A. The role of the gut microbiota in the dietary niche expansion of fishing bats. Anim Microbiome 2021; 3:76. [PMID: 34711286 PMCID: PMC8555116 DOI: 10.1186/s42523-021-00137-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background Due to its central role in animal nutrition, the gut microbiota is likely a relevant factor shaping dietary niche shifts. We analysed both the impact and contribution of the gut microbiota to the dietary niche expansion of the only four bat species that have incorporated fish into their primarily arthropodophage diet. Results We first compared the taxonomic and functional features of the gut microbiota of the four piscivorous bats to that of 11 strictly arthropodophagous species using 16S rRNA targeted amplicon sequencing. Second, we increased the resolution of our analyses for one of the piscivorous bat species, namely Myotis capaccinii, and analysed multiple populations combining targeted approaches with shotgun sequencing. To better understand the origin of gut microorganisms, we also analysed the gut microbiota of their fish prey (Gambusia holbrooki). Our analyses showed that piscivorous bats carry a characteristic gut microbiota that differs from that of their strict arthropodophagous counterparts, in which the most relevant bacteria have been directly acquired from their fish prey. This characteristic microbiota exhibits enrichment of genes involved in vitamin biosynthesis, as well as complex carbohydrate and lipid metabolism, likely providing their hosts with an enhanced capacity to metabolise the glycosphingolipids and long-chain fatty acids that are particularly abundant in fish. Conclusions Our results depict the gut microbiota as a relevant element in facilitating the dietary transition from arthropodophagy to piscivory. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00137-w.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.
| | - Lasse Nyholm
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| | - Evie Morris
- University of Exeter, Streatham Campus, Biosciences, Exeter, EX4 4PS, UK
| | - Gloriana Chaverri
- Sede del Sur, Universidad de Costa Rica, #4000 Alamedas, Golfito, 60701, Costa Rica.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, República de Panamá
| | - L Gerardo Herrera Montalvo
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio, 48980, Jalisco, Mexico
| | - José Juan Flores-Martinez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China
| | - Orly Razgour
- University of Exeter, Streatham Campus, Biosciences, Exeter, EX4 4PS, UK
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark.,University Museum, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, 1353, Copenhagen, Denmark
| |
Collapse
|
11
|
Wiernasz N, Gigout F, Cardinal M, Cornet J, Rohloff J, Courcoux P, Vigneau E, Skírnisdottír S, Passerini D, Pilet MF, Leroi F. Effect of the Manufacturing Process on the Microbiota, Organoleptic Properties and Volatilome of Three Salmon-Based Products. Foods 2021; 10:foods10112517. [PMID: 34828798 PMCID: PMC8623285 DOI: 10.3390/foods10112517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Lightly preserved seafood products, such as cold-smoked fish and fish gravlax, are traditionally consumed in Europe and are of considerable economic importance. This work aimed to compare three products that were obtained from the same batch of fish: cold-smoked salmon (CSS) stored under vacuum packaging (VP) or a modified atmosphere packaging (MAP) and VP salmon dill gravlax (SG). Classical microbiological analyses and 16S rRNA metabarcoding, biochemical analyses (trimethylamine, total volatile basic nitrogen (TVBN), biogenic amines, pH, volatile organic compounds (VOCs)) and sensory analyses (quantitative descriptive analysis) were performed on each product throughout their storage at a chilled temperature. The three products shared the same initial microbiota, which were mainly dominated by Photobacterium, Lactococcus and Lactobacillus genera. On day 28, the VP CSS ecosystem was mainly composed of Photobacterium and, to a lesser extent, Lactococcus and Lactobacillus genera, while Lactobacillus was dominant in the MAP CSS. The diversity was higher in the SG, which was mainly dominated by Enterobacteriaceae, Photobacterium, Lactobacillus and Lactococcus. Although the sensory spoilage was generally weak, gravlax was the most perishable product (slight increase in amine and acidic off-odors and flavors, fatty appearance, slight discoloration and drop in firmness), followed by the VP CSS, while the MAP CSS did not spoil. Spoilage was associated with an increase in the TVBN, biogenic amines and spoilage associated VOCs, such as decanal, nonanal, hexadecanal, benzaldehyde, benzeneacetaldehyde, ethanol, 3-methyl-1-butanol, 2,3-butanediol, 1-octen-3-ol, 2-butanone and 1-octen-3-one. This study showed that the processing and packaging conditions both had an effect on the microbial composition and the quality of the final product.
Collapse
Affiliation(s)
- Norman Wiernasz
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
- UMR 1014, Secalim, INRAE, Oniris, 44307 Nantes, France;
| | - Frédérique Gigout
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | - Mireille Cardinal
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | - Josiane Cornet
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | - Jens Rohloff
- NTNU, Department of Biology, 7491 Trondheim, Norway;
| | | | | | - Sigurlaug Skírnisdottír
- Matıs, Research and Innovation, Exploitation and Utilization of Genetic Resources, 101-155 Reykjavik, Iceland;
| | - Delphine Passerini
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
| | | | - Françoise Leroi
- IFREMER, BRM, EM3B Laboratory, F-44300 Nantes, France; (N.W.); (F.G.); (M.C.); (J.C.); (D.P.)
- Correspondence:
| |
Collapse
|
12
|
Lou X, Zhai D, Yang H. Changes of metabolite profiles of fish models inoculated with Shewanella baltica during spoilage. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107697] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Recent Developments in Seafood Packaging Technologies. Foods 2021; 10:foods10050940. [PMID: 33923022 PMCID: PMC8145365 DOI: 10.3390/foods10050940] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.
Collapse
|
14
|
Rico D, Albertos I, Martinez-Alvarez O, Lopez-Caballero ME, Martin-Diana AB. Use of Sea Fennel as a Natural Ingredient of Edible Films for Extending the Shelf Life of Fresh Fish Burgers. Molecules 2020; 25:molecules25225260. [PMID: 33187370 PMCID: PMC7696230 DOI: 10.3390/molecules25225260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
The growing interest from consumers toward healthy and nutritious products and their benefits for health has increased the consumption of whole and processed fish. One of the main problems of fish is the short shelf life, especially when it is processed as in the case of burgers. The use of edible coating is an interesting strategy to extend the quality and safety of the product, reducing the need for artificial preservatives. This study evaluated the use of chitosan-based edible film formulated with sea fennel plant and sea fennel extracts. The analyses showed than the use of edible film extended the shelf life of fish burgers regardless of the incorporation of sea fennel mainly associated to the gas barrier properties and selective permeability of the film applied to the fish surface. The incorporation of sea fennel in the films did not produce any antimicrobial enhancement, although sea fennel (mostly extract) produced a better pH and enhanced the antioxidant properties and lipid oxidation of fish burgers. However, sensory analyses showed than fish burgers coated with sea fennel film plant had better acceptability than those with sea fennel extracts, probably due to the better odour and colour of the whole plant during storage. The study showed that the use of sea fennel plant at 12.5% extended the shelf life of fish burgers using a safe and clean label strategy.
Collapse
Affiliation(s)
- Daniel Rico
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, Ctra. Burgos km. 119, 47171 Valladolid, Spain;
- Correspondence: ; Tel.: +34-983-415307
| | - Irene Albertos
- Santa Teresa de Jesús Catholic University of Ávila (UCAV), Calle Canteros s/n, 05005 Ávila, Spain;
| | - Oscar Martinez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN, CSIC), 10, Jose Antonio Novais, St., 28040 Madrid, Spain; (O.M.-A.); (M.E.L.-C.)
| | - M. Elvira Lopez-Caballero
- Institute of Food Science, Technology and Nutrition (ICTAN, CSIC), 10, Jose Antonio Novais, St., 28040 Madrid, Spain; (O.M.-A.); (M.E.L.-C.)
| | - Ana Belen Martin-Diana
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, Ctra. Burgos km. 119, 47171 Valladolid, Spain;
| |
Collapse
|
15
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|
16
|
Parlapani FF, Syropoulou F, Tsiartsafis A, Ekonomou S, Madesis P, Exadactylos A, Boziaris IS. HRM analysis as a tool to facilitate identification of bacteria from mussels during storage at 4 °C. Food Microbiol 2019; 85:103304. [PMID: 31500716 DOI: 10.1016/j.fm.2019.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/15/2022]
Abstract
High-resolution melting (HRM) analysis followed by sequencing was applied for determination of bacteria grown on plates isolated from farmed mussels (Mytilus galloprovincialis) during their storage at 4 °C. The V3-V4 region of the 16S rRNA gene from the isolates was amplified using 16S universal primers. Melting curves (peaks) and high resolution melting curves (shape) of the amplicons and sequencing analysis were used for differentiation and identification of the isolated bacteria, respectively. The majority of the isolates (a sum of 101 colonies, from five time intervals: day 0, 2, 4, 6 and 8) from non-selective solid medium plates were classified in four bacterial groups based on the melting curves (peaks) and HRM curves (shape) of the amplicons, while three isolates presented distinct HRM curve profiles (single). Afterwards, sequencing analysis showed that the isolates with a) the same melting peak temperature and b) HRM curves that were >95% similar grouped into the same bacterial species. Therefore, based on this methodology, the cultivable microbial population of chill-stored mussels was initially dominated by Psychrobacter alimentarius against others, such as Psychrobacter pulmonis, Psychrobacter celer and Klebsiella pneumoniae. P. alimentarius was also the dominant microorganism at the time of the sensory rejection (day 8). Concluding, HRM analysis could be used as a useful tool for the rapid differentiation of the bacteria isolated from mussels during storage, at species level, and then identification is feasible by the sequencing of one only representative of each bacterial species, thus reducing the cost of required sequencing.
Collapse
Affiliation(s)
- F F Parlapani
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece.
| | - F Syropoulou
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| | - A Tsiartsafis
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| | - S Ekonomou
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| | - P Madesis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (CERTH), 57001, Thessaloniki, Greece
| | - A Exadactylos
- Lab of Hydrobiology-Ichthyology, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| | - I S Boziaris
- Lab of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou street, 38446, Volos, Greece
| |
Collapse
|
17
|
Parlapani F, Michailidou S, Anagnostopoulos D, Sakellariou A, Pasentsis K, Psomopoulos F, Argiriou A, Haroutounian S, Boziaris I. Microbial spoilage investigation of thawed common cuttlefish (Sepia officinalis) stored at 2 °C using next generation sequencing and volatilome analysis. Food Microbiol 2018; 76:518-525. [DOI: 10.1016/j.fm.2018.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
|
18
|
A meta-barcoding approach to assess and compare the storage temperature-dependent bacterial diversity of gilt-head sea bream ( Sparus aurata ) originating from fish farms from two geographically distinct areas of Greece. Int J Food Microbiol 2018; 278:36-43. [DOI: 10.1016/j.ijfoodmicro.2018.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 11/19/2022]
|
19
|
Fu L, Wang C, Liu N, Ma A, Wang Y. Quorum sensing system-regulated genes affect the spoilage potential of Shewanella baltica. Food Res Int 2018; 107:1-9. [DOI: 10.1016/j.foodres.2018.01.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
20
|
Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int J Food Microbiol 2018; 280:87-99. [PMID: 29478710 DOI: 10.1016/j.ijfoodmicro.2017.12.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 01/12/2023]
Abstract
Seafood comprising of both vertebrate and invertebrate aquatic organisms are nutritious, rich in omega-3 fatty acids, essential vitamins, proteins, minerals and form part of healthy diet. However, despite the health and nutritional benefits, seafood is highly perishable. Spoilage of seafood could be as a result of microbial activity, autolysis or chemical oxidation. Microbial activity constitutes more spoilage than others. Spoilage bacteria are commonly Gram negative and produce off odours and flavours in seafood as a result of their metabolic activities. Storage temperature, handling and packaging conditions affect microbial growth and thus the shelf-life of seafood. Due to the complexity of the microbial communities in seafood, culture dependent methods of detection may not be useful, hence the need for culture independent methods are necessary to understand the diversity of microbiota and spoilage process. Similarly, the volatile organic compounds released by spoilage bacteria are not fully understood in some seafood. This review therefore highlights current knowledge and understanding of seafood spoilage microbiota, volatile organic compounds, effects of storage temperature and packaging conditions on quality of seafood.
Collapse
|
21
|
Hernández I. Bacteriophages against Serratia as Fish Spoilage Control Technology. Front Microbiol 2017; 8:449. [PMID: 28421038 PMCID: PMC5378772 DOI: 10.3389/fmicb.2017.00449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/03/2017] [Indexed: 02/02/2023] Open
Abstract
Bacteria of the genus Serratia, mainly S. proteamaculans and S. fonticola, are important spoilage agents in Atlantic horse mackerel (Trachurus trachurus). In order to evaluate whether bacteriophages against Serratia could delay the spoilage process, 11 viral strains active against this genus were isolated from food and best candidate was applied to fresh mackerel filets. All the phages belong to the Siphoviridae and Podoviridae families and were active at multiplicity of infection (MOI) levels below 1:1 in Long & Hammer broth. The ability of phage AZT6 to control Serratia populations in real food was tested in Atlantic horse mackerel extract and applied to fresh mackerel filets. Treatment with high phage concentration (MOI 350:1, initial Serratia population 3.9 ± 0.3 Log cfu/g) can reduce the Serratia populations up to 90% during fish storage (a maximum of 6 days) at low temperatures (6°C). Bacterial inhibition was dependent on the bacteriophage dosage, and MOI of 10:1 or lower did not significantly affect the Serratia populations.
Collapse
Affiliation(s)
- Igor Hernández
- AZTI-Tecnalia, Food Research Division, Parque Tecnológico de Bizkaia,Derio, Spain
| |
Collapse
|
22
|
DeWitt CAM, Oliveira ACM. Modified Atmosphere Systems and Shelf Life Extension of Fish and Fishery Products. Foods 2016; 5:E48. [PMID: 28231143 PMCID: PMC5302388 DOI: 10.3390/foods5030048] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/18/2016] [Indexed: 11/16/2022] Open
Abstract
This review aims at summarizing the findings of studies published over the past 15 years on the application of modified atmosphere (MA) systems for shelf life extension of fish and fishery products. This review highlights the importance of CO₂ in the preservation of seafood products, and underscores the benefits of combining MA technology with product storage in the superchilled temperature range. It is generally accepted that MA technology cannot improve product quality and should not be utilized as a substitute for good sanitation and strict temperature control. Benefits derived from application of MA, however, can significantly impact preservation of product quality and it subsequent shelf-life. For this reason, this review is the first of its kind to propose detailed handling and quality guidelines for fresh fish to realize the maximum benefit of MA technology.
Collapse
Affiliation(s)
- Christina A Mireles DeWitt
- OSU Seafood Research & Education Center Experiment Station, Department of Food Science and Technology, Oregon State University, Astoria, OR 97103, USA.
| | - Alexandra C M Oliveira
- BluWrap, 766 Harrison Street #102, San Francisco, CA 94107, USA.
- Kodiak Seafood and Marine Science Center, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 118 Trident Way, Kodiak, AK 99615, USA.
| |
Collapse
|
23
|
Monitoring of spoilage and determination of microbial communities based on 16S rRNA gene sequence analysis of whole sea bream stored at various temperatures. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Calliauw F, Horemans B, Broekaert K, Michiels C, Heyndrickx M. Spoilage potential of Vagococcus salmoninarum in preservative-free, MAP-stored brown shrimp and differentiation from Brochothrix thermosphacta on streptomycin thallous acetate actidione agar. J Appl Microbiol 2016; 120:1302-12. [PMID: 26913473 DOI: 10.1111/jam.13107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/25/2016] [Accepted: 02/17/2016] [Indexed: 11/29/2022]
Abstract
AIMS During a previous study concerning brown shrimp (Crangon crangon), selective streptomycin thallous acetate actidione (STAA) agar was used to determine the growth of Brochothrix thermosphacta. However, the growth of Vagococcus salmoninarum on this medium was also noticed. This study explores the spoilage potential of this organism when inoculated on sterile shrimp. METHODS AND RESULTS Isolates growing on STAA were identified using (GTG)5 clustering followed by partial 16S rRNA gene sequence analysis. Their biochemical spoilage potential was analysed for H2 S production and enzymatic activities were tested using an APIZYM test. Headspace solid phase micro-extraction (SPME) and gas chromatography-mass spectrometry (GC-MS) were used to analyse the volatile organic compounds (VOCs) produced during storage of inoculated shrimp. CONCLUSION Fifty-five per cent of isolates taken from STAA could be identified as V. salmoninarum, while no apparent morphological difference with B. thermosphacta isolates was identified upon the prescribed incubation conditions. For isolates identified as V. salmoninarum, production of 2-heptanone, 2-nonanone, 2-undecanone was found, as was the possibility to form H2 S. SIGNIFICANCE AND IMPACT OF THE STUDY When using the STAA medium for detecting B. thermosphacta, one should consider the possible abundant presence of V. salmoninarum as well. Based on this study, V. salmoninarum does not exhibit great spoilage potential, although it can produce H2 S and formed VOCs which are also found in other spoiled seafood products.
Collapse
Affiliation(s)
- F Calliauw
- Technology and Food Science Unit - Food safety, Institute of Agriculture and Fisheries Research, Melle, Belgium
| | - B Horemans
- Departement of Food Safety & Food Quality, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - K Broekaert
- Technology and Food Science Unit - Food safety, Institute of Agriculture and Fisheries Research, Melle, Belgium
| | - C Michiels
- Centre for Food and Microbial Technology and Leuven Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - M Heyndrickx
- Technology and Food Science Unit - Food safety, Institute of Agriculture and Fisheries Research, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
25
|
Parlapani FF, Kormas KA, Boziaris IS. Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2386-2394. [PMID: 25312872 DOI: 10.1002/jsfa.6957] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Sea bream fillets are one of the most important value-added products of the seafood market. Fresh seafood spoils mainly owing to bacterial action. In this study an exploration of initial and spoilage microbiota of sea bream fillets stored under air and commercial modified atmosphere packaging (MAP) at 0 and 5 °C was conducted by 16S rRNA gene sequence analysis of isolates grown on plates. Sensory evaluation and enumeration of total viable counts and spoilage microorganisms were also conducted to determine shelf life and bacterial growth respectively. RESULTS Different temperatures and atmospheres affected growth and synthesis of spoilage microbiota as well as shelf life. Shelf life under air at 0 and 5 °C was 14 and 5 days respectively, while under MAP it was 20 and 8 days respectively. Initial microbiota were dominated by Pseudomonas fluorescens, Psychrobacter and Macrococcus caseolyticus. Different temperatures and atmospheres affected the synthesis of spoilage microbiota. At the end of shelf life, different phylotypes of Pseudomonas closely related to Pseudomonas fragi were found to dominate in most cases, while Pseudomonas veronii dominated in fillets under MAP at 0 °C. Furthermore, in fillets under MAP at 5 °C, new dominant species such as Carnobacterium maltaromaticum, Carnobacterium divergens and Vagococcus fluvialis were revealed. CONCLUSION Different temperature and atmospheric conditions affected bacterial growth, shelf life and the synthesis of spoilage microbiota. Molecular identification revealed species and strains of microorganisms that have not been reported before for sea bream fillets stored under various conditions, thus providing valuable information regarding microbiological spoilage.
Collapse
Affiliation(s)
- Foteini F Parlapani
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Street, GR-38446 N. Ionia, Volos, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Street, GR-38446 N. Ionia, Volos, Greece
| | - Ioannis S Boziaris
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Street, GR-38446 N. Ionia, Volos, Greece
| |
Collapse
|
26
|
Reyes JE, Tabilo-Munizaga G, Pérez-Won M, Maluenda D, Roco T. Effect of high hydrostatic pressure (HHP) treatments on microbiological shelf-life of chilled Chilean jack mackerel (Trachurus murphyi). INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Hickey ME, Accumanno GM, McIntosh DM, Blank GS, Lee JL. Comparison of extracellular DNase- and protease-producing spoilage bacteria isolated from Delaware pond-sourced and retail channel catfish (Ictalurus punctatus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1024-1030. [PMID: 24931919 DOI: 10.1002/jsfa.6784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Spoilage of fishery products begins immediately following filleting due to microbial growth that degrades fish tissue quality prior to consumption. Extensive research has been conducted to identify such bacterial populations. A better understanding of the mechanisms involved in fish spoilage is necessary as a novel remedy for microbial spoilage inhibition has yet to be established for fish tissue. The present study identified, for the first time, bacterial populations that produce extracellular DNase and protease from Delaware and local retail distributed channel catfish (Ictalurus punctatus) fillets. RESULTS A clear trend was identified between bacteria derived from catfish filleted under aseptic conditions where Pseudomonas was the dominant genus. Bacteria isolated from retail catfish contained high quantities of DNase-producing isolates, in contrast to aseptic-filleted catfish tissue which had none. Both types of catfish sample maintained high populations of protease-producing bacterial colonies throughout the duration of the study. Most bacteria isolated from catfish intestines exhibited DNase production with no protease production. CONCLUSION Specific spoilage organism populations were significantly higher on retail-derived catfish in comparison to lab-filleted Delaware cultured catfish tissue. It is suggested that DNase production and protease production contribute to the spoilage of fish tissue as a result of mishandling and septic filleting being the major cause of rapid catfish tissue spoilage.
Collapse
Affiliation(s)
- Michael E Hickey
- Department of Human Ecology, Food Science Program, College of Agricultural and Related Sciences, Delaware State University, Dover, DE, 19901, USA
| | | | | | | | | |
Collapse
|
28
|
Techer C, Daoud A, Madec MN, Gautier M, Jan S, Baron F. Microbial quality of industrial liquid egg white: assumptions on spoiling issues in egg-based chilled desserts. J Food Sci 2015; 80:M389-98. [PMID: 25588552 DOI: 10.1111/1750-3841.12764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/04/2014] [Indexed: 12/31/2022]
Abstract
As a 1st step, this study aimed at investigating the microbial quality of liquid egg white in a French egg processing company. Thirty raw and 33 pasteurized liquid egg white samples were analyzed. Pasteurization was globally found efficient on mesophilic contaminants (1.7 ± 1.6 and 0.8 ± 0.9 log CFU/mL in raw and pasteurized samples, respectively), including for the control of Salmonella. However, Gram-positive enterococci were still detected in the pasteurized samples. As a 2nd step, a representative bacterial collection was built for exploring the spoilage issue in egg-based chilled desserts. Custard cream was chosen as growth medium since this food is widely used for the production of French chilled desserts. All of the 166 isolates of the bacterial collection were shown to be able to grow and to induce spoilage of the custard cream at refrigeration temperature (10 °C). Several spoilage types were highlighted in the custard cream, on the basis of changes regarding pH, consistency, production of holes or gas. As a 3rd step, bacterial enzymatic activities were explored on custard cream-based agar media. The bacterial collection was reduced to 43 isolates, based on further selection regarding the genera and the spoilage types previously highlighted. Albeit to different degrees, all these isolates were able to produce proteases. A large part of these isolates also expressed lipolytic and amylolytic activities. This study emphasizes the need to control egg white contamination and especially with Gram-positive heat-resistant Enterococi, in order to guarantee the shelf life of egg-based chilled desserts.
Collapse
Affiliation(s)
- Clarisse Techer
- Equipe Microbiologie de l'Oeuf et des Ovoproduits (Micov), UMR1253 Science et Technologie du Lait et de l'Œuf, Agrocampus Ouest, INRA, F-35042, Rennes, France
| | | | | | | | | | | |
Collapse
|
29
|
Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. Antimicrob Agents Chemother 2014; 59:289-98. [PMID: 25348524 DOI: 10.1128/aac.03774-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
GSK2251052, a novel leucyl-tRNA synthetase (LeuRS) inhibitor, was in development for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. In a phase II study (study LRS114688) evaluating the efficacy of GSK2251052 in complicated urinary tract infections, resistance developed very rapidly in 3 of 14 subjects enrolled, with ≥32-fold increases in the GSK2251052 MIC of the infecting pathogen being detected. A fourth subject did not exhibit the development of resistance in the baseline pathogen but posttherapy did present with a different pathogen resistant to GSK2251052. Whole-genome DNA sequencing of Escherichia coli isolates collected longitudinally from two study LRS114688 subjects confirmed that GSK2251052 resistance was due to specific mutations, selected on the first day of therapy, in the LeuRS editing domain. Phylogenetic analysis strongly suggested that resistant Escherichia coli isolates resulted from clonal expansion of baseline susceptible strains. This resistance development likely resulted from the confluence of multiple factors, of which only some can be assessed preclinically. Our study shows the challenges of developing antibiotics and the importance of clinical studies to evaluate their effect on disease pathogenesis. (These studies have been registered at ClinicalTrials.gov under registration no. NCT01381549 for the study of complicated urinary tract infections and registration no. NCT01381562 for the study of complicated intra-abdominal infections.).
Collapse
|
30
|
Abstract
We describe the first case of Pseudoclavibacter species endocarditis in a 44-year-old patient. This genus, rarely isolated from humans, confirms here its role as a human pathogen.
Collapse
|