1
|
Zhang H, Wen N, Gong X, Li X. Application of triboelectric nanogenerator (TENG) in cancer prevention and adjuvant therapy. Colloids Surf B Biointerfaces 2024; 242:114078. [PMID: 39018914 DOI: 10.1016/j.colsurfb.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Cancer is a malignant tumor that kills about 940,000 people worldwide each year. In addition, about 30-77 % of cancer patients will experience cancer metastasis and recurrence, which can increase the cancer mortality rate without prompt treatment. According to the US Food and Drug Administration, wearable devices can detect several physiological indicators of patients to reflect their health status and adjuvant cancer treatment. Based on the triboelectric effect and electrostatic induction phenomenon, triboelectric nanopower generation (TENG) technology can convert mechanical energy into electricity and drive small electronic devices. This article reviewed the research status of TENG in the areas of cancer prevention and adjuvant therapy. TENG can be used for cancer prevention with advanced sensors. At the same time, electrical stimulation generated by TENG can also be used to help inhibit the growth of cancer cells to reduce the proliferation, recurrence, and metastasis of cancer cells. This review will promote the practical application of TENG in healthcare and provide clean and sustainable energy solutions for wearable bioelectronic systems.
Collapse
Affiliation(s)
- Haohao Zhang
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Ning Wen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaoran Gong
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Xue Li
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China.
| |
Collapse
|
2
|
Krahulcová M, Micajová B, Olejníková P, Cverenkárová K, Bírošová L. Microbial Safety of Smoothie Drinks from Fresh Bars Collected in Slovakia. Foods 2021; 10:551. [PMID: 33799940 PMCID: PMC8000542 DOI: 10.3390/foods10030551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Among the many consumers in Slovakia, smoothies are nowadays gaining popularity. Smoothie drinks are prepared from raw fruits and vegetables. Therefore, their microbiological safety depends on hygiene standards. The aim of this work was to monitor and quantify selected sensitive and antibiotic-resistant microorganisms present in collected smoothies. Twenty analyzed smoothie samples were collected from six food service establishments (fresh bars) in the capital city of Slovakia, Bratislava. Antibiotic-resistant bacteria were found in at least one of each fresh bar. Antibiotic-resistant coliform bacteria prevailed, especially in green smoothies or juices containing more vegetable ingredients. Resistance to ampicillin, ciprofloxacin, tetracycline, chloramphenicol, and gentamicin was observed in the case of coliform bacteria. More than half of the smoothie drink samples did not contain resistant enterococci. On the other hand, vancomycin-resistant enterococci were detected in 20% of samples. The most frequently isolated antibiotic-resistant strains belonged to the Enterobacter spp. or Klebsiella spp. genus. In the last part of the work, the pretreatment effect of smoothie components on the selected microorganisms' counts in the final product was investigated. Washing ingredients with an aqueous solution of a biocide agent containing silver and hydrogen peroxide proved to be the most effective way to decrease bacterial counts.
Collapse
Affiliation(s)
- Monika Krahulcová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (B.M.); (K.C.); (L.B.)
| | - Barbora Micajová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (B.M.); (K.C.); (L.B.)
| | - Petra Olejníková
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Klára Cverenkárová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (B.M.); (K.C.); (L.B.)
| | - Lucia Bírošová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (B.M.); (K.C.); (L.B.)
| |
Collapse
|
3
|
Microbial quality of raw and ready-to-eat mung bean sprouts produced in Italy. Food Microbiol 2019; 82:371-377. [DOI: 10.1016/j.fm.2019.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/23/2022]
|
4
|
Rotundo L, Amagliani G, Carloni E, Omiccioli E, Magnani M, Paoli G. Evaluation of PCR-based methods for the identification of enteroaggregative hemorrhagic Escherichia coli in sprouts. Int J Food Microbiol 2019; 291:59-64. [DOI: 10.1016/j.ijfoodmicro.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/27/2022]
|
5
|
Comparison of the Diatheva STEC FLUO with BAX System Kits for Detection of O157:H7 and Non-O157 Shiga Toxin-Producing Escherichia coli (STEC) in Ground Beef and Bean Sprout Samples Using Different Enrichment Protocols. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Borgersen Q, Bolick DT, Kolling GL, Aijuka M, Ruiz-Perez F, Guerrant RL, Nataro JP, Santiago AE. Abundant production of exopolysaccharide by EAEC strains enhances the formation of bacterial biofilms in contaminated sprouts. Gut Microbes 2018; 9:264-278. [PMID: 29543544 PMCID: PMC6219584 DOI: 10.1080/19490976.2018.1429877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 02/03/2023] Open
Abstract
Enteroaggregative E. coli (EAEC) is associated with food-borne outbreaks of diarrhea and growth faltering among children in developing countries. A Shiga toxin-producing EAEC strain of serotype O104:H4 strain caused one of the largest outbreaks of a food-borne infection in Europe in 2011. The outbreak was traced to contaminated fenugreek sprouts, yet the mechanisms whereby such persistent contamination of sprouts could have occurred are not clear. We found that under ambient conditions of temperature and in minimal media, pathogenic Shiga toxin-producing EAEC O104:H4 227-11 and non-Shiga toxin-producing 042 strains both produce high levels of exopolysaccharide structures (EPS) that are released to the external milieu. The exopolysaccharide was identified as colanic acid (CA). Unexpectedly, Shiga-toxin producing EAEC strain 227-11 produced 3-6-fold higher levels of CA than the 042 strain, suggesting differential regulation of the CA in the two strains. The presence of CA was accompanied by the formation of large biofilm structures on the surface of sprouts. The wcaF-wza chromosomal locus was required for the synthesis of CA in EAEC 042. Deletion in the glycosyltransferase wcaE gene abolished the production of CA in 042, and resulted in diminished adherence to sprouts when co-cultured at ambient temperature. In conclusion, this work suggests that copious production of CA may contribute to persistence of EAEC in the environment and suggests a potential explanation for the large Shiga toxin-producing EAEC outbreak in 2011.
Collapse
Affiliation(s)
- Quintin Borgersen
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| | - David T. Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA , USA
| | - Glynis L. Kolling
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA , USA
| | - Matthew Aijuka
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Richard L. Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA , USA
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| | - Araceli E. Santiago
- Department of Pediatrics, University of Virginia School of Medicine and University of Virginia Children's Hospital, Charlottesville, Virginia
| |
Collapse
|
7
|
Luciani M, Di Febo T, Zilli K, Di Giannatale E, Armillotta G, Manna L, Minelli F, Tittarelli M, Caprioli A. Rapid Detection and Isolation of Escherichia coli O104:H4 from Milk Using Monoclonal Antibody-coated Magnetic Beads. Front Microbiol 2016; 7:942. [PMID: 27379071 PMCID: PMC4908104 DOI: 10.3389/fmicb.2016.00942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/01/2016] [Indexed: 11/25/2022] Open
Abstract
Monoclonal antibodies (MAbs) specific for the lipopolysaccharide (LPS) of Escherichia coli O104:H4 were produced by fusion of Sp2/O-Ag-14 mouse myeloma cells with spleen cells of Balb/c mice, immunized with heat-inactivated and sonicated E. coli O104:H4 bacterial cells. Four MAbs specific for the E. coli O104:H4 LPS (1E6G6, 1F4C9, 3G6G7, and 4G10D2) were characterized and evaluated for the use in a method for the detection of E. coli O104:H4 in milk samples that involves antibody conjugation to magnetic microbeads to reduce time and increase the efficiency of isolation. MAb 1E6G6 was selected and coupled to microbeads, then used for immuno-magnetic separation (IMS); the efficiency of the IMS method for E. coli O104:H4 isolation from milk was evaluated and compared to that of the EU RL VTEC conventional culture-based isolation procedure. Milk suspensions also containing other pathogenic bacteria that could potentially be found in milk (Campylobacter jejuni, Listeria monocytogenes, and Staphylococcus aureus) were also tested to evaluate the specificity of MAb-coated beads. Beads coated with MAb 1E6G6 showed a good ability to capture the E. coli O104:H4, even in milk samples contaminated with other bacteria, with a higher number of E. coli O104:H4 CFU reisolated in comparison with the official method (121 and 41 CFU, respectively, at 10(3) E. coli O104:H4 initial load; 19 and 6 CFU, respectively, at 10(2) E. coli O104:H4 initial load; 1 and 0 CFU, respectively, at 10(1) E. coli O104:H4 initial load). The specificity was 100%.
Collapse
Affiliation(s)
- Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, TeramoItaly
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, TeramoItaly
| | - Katiuscia Zilli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, TeramoItaly
| | | | - Gisella Armillotta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, TeramoItaly
| | - Laura Manna
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, TeramoItaly
| | - Fabio Minelli
- EU Reference Laboratory for E. coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, RomeItaly
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, TeramoItaly
| | - Alfredo Caprioli
- EU Reference Laboratory for E. coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, RomeItaly
| |
Collapse
|
8
|
Escherichia coli O104 in Feedlot Cattle Feces: Prevalence, Isolation and Characterization. PLoS One 2016; 11:e0152101. [PMID: 27010226 PMCID: PMC4807062 DOI: 10.1371/journal.pone.0152101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/08/2016] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli O104:H4, an hybrid pathotype of Shiga toxigenic and enteroaggregative E. coli, involved in a major foodborne outbreak in Germany in 2011, has not been detected in cattle feces. Serogroup O104 with H type other than H4 has been reported to cause human illnesses, but their prevalence and characteristics in cattle have not been reported. Our objectives were to determine the prevalence of E. coli O104 in feces of feedlot cattle, by culture and PCR detection methods, and characterize the isolated strains. Rectal fecal samples from a total of 757 cattle originating from 29 feedlots were collected at a Midwest commercial slaughter plant. Fecal samples, enriched in E. coli broth, were subjected to culture and PCR methods of detection. The culture method involved immunomagnetic separation with O104-specific beads and plating on a selective chromogenic medium, followed by serogroup confirmation of pooled colonies by PCR. If pooled colonies were positive for the wzxO104 gene, then colonies were tested individually to identify wzxO104-positive serogroup and associated genes of the hybrid strains. Extracted DNA from feces were also tested by a multiplex PCR to detect wzxO104-positive serogroup and associated major genes of the O104 hybrid pathotype. Because wzxO104 has been shown to be present in E. coli O8/O9/O9a, wzxO104-positive isolates and extracted DNA from fecal samples were also tested by a PCR targeting wbdDO8/O9/O9a, a gene specific for E. coli O8/O9/O9a serogroups. Model-adjusted prevalence estimates of E. coli O104 (positive for wzxO104 and negative for wbdDO8/O9/O9a) at the feedlot level were 5.7% and 21.2%, and at the sample level were 0.5% and 25.9% by culture and PCR, respectively. The McNemar's test indicated that there was a significant difference (P < 0.01) between the proportions of samples that tested positive for wzxO104 and samples that were positive for wzxO104, but negative for wbdDO8/O9/O9a by PCR and culture methods. A total of 143 isolates, positive for the wzxO104, were obtained in pure culture from 146 positive fecal samples. Ninety-two of the 143 isolates (64.3%) also tested positive for the wbdDO8/O9/O9a, indicating that only 51 (35.7%) isolates truly belonged to the O104 serogroup (positive for wzxO104 and negative for wbdDO8/O9/O9a). All 51 isolates tested negative for eae, and 16 tested positive for stx1 gene of the subtype 1c. Thirteen of the 16 stx1-positive O104 isolates were from one feedlot. The predominant serotype was O104:H7. Pulsed-field gel electrophoresis analysis indicated that stx1-positive O104:H7 isolates had 62.4% homology to the German outbreak strain and 67.9% to 77.5% homology to human diarrheagenic O104:H7 strains. The 13 isolates obtained from the same feedlot were of the same PFGE subtype with 100% Dice similarity. Although cattle do not harbor the O104:H4 pathotype, they do harbor and shed Shiga toxigenic O104 in the feces and the predominant serotype was O104:H7.
Collapse
|
9
|
Brusa V, Piñeyro PE, Galli L, Linares LH, Ortega EE, Padola NL, Leotta GA. Isolation of Shiga Toxin-Producing Escherichia coli from Ground Beef Using Multiple Combinations of Enrichment Broths and Selective Agars. Foodborne Pathog Dis 2016; 13:163-70. [PMID: 26836701 DOI: 10.1089/fpd.2015.2034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens, and beef cattle are recognized as the principal reservoir. The aims of this study were (1) to identify the most sensitive combination of selective enrichment broths and agars for STEC isolation in artificially inoculated ground beef samples, and (2) to evaluate the most efficient combination(s) of methods for naturally contaminated ground beef samples. A total of 192 ground beef samples were artificially inoculated with STEC and non-stx bacterial strains. A combination of four enrichment broths and three agars were evaluated for sensitivity, specificity, and positive predictive value for STEC isolation from experimentally inoculated samples. Enrichments with either modified tryptic soy broth (mTSB) containing 8 mg/L novobiocin (mTSB-8) or modified Escherichia coli (mEC) broth followed by isolation in MacConkey agar were the most sensitive combinations for STEC isolation of artificially inoculated samples. Independently, both enrichments media followed by isolation in MacConkey were used to evaluate ground beef samples from 43 retail stores, yielding 65.1% and 58.1% stx-positive samples by RT-PCR, respectively. No difference was observed in the isolate proportions between these two methods (8/25 [32%] and 8/28 [28.6%]). Identical serotypes and stx genotypes were observed in STEC strains isolated from the same samples by either method. In this study, no single enrichment protocol was sufficient to detect all STEC in artificially inoculated samples and had considerable variation in detection ability with naturally contaminated samples. Moreover, none of the single or combinations of multiple isolation agars used were capable of identifying all STEC serogroups in either artificially inoculated or naturally occurring STEC-contaminated ground beef. Therefore, it may be prudent to conclude that there is no single method or combination of isolation methods capable of identifying all STEC serogroups.
Collapse
Affiliation(s)
- Victoria Brusa
- 1 Laboratorio de Microbiología de Alimentos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP) , Buenos Aires, Argentina .,3 Instituto de Genética Veterinaria "Ing. Fernando N. Dulout," Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) La Plata, Facultad de Ciencias Veterinarias UNLP , Buenos Aires, Argentina
| | - Pablo E Piñeyro
- 2 Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University , Ames, Iowa
| | - Lucía Galli
- 3 Instituto de Genética Veterinaria "Ing. Fernando N. Dulout," Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) La Plata, Facultad de Ciencias Veterinarias UNLP , Buenos Aires, Argentina
| | - Luciano H Linares
- 1 Laboratorio de Microbiología de Alimentos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP) , Buenos Aires, Argentina
| | - Emanuel E Ortega
- 1 Laboratorio de Microbiología de Alimentos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP) , Buenos Aires, Argentina
| | - Nora L Padola
- 4 Centro de Investigación Veterinaria Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Facultad Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires , Buenos Aires, Argentina
| | - Gerardo A Leotta
- 3 Instituto de Genética Veterinaria "Ing. Fernando N. Dulout," Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) La Plata, Facultad de Ciencias Veterinarias UNLP , Buenos Aires, Argentina
| |
Collapse
|
10
|
Singh P, Mustapha A. Multiplex real-time PCR assays for detection of eight Shiga toxin-producing Escherichia coli in food samples by melting curve analysis. Int J Food Microbiol 2015; 215:101-8. [PMID: 26355415 DOI: 10.1016/j.ijfoodmicro.2015.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are pathogenic strains of E. coli that can cause bloody diarrhea and kidney failure. Seven STEC serogroups, O157, O26, O45, O103, O111, O121 and O145 are responsible for more than 71% of the total infections caused by this group of pathogens. All seven serogroups are currently considered as adulterants in non-intact beef products in the U.S. In this study, two multiplex melt curve real-time PCR assays with internal amplification controls (IACs) were standardized for the detection of eight STEC serogroups. The first multiplex assay targeted E. coli serogroups O145, O121, O104, and O157; while the second set detected E. coli serogroups O26, O45, O103 and O111. The applicability of the assays was tested using 11 different meat and produce samples. For food samples spiked with a cocktail of four STEC serogroups with a combined count of 10 CFU/25 g food, all targets of the multiplex assays were detected after an enrichment period of 6h. The assays also worked efficiently when 325 g of food samples were spiked with 10 CFU of STECs. The assays are not dependent on fluorescent-labeled probes or immunomagnetic beads, and can be used for the detection of eight STEC serogroups in less than 11h. Routine preliminary screening of STECs in food samples is performed by testing for the presence of STEC virulence genes. The assays developed in this study can be useful as a first- or second-tier test for the identification of the eight O serogroup-specific genes in suspected food samples.
Collapse
Affiliation(s)
- Prashant Singh
- Food Science Program, University of Missouri, Columbia, USA
| | - Azlin Mustapha
- Food Science Program, University of Missouri, Columbia, USA.
| |
Collapse
|