1
|
Dong S, Li L, Hao F, Fang Z, Zhong R, Wu J, Fang X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult Sci 2024; 103:103287. [PMID: 38104412 DOI: 10.1016/j.psj.2023.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Remarkable changes have occurred in poultry farming and meat processing in recent years, driven by advancements in breeding technology, feed processing technology, farming conditions, and management practices. The incorporation of probiotics, prebiotics, and phytoextracts has made significant contributions to the development of poultry meat products that promote both health and functionality throughout the growth phase and during meat processing. Poultry fed with these substances improve meat quality, while incorporating probiotics, prebiotics, and phytoextracts in poultry processing, as additives or supplements, inhibits pathogens and offers health benefits to consumers. However, it is vital to assess the safety of functional fermented meat products containing these compounds and their potential effects on consumer health. Currently, there's still uncertainty in these aspects. Additionally, research on utilizing next-generation probiotic strains and synergistic combinations of probiotics and prebiotics in poultry meat products is in its early stages. Therefore, further investigation is required to gain a comprehensive understanding of the beneficial effects and safety considerations of these substances in poultry meat products in the future. This review offered a comprehensive overview of the applications of probiotics and prebiotics in poultry farming, focusing on their effects on nutrient utilization, growth efficiency, and gut health. Furthermore, potential of probiotics, prebiotics, and phytoextracts in enhancing poultry meat production was explored for improved health benefits and functionality, and possible issues associated with the use of these substances were discussed. Moreover, the conclusions drawn from this review and potential future perspectives in this field are presented.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Lanyin Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Ziying Fang
- Weiran Food Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518000, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
2
|
Sadanov A, Alimzhanova M, Ismailova E, Shemshura O, Ashimuly K, Molzhigitova A, Daugaliyeva S. Antagonistic and protective activity of Lactobacillus plantarum strain 17 M against E. amylovora. World J Microbiol Biotechnol 2023; 39:314. [PMID: 37733156 DOI: 10.1007/s11274-023-03765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The subject of the study was to identify the antagonism of the Lactobacillus plantarum strain 17 M against the causative agent of fire blight, the bacterium Erwinia amylovora, and to evaluate its protective capabilities on apple blossoms against this disease. For comparison 9 strains of lactic acid bacteria from the LLP "SPC of Microbiology and Virology" collection were included in the study. Strain 17 M appeared to be superior in limiting the growth of the pathogen on all 3 liquid media tested. Its maximum inhibitory activity was proved on MRS Broth medium. The analysis of the secondary metabolites produced by strain 17 M in liquid medium revealed that it consisted mainly of acetic acid (53.2 ± 4.3%), lactic acid (16.3 ± 2.3%) and 2,3-butanedione (14.84 ± 4.1%). The presence of other organic compounds was also detected but in a smaller amount. Study on influence of those compounds on growth of E. amylovora showed that lactic acid at concentration of 5% showed inhibitory activity but it was not toxic to apple flowers. The effectiveness of strain 17 M culture liquid diluted with sterile water and added to E. amylovora inoculum at 10% or 20% was 76.7 ± 5.8% and 88.3 ± 12.6%, respectively. This study confirms the potential use of strain 17 M as an active microbial agent to combat fire blight of fruit crops in Kazakhstan.
Collapse
Affiliation(s)
- Amankeldy Sadanov
- Limited Liability Partnership "Scientific-Production Center of Microbiology and Virology", str. Bogenbay batyr 105, Almaty, 050010, Kazakhstan
| | - Mereke Alimzhanova
- Limited Liability Partnership "Scientific-Production Center of Microbiology and Virology", str. Bogenbay batyr 105, Almaty, 050010, Kazakhstan.
- Al-Farabi Kazakh National University, ave. Al-Farabi 71, Almaty, Almaty, 050040, Kazakhstan.
| | - Elvira Ismailova
- Limited Liability Partnership "Scientific-Production Center of Microbiology and Virology", str. Bogenbay batyr 105, Almaty, 050010, Kazakhstan
| | - Olga Shemshura
- Limited Liability Partnership "Scientific-Production Center of Microbiology and Virology", str. Bogenbay batyr 105, Almaty, 050010, Kazakhstan
| | - Kazhybek Ashimuly
- Limited Liability Partnership "Scientific-Production Center of Microbiology and Virology", str. Bogenbay batyr 105, Almaty, 050010, Kazakhstan
| | - Assel Molzhigitova
- Limited Liability Partnership "Scientific-Production Center of Microbiology and Virology", str. Bogenbay batyr 105, Almaty, 050010, Kazakhstan
| | - Saule Daugaliyeva
- Limited Liability Partnership "Scientific-Production Center of Microbiology and Virology", str. Bogenbay batyr 105, Almaty, 050010, Kazakhstan
| |
Collapse
|
3
|
Porto-Fett ACS, Espuña E, Shane LE, Shoyer BA, McGeary L, Vinyard BT, Stahler LJ, Osoria M, Luchansky JB. Viability of Shiga Toxin-Producing Escherichia coli, Salmonella spp., and Listeria monocytogenes during Preparation and Storage of Fuet, a Traditional Dry-Cured Spanish Pork Sausage. J Food Prot 2022; 85:879-889. [PMID: 35294002 DOI: 10.4315/jfp-21-356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/11/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The primary objective of this study was to monitor viability of Shiga toxin-producing Escherichia coli (STEC), Salmonella spp., and Listeria monocytogenes during preparation and storage of fuet. Regarding methodology, coarse-ground pork (ca. 35% fat) was mixed with salt (2.5%), dextrose (0.3%), starter culture (ca. 7.0 log CFU/g), celery powder (0.5%), and ground black pepper (0.3%) and then separately inoculated with a multistrain cocktail (ca. 7.0 log CFU/g) of each pathogen. The batter was stuffed into a ca. 42-mm natural swine casing and fermented at 23 ± 2°C and ca. 95% ± 4% relative humidity to ≤pH 5.3 (≤48 h). Sausages were then dried at 12 ± 2°C and ca. 80% ± 4% relative humidity to a water activity (aw) of 0.89 (within 33 days) or aw 0.86 (within 60 days). A portion of each batch of fuet was subjected to high-pressure processing (HPP; 600 MPa for 3 min) before chubs were vacuum packaged and stored for 30 days at 20 ± 2°C. The results revealed that pathogen numbers remained relatively unchanged after fermentation (≤0.35 log CFU/g reduction), whereas reductions of ca. 0.8 to 3.2 log CFU/g were achieved after drying fuet to aw 0.89 or 0.86. Regardless of whether fuet was or was not pressure treated, additional reductions of ca. 2.2 to ≥5.3 log CFU/g after drying were achieved following 30 days of storage at 20°C. For non-HPP-treated fuet dried to aw 0.89 and stored for 30 days at 20°C, total reductions of ≥5.3 log CFU/g in levels of STEC or Salmonella spp. were achieved, whereas levels of L. monocytogenes were reduced by ca. 3.6 log CFU/g. Total reductions of ≥5.3 log CFU/g in levels of all three pathogens were achieved after drying non-HPP-treated fuet to aw 0.86. For fuet dried to aw 0.89 or 0.86, that were pressure treated and then stored for 30 days at 20°C, total reductions of >6.2 log CFU/g in levels of all three pathogens were achieved. In conclusion, the processing parameters tested herein, with or without application of HPP, validated that reductions of ≥2.0 or ≥5.0 log CFU/g in levels of STEC, Salmonella spp., and L. monocytogenes were achieved during preparation and storage of fuet. HIGHLIGHTS
Collapse
Affiliation(s)
- Anna C S Porto-Fett
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania 19038
| | | | - Laura E Shane
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania 19038
| | - Bradley A Shoyer
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania 19038
| | - Lianna McGeary
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania 19038
| | - Bryan T Vinyard
- Statistics Group, Northeast Area Office, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA
| | - Laura J Stahler
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania 19038
| | - Manuela Osoria
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania 19038
| | - John B Luchansky
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania 19038
| |
Collapse
|
4
|
Manassi CF, de Souza SS, Hassemer GDS, Sartor S, Lima CMG, Miotto M, De Dea Lindner J, Rezzadori K, Pimentel TC, Ramos GLDPA, Esmerino E, Holanda Duarte MCK, Marsico ET, Verruck S. Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Res Int 2022; 154:111035. [DOI: 10.1016/j.foodres.2022.111035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
5
|
Munekata PES, Pateiro M, Tomasevic I, Domínguez R, da Silva Barretto AC, Santos EM, Lorenzo JM. Functional fermented meat products with probiotics-A review. J Appl Microbiol 2021; 133:91-103. [PMID: 34689391 DOI: 10.1111/jam.15337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
Fermentation has been an important strategy in the preservation of foods. The use of starter cultures with probiotic activity has gained the attention of researchers to produce functional fermented meat products. This review aims to overview the main strengths, weakness, opportunities and threats of fermented meat products with probiotics. Fermented meat products can be considered as a relevant matrix for the delivery of probiotics with potential health benefits. Moreover, fermented meat products produced by traditional methods are sources of probiotics that can be explored in the production of functional meat products. However, some barriers are limit the progression with these products: the complex selection process to obtain new and tailored probiotic strains, the current perception of healthiness associated with meat and meat products, and the limited application of probiotic to fermented sausages. Promising opportunities to improve the value of functional fermented meat products have been developed by exploring new meat products as functional fermented foods, improving the protection of probiotics with microencapsulation and improving the quality of meat product (reducing nitrate and nitrate salts, adding dietary fibre, and exploring the inherent antioxidant and cardioprotective activity of meat products). Attention to potential threats is also indicated such as the unclear future changes in meat and meat products consumption due to changes in consumer preferences and the presence of competitors (dairy, fruit and vegetable-based products, for instance) in more advanced stages of development and commercialization. SIGNIFICANCE AND IMPACT OF STUDY: This review provides an overview of the Strengths, Weakness, Opportunities and Threats related to the development of functional fermented meat products with probiotics. Internal and external factors that explain the current scenario and strategies to advance the production are highlighted.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Andrea C da Silva Barretto
- Department of Food Technology and Engineering, UNESP-São Paulo State University, Sao Jose do Rio Preto, Brazil
| | - Eva M Santos
- Área Académica de Química, Mineral de la Reforma, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
6
|
Karwowska M, Stadnik J, Stasiak DM, Wójciak K, Lorenzo JM. Strategies to improve the nutritional value of meat products: incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Małgorzata Karwowska
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - Joanna Stadnik
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - Dariusz M. Stasiak
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - Karolina Wójciak
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia Rúa Galicia No 4 Parque Tecnológico de Galicia San Cibrao das Viñas Ourense 32900 Spain
- Área de Tecnología de los Alimentos Facultad de Ciencias de Ourense Universidad de Vigo Ourense 32004 Spain
| |
Collapse
|
7
|
Palavecino Prpich NZ, Camprubí GE, Cayré ME, Castro MP. Indigenous Microbiota to Leverage Traditional Dry Sausage Production. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6696856. [PMID: 33604370 PMCID: PMC7868150 DOI: 10.1155/2021/6696856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
The main issue addressed in this review is the need for innovation in the artisanal production of dry fermented sausages-leveraging rather than discarding tradition, together with some practical strategies available to achieve it. Throughout the text, emphasis is placed on the autochthonous microbiota responsible for the identity and unique sensory characteristics of these products. The available strategies to introduce innovation in this manufacturing process rely on metabolic flexibility of microbial strains. In this sense, this review evaluates the application of several tools aimed at improving the quality and safety of artisanal dry fermented sausages focusing on the microbial community role. The most studied alternatives to enhance dry sausage production comprise the use of autochthonous starter cultures-including functional and/or probiotic strains, the production of bacteriocins, and the generation of bioactive peptides, which have been thoroughly covered herein. The purpose of this work is to review recent research about novel different strategies available for food technologists to improve safety and quality in the manufacture of dry fermented sausages. Additional support strategies-quality product registers and innovation through tradition-have been suggested as complementary actions towards a successful introduction of indigenous microbial communities into traditional dry sausage production.
Collapse
Affiliation(s)
- Noelia Zulema Palavecino Prpich
- Laboratorio de Microbiología de Alimentos, Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires, Argentina
| | - Germán Edgardo Camprubí
- Facultad de Ingeniería, Universidad Nacional del Nordeste (UNNE), Las Heras 727, Resistencia, 3500 Chaco, Argentina
| | - María Elisa Cayré
- Laboratorio de Microbiología de Alimentos, Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina
| | - Marcela Paola Castro
- Laboratorio de Microbiología de Alimentos, Universidad Nacional del Chaco Austral (UNCAus), Comandante Fernández 755, Presidencia Roque Sáenz Peña, 3700 Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires, Argentina
| |
Collapse
|
8
|
Pires BDA, Cristina de Almeida Bianchini Campos R, Canuto JW, de Melo Carlos Dias T, Furtado Martins EM, Licursi L, Ricardo de Castro Leite Júnior B, Martins ML. Lactobacillus rhamnosus GG in a mixed pineapple (Ananas comosus L. Merril) and jussara (Euterpe edulis Martius) beverage and its survival in the human gastrointestinal tract. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Luong NDM, Coroller L, Zagorec M, Membré JM, Guillou S. Spoilage of Chilled Fresh Meat Products during Storage: A Quantitative Analysis of Literature Data. Microorganisms 2020; 8:E1198. [PMID: 32781668 PMCID: PMC7465036 DOI: 10.3390/microorganisms8081198] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
A literature search was performed on spoilage of fresh meat products by combining keyword query, text mining and expert elicitation. From the 258 collected studies, a quantitative analysis was first performed to identify the methods which are the most used to evaluate spoilage beside the preservation strategies suggested. In a second step focusing on a subset of 24 publications providing quantitative data on spoilage occurrence time, associations between spoilage occurrence time of meat products and specific spoilage indicators were investigated. The analysis especially focused on factors well represented in the 24 publications, i.e., gas packaging (O2 and CO2) and storage temperature. Relationships between spoilage occurrence and several microbiological indicators were also sought. The results point out possible advantages of removing dioxygen in packaging to delay spoilage occurrence, whereas, in the presence of dioxygen, the carbon dioxide proportion in the gas mixtures was shown to influence spoilage occurrence. The collected data clearly reveal a potentially protective role of lactic acid bacteria. Besides, while a spoilage role could be attributed to Pseudomonas spp., the growth of mesophilic aerobic microbes, Brochothrix spp. and Enterobacteriaceae seemed independent of spoilage occurrence time.
Collapse
Affiliation(s)
- Ngoc-Du Martin Luong
- SECALIM, INRAE, ONIRIS, Université Bretagne Loire, Route de Gachet, CS 40706, F-44307 Nantes, France; (N.-D.M.L.); (M.Z.); (J.-M.M.)
| | - Louis Coroller
- Université de Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT Alter’ix, F-29334 Quimper, France;
| | - Monique Zagorec
- SECALIM, INRAE, ONIRIS, Université Bretagne Loire, Route de Gachet, CS 40706, F-44307 Nantes, France; (N.-D.M.L.); (M.Z.); (J.-M.M.)
| | - Jeanne-Marie Membré
- SECALIM, INRAE, ONIRIS, Université Bretagne Loire, Route de Gachet, CS 40706, F-44307 Nantes, France; (N.-D.M.L.); (M.Z.); (J.-M.M.)
| | - Sandrine Guillou
- SECALIM, INRAE, ONIRIS, Université Bretagne Loire, Route de Gachet, CS 40706, F-44307 Nantes, France; (N.-D.M.L.); (M.Z.); (J.-M.M.)
| |
Collapse
|
10
|
IGNACIO EO, SANTOS JMD, SANTOS SEDJ, SOUZA CVB, BARRETTO ACDS. Effect of the addition of rabbit meat on the technological and sensory properties of fermented sausage. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.02019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Bis-Souza CV, Penna ALB, da Silva Barretto AC. Applicability of potentially probiotic Lactobacillus casei in low-fat Italian type salami with added fructooligosaccharides: in vitro screening and technological evaluation. Meat Sci 2020; 168:108186. [PMID: 32428692 DOI: 10.1016/j.meatsci.2020.108186] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
The aim was to evaluate the use of Lactobacillus casei strains in the fermentation process of low-fat Italian type salami with fructooligosaccharides (FOS). A screening using probiotic strains was performed at pH 5.5, 5.0 and 4.5 and incubation temperatures of 15 and 25 °C. Lactobacillus casei SJRP66 and Lactobacillus casei SJRP169 were selected and added to the low-fat fermented sausage - C (control), FOS (25% reduced fat with 2% FOS), FOS_66 (25% reduced fat with 2% FOS and L.casei SJRP 66) and FOS_169 (25% reduced fat with 2% FOS and L.casei SJRP 169). The evaluation included pH, moisture, lactic acid bacteria count, probiotic count, weight loss, instrumental color, TBARS and texture parameters. FOS_66 and FOS_169 presented a good probiotic count (8 log CFU/g) and similar technological behavior to the control. The addition of the probiotic showed no effect on lipid oxidation and * value. These strains of probiotic showed promising properties for applications in low-fat Italian type salami with healthier appeal.
Collapse
Affiliation(s)
- Camila Vespúcio Bis-Souza
- Department of Food Engineering and Technology, UNESP - São Paulo State University, 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, SP, Brazil
| | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, UNESP - São Paulo State University, 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, SP, Brazil
| | - Andrea Carla da Silva Barretto
- Department of Food Engineering and Technology, UNESP - São Paulo State University, 2265 Cristóvão Colombo Street, 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
12
|
Campos PA, Martins EMF, Martins ML, de Oliveira Martins AD, de Castro Leite Júnior BR, da Silva RR, Trevizano LM. In vitro resistance of Lactobacillus plantarum LP299v or Lactobacillus rhamnosus GG carried by vegetable appetizer. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Bis-Souza CV, Pateiro M, Domínguez R, Penna ALB, Lorenzo JM, Silva Barretto AC. Impact of fructooligosaccharides and probiotic strains on the quality parameters of low-fat Spanish Salchichón. Meat Sci 2019; 159:107936. [PMID: 31518708 DOI: 10.1016/j.meatsci.2019.107936] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/31/2019] [Accepted: 09/02/2019] [Indexed: 01/17/2023]
Abstract
The substitution of dietary fiber and probiotic strains to reduce fat content of fermented sausages has been used for the development of innovative and healthier meat products. For this study, pork back fat was partially replaced by fructooligosaccharides (FOS) and the probiotic strains Lactobacillus paracasei and Lactobacillus rhamanosus. The fat replacement resulted in a significant decrease (P ≤ .05) in fat content (29%) compared with the control formulation (no fat substitution). The addition of FOS did not have a significant effect on microbial counts; however, reductions in Enterobacteriaceae and yeast were observed when Lactobacillus strains were also incorporated. The inclusion of FOS and probiotic strains did not show any significant effect on lipid oxidation and proteolysis. The partial fat replacement and the addition of Lactobacillus rhamanosus GG as probiotic strain in Spanish Salchichón can be considered a successful reformulation strategy for the meat product market.
Collapse
Affiliation(s)
- Camila V Bis-Souza
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Ana L B Penna
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Andrea C Silva Barretto
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
14
|
Aziz K, Tariq M, Zaidi A. Biofilm development in L. fermentum under shear flow & sequential GIT digestion. FEMS Microbiol Lett 2019; 366:5423880. [DOI: 10.1093/femsle/fnz064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kanwal Aziz
- National Probiotic Lab, National Institute for Biotechnology & Genetic Engineering (NIBGE), Jhang Road, Faisalabad 38000, Pakistan
| | - Muhammad Tariq
- National Probiotic Lab, National Institute for Biotechnology & Genetic Engineering (NIBGE), Jhang Road, Faisalabad 38000, Pakistan
| | - Arsalan Zaidi
- National Probiotic Lab, National Institute for Biotechnology & Genetic Engineering (NIBGE), Jhang Road, Faisalabad 38000, Pakistan
| |
Collapse
|
15
|
Bis-Souza CV, Barba FJ, Lorenzo JM, Penna ALB, Barretto ACS. New strategies for the development of innovative fermented meat products: a review regarding the incorporation of probiotics and dietary fibers. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1584816] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- C. V. Bis-Souza
- Department of Food Technology and Engineering, UNESP – São Paulo State University, São José do Rio Preto, SP, Brazil
| | - F. J. Barba
- Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Universitat de València, València, Spain
| | - J. M. Lorenzo
- Department of Chromatographic, Centro Tecnológico de la Carne de Galicia, San Ciprián de Viñas, Ourense, Spain
| | - A. L. B Penna
- Department of Food Technology and Engineering, UNESP – São Paulo State University, São José do Rio Preto, SP, Brazil
| | - A. C. S. Barretto
- Department of Food Technology and Engineering, UNESP – São Paulo State University, São José do Rio Preto, SP, Brazil
| |
Collapse
|
16
|
Song CE, Kuppusamy P, Jeong YI, Shim HH, Lee KD. Microencapsulation of endophytic LAB (KCC-41) and its probiotic and fermentative potential for cabbage kimchi. Int Microbiol 2019; 22:121-130. [PMID: 30810943 DOI: 10.1007/s10123-018-00034-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to isolate novel lactic acid bacteria (LAB) from hairy vetch forage crop and characterize their probiotic and fermentative potential for preparing Korean cabbage kimchi. First, functional characterization of isolated strains such as antagonistic property, auto-aggregation, antibiotic susceptibility, and extracellular enzyme production was performed. The isolated Lactobacillus plantarum KCC-41 strain was able to inhibit pathogenic fungal spore formation. It showed susceptibility to common commercial antibiotics drugs. The selected LAB strain was then subjected to microencapsulation with alginate biopolymer. Its ability to survive in in vitro simulated gastro-intestinal fluid was evaluated. It was also used in the fermentation of cabbage kimchi samples. The encapsulated KCC-41 strain could effectively lead to kimchi fermentation in terms of reducing its pH and dominating bacterial count. It also significantly increased organic acid production than non-encapsulated LAB (KCC-41) for cabbage kimchi samples.
Collapse
Affiliation(s)
- Chae Eun Song
- Lifelong Education Center, Chonnam National University, Kwangju, 500-757, Republic of Korea
| | - Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 330-801, Republic of Korea
| | - Young-Il Jeong
- Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, Republic of Korea
| | - Han Hyo Shim
- Department of Biotechnology, Sunchon National University, Suncheon, Jeonnam, 540-742, Republic of Korea.
- Department of Oriental Medicine Materials, Dongsin University, Naju, 520-714, Republic of Korea.
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongsin University, Naju, 520-714, Republic of Korea.
| |
Collapse
|
17
|
Zielińska D, Kolożyn-Krajewska D. Food-Origin Lactic Acid Bacteria May Exhibit Probiotic Properties: Review. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5063185. [PMID: 30402482 PMCID: PMC6191956 DOI: 10.1155/2018/5063185] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/10/2018] [Indexed: 01/07/2023]
Abstract
One of the most promising areas of development in the human nutritional field over the last two decades has been the use of probiotics and recognition of their role in human health and disease. Lactic acid-producing bacteria are the most commonly used probiotics in foods. It is well known that probiotics have a number of beneficial health effects in humans and animals. They play an important role in the protection of the host against harmful microorganisms and also strengthen the immune system. Some probiotics have also been found to improve feed digestibility and reduce metabolic disorders. They must be safe, acid and bile tolerant, and able to adhere and colonize the intestinal tract. The means by which probiotic bacteria elicit their health effects are not understood fully, but may include competitive exclusion of enteric pathogens, neutralization of dietary carcinogens, production of antimicrobial metabolites, and modulation of mucosal and systemic immune function. So far, lactic acid bacteria isolated only from the human gastrointestinal tract are recommended by the Food and Agriculture Organization (FAO) and World Health Organization (WHO) for use as probiotics by humans. However, more and more studies suggest that strains considered to be probiotics could be isolated from fermented products of animal origin, as well as from non-dairy fermented products. Traditional fermented products are a rich source of microorganisms, some of which may exhibit probiotic properties. They conform to the FAO/WHO recommendation, with one exception; they have not been isolated from human gastrointestinal tract. In light of extensive new scientific evidence, should the possibility of changing the current FAO/WHO requirements for the definition of probiotic bacteria be considered?
Collapse
Affiliation(s)
- Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Danuta Kolożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
18
|
ROSELINO MN, ALMEIDA JFD, COZENTINO IC, CANAAN JMM, PINTO RA, VALDEZ GFD, ROSSI EA, CAVALLINI DCU. Probiotic salami with fat and curing salts reduction: physicochemical, textural and sensory characteristics. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/fst.24216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Daranas N, Badosa E, Francés J, Montesinos E, Bonaterra A. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments. PLoS One 2018; 13:e0190931. [PMID: 29304187 PMCID: PMC5755932 DOI: 10.1371/journal.pone.0190931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/24/2017] [Indexed: 12/19/2022] Open
Abstract
Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH) conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.
Collapse
Affiliation(s)
- Núria Daranas
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Jesús Francés
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Anna Bonaterra
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| |
Collapse
|
20
|
Ben Slima S, Ktari N, Trabelsi I, Triki M, Feki-Tounsi M, Moussa H, Makni I, Herrero A, Jiménez-Colmenero F, Ruiz-Capillas Perez C, Ben Salah R. Effect of partial replacement of nitrite with a novel probiotic Lactobacillus plantarum TN8 on color, physico-chemical, texture and microbiological properties of beef sausages. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Flach J, van der Waal MB, van den Nieuwboer M, Claassen E, Larsen OFA. The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Crit Rev Food Sci Nutr 2017; 58:2570-2584. [DOI: 10.1080/10408398.2017.1334624] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Joost Flach
- Vrije Universiteit Amsterdam, Athena Institute, Amsterdam, Netherlands
- CR2O, Marconistraat 16, Rotterdam, Netherlands
| | - Mark B. van der Waal
- Vrije Universiteit Amsterdam, Athena Institute, Amsterdam, Netherlands
- CR2O, Marconistraat 16, Rotterdam, Netherlands
| | | | - Eric Claassen
- Vrije Universiteit Amsterdam, Athena Institute, Amsterdam, Netherlands
| | - Olaf F. A. Larsen
- Vrije Universiteit Amsterdam, Athena Institute, Amsterdam, Netherlands
| |
Collapse
|
22
|
Abstract
Fermented sausages are highly treasured traditional foods. A large number of distinct sausages with different properties are produced using widely different recipes and manufacturing processes. Over the last years, eating fermented sausages has been associated with potential health hazards due to their high contents of saturated fats, high NaCl content, presence of nitrite and its degradation products such as nitrosamines, and use of smoking which can lead to formation of toxic compounds such as polycyclic aromatic hydrocarbons. Here we review the recent literature regarding possible health effects of the ingredients used in fermented sausages. We also go through attempts to improve the sausages by lowering the content of saturated fats by replacing them with unsaturated fats, reducing the NaCl concentration by partly replacing it with KCl, and the use of selected starter cultures with desirable properties. In addition, we review the food pathogenic microorganisms relevant for fermented sausages(Escherichia coli,Salmonella enterica,Staphylococcus aureus,Listeria monocytogenes,Clostridium botulinum, andToxoplasma gondii)and processing and postprocessing strategies to inhibit their growth and reduce their presence in the products.
Collapse
|
23
|
Wu Z, Wang P, He J, Pan D, Zeng X, Cao J. Proteome analysis of Lactobacillus plantarum strain under cheese-like conditions. J Proteomics 2016; 146:165-71. [PMID: 27418433 DOI: 10.1016/j.jprot.2016.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED As a food grade fermentation starter, Lactobacillus plantarum (L. plantarum) also named as the secondary starters during cheese ripening. In this study, the concentration of NaCl was screened as the main factor in the cheese-like conditions (15°C, pH5.2, 6% NaCl) to assess the potential properties of L. plantarum. A comprehensive proteome profile of L. plantarum strain was analyzed with iTRAQ proteomics methods fractionated by SCX chromatography. Proteins involved in carbohydrate transport and metabolism, cell envelope, peptide-glycan biosynthesis and lipid transport and metabolism were found significant changes. Meanwhile, the same trends were found in mRNA expression levels analyzed by RT-PCR. Some general transportation proteins related to ion transporters were detected as more abundant, which may reveal a rescue mechanism of the microbe in sodium-dependent glucose transfer. The understanding of L. plantarum proteome in salt tolerance could be useful to get strain adapted for specific applications. BIOLOGICAL SIGNIFICANCE The bacterial biota has a primary role in affecting cheese quality. Under cheese-like conditions, L. plantarum mainly increased the levels of enzymes that responsible for the flavour development during cheese ripening. However, the mechanisms of proteomic adaptation remain largely unclear in unraveling details of the salt tolerance of L. plantarum. This study revealed a dramatic change involved in carbohydrate transport and metabolism, cell envelope, peptide-glycan biosynthesis, lipid transport and metabolism, and glycolysis. Meanwhile, these pathways provide a comprehensive proteome profile of L. plantarum survived under cheese-like conditions. Furthermore, this study shows that iTRAQ proteomics provide more reliable information in describing the molecular rescue strategy of L. plantarum in sodium-dependent glucose transfer.
Collapse
Affiliation(s)
- Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Marine Science School, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Pingping Wang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Marine Science School, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jiayi He
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Marine Science School, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Marine Science School, Ningbo University, Ningbo, 315211, Zhejiang, China; Department of Food Science and Nutrition, Jinling College, Nanjing Normal University, Nanjing, 210097, Jiangsu, China.
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Marine Science School, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Marine Science School, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
24
|
Lactobacillus casei LcY decreases milk protein immunoreactivity of fermented buttermilk but also contains IgE-reactive proteins. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Jofré A, Aymerich T, Garriga M. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage. Benef Microbes 2016; 6:381-6. [PMID: 25380798 DOI: 10.3920/bm2014.0038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The production of long shelf-life highly concentrated dried probiotic/starter cultures is of paramount importance for the food industry. The aim of the present study was to evaluate the protective effect of glucose, lactose, trehalose, and skim milk applied alone or combined upon the survival of potentially probiotic Lactobacillus rhamnosus CTC1679, Lactobacillus casei/paracasei CTC1677 and L. casei/paracasei CTC1678 during freeze-drying and after 39 weeks of storage at 4 and 22 °C. Immediately after freeze-drying, the percentage of survivors was very high (≥ 94%) and only slight differences were observed among strains and cryoprotectants. In contrast, during storage, survival in the dried state depended on the cryoprotectant, temperature and strain. For all the protectants assayed, the stability of the cultures was remarkably higher when stored under refrigeration (4 °C). Under these conditions, skim milk alone or supplemented with trehalose or lactose showed the best performance (reductions ≤ 0.9 log units after 39 weeks of storage). The lowest survival was observed during non-refrigerated storage and with glucose and glucose plus milk; no viable cells left at the end of the storage period. Thus, freeze-drying in the presence of appropriate cryoprotectants allows the production of long shelf-life highly concentrated dried cultures ready for incorporation in high numbers into food products as starter/potential probiotic cultures.
Collapse
Affiliation(s)
- A Jofré
- IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Spain
| | - T Aymerich
- IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Spain
| | - M Garriga
- IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Spain
| |
Collapse
|
26
|
De Prisco A, Mauriello G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2015.11.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
|
28
|
|
29
|
Iacumin L, Ginaldi F, Manzano M, Anastasi V, Reale A, Zotta T, Rossi F, Coppola R, Comi G. High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group and comparison with species-specific PCRs and multiplex PCR. Food Microbiol 2014; 46:357-367. [PMID: 25475306 DOI: 10.1016/j.fm.2014.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 11/30/2022]
Abstract
The correct identification and characterisation of bacteria is essential for several reasons: the classification of lactic acid bacteria (LAB) has changed significantly over the years, and it is important to distinguish and define them correctly, according to the current nomenclature, avoiding problems in the interpretation of literature, as well as mislabelling when probiotic are used in food products. In this study, species-specific PCR and HRM (high-resolution melting) analysis were developed to identify strains belonging to the Lactobacillus casei group and to classify them into L. casei, Lactobacillus paracasei and Lactobacillus rhamnosus. HRM analysis confirmed to be a potent, simple, fast and economic tool for microbial identification. In particular, 201 strains, collected from International collections and attributed to the L. casei group, were examined using these techniques and the results were compared with consolidated molecular methods, already published. Seven of the tested strains don't belong to the L. casei group. Among the remaining 194 strains, 6 showed inconsistent results, leaving identification undetermined. All the applied techniques were congruent for the identification of the vast majority of the tested strains (188). Notably, for 46 of the strains, the identification differed from the previous attribution.
Collapse
Affiliation(s)
- Lucilla Iacumin
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy.
| | - Federica Ginaldi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy
| | - Marisa Manzano
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy
| | - Veronica Anastasi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy
| | - Anna Reale
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy
| | - Teresa Zotta
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy
| | - Franca Rossi
- Dipartimento di Agricoltura, Ambiente e Alimenti Università degli Studi del Molise, Campobasso, Italy
| | - Raffaele Coppola
- Istituto di Scienze dell'Alimentazione-CNR, Avellino, Italy; Dipartimento di Agricoltura, Ambiente e Alimenti Università degli Studi del Molise, Campobasso, Italy
| | - Giuseppe Comi
- Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|