1
|
Chang G, Li Q, Wang T, Zhang B, Wu W, Lv C, Sun T, Zhou T, Zheng W, Wang Y, Wang X. Characterization of Pseudomonas spp. contamination and in situ spoilage potential in pasteurized milk production process. Food Res Int 2024; 188:114463. [PMID: 38823831 DOI: 10.1016/j.foodres.2024.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
To investigate the prevalence of Pseudomonas in the pasteurized milk production process and its effect on milk quality, 106 strains of Pseudomonas were isolated from the pasteurized milk production process of a milk production plant in Shaanxi Province, China. The protease, lipase and biofilm-producing capacities of the 106 Pseudomonas strains were evaluated, and the spoilage enzyme activities of their metabolites were assessed by simulating temperature incubation in the refrigerated (7 °C) and transport environment (25 °C) segments and thermal treatments of pasteurization (75 °C, 5 min) and ultra-high temperature sterilization (121 °C, 15 s). A phylogenetic tree was drawn based on 16S rDNA gene sequencing and the top 5 strains were selected as representative strains to identify their in situ spoilage potential by examining their growth potential and ability to hydrolyze proteins and lipids in milk using growth curves, pH, whiteness, Zeta-potential, lipid oxidation, SDS-PAGE and volatile flavor compounds. The results showed that half and more of the isolated Pseudomonas had spoilage enzyme production and biofilm capacity, and the spoilage enzyme activity of metabolites was affected by the culture temperature and sterilization method, but ultra-high temperature sterilization could not completely eliminate the enzyme activity. The growth of Pseudomonas lundensis and Pseudomonas qingdaonensis was less affected by temperature and time, and the hydrolytic capacity of extracellular protease and lipase secreted by Pseudomonas lurida was the strongest, which had the greatest effect on milk quality. Therefore, it is crucial to identify the key contamination links of Pseudomonas, the main bacteria responsible for milk spoilage, and the influence of environmental factors on its deterioration.
Collapse
Affiliation(s)
- Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianhong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bozheng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wendi Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunyang Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongzhuo Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi, China
| | - Yeru Wang
- National Center for Food Safety Risk Assessment, Beijing, China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Hongchao D, Ma L, Xu Z, Soteyome T, Yuan L, Yang Z, Jiao XA. Invited review: Role of Bacillus licheniformis in the dairy industry- friends or foes? J Dairy Sci 2024:S0022-0302(24)00904-4. [PMID: 38851582 DOI: 10.3168/jds.2024-24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bacillus licheniformis is one of the major spore-forming bacteria with great genotypic diversity in raw milk, dairy ingredients, final dairy products, and is found throughout the dairy processing continuum. Though being widely used as a probiotic strain, this species also serves as a potential risk in the dairy industry based on its roles in foodborne illness and dairy spoilage. Biofilm formation of B. licheniformis in combined with the heat resistance of its spores, make it impossible to prevent the presence of B. licheniformis in final dairy products by traditional cleaning and disinfection procedures. Despite the extensive efforts on the identification of B. licheniformis from various dairy samples, no reviews have been reported on both hazard and benefits of this spore-former. This review discusses the prevalence of B. licheniformis from raw milk to commercial dairy products, biofilm formation and spoilage potential of B. licheniformis, and its potential prevention methods. In addition, the potential benefits of B. licheniformis in the dairy industry were also summarized.
Collapse
Affiliation(s)
- Dai Hongchao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| | - Lili Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| |
Collapse
|
3
|
Azari R, Yousefi MH, Fallah AA, Alimohammadi A, Nikjoo N, Wagemans J, Berizi E, Hosseinzadeh S, Ghasemi M, Mousavi Khaneghah A. Controlling of foodborne pathogen biofilms on stainless steel by bacteriophages: A systematic review and meta-analysis. Biofilm 2024; 7:100170. [PMID: 38234712 PMCID: PMC10793095 DOI: 10.1016/j.bioflm.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
This study investigates the potential of using bacteriophages to control foodborne pathogen biofilms on stainless steel surfaces in the food industry. Biofilm-forming bacteria can attach to stainless steel surfaces, rendering them difficult to eradicate even after a thorough cleaning and sanitizing procedures. Bacteriophages have been proposed as a possible solution, as they can penetrate biofilms and destroy bacterial cells within, reducing the number of viable bacteria and preventing the growth and spread of biofilms. This systematic review and meta-analysis evaluates the potential of bacteriophages against different biofilm-forming foodborne bacteria, including Cronobacter sakazakii, Escherichia coli, Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas aeruginosa and Listeria monocytogenes. Bacteriophage treatment generally causes a significant average reduction of 38 % in biofilm formation of foodborne pathogens on stainless steel. Subgroup analyses revealed that phages are more efficient in long-duration treatment. Also, applying a cocktail of phages is 1.26-fold more effective than applying individual phages. Phages at concentrations exceeding 107 PFU/ml are significantly more efficacious in eradicating bacteria within a biofilm. The antibacterial phage activity decreases substantially by 3.54-fold when applied at 4 °C compared to temperatures above 25 °C. This analysis suggests that bacteriophages can be a promising solution for controlling biofilms in the food industry.
Collapse
Affiliation(s)
- Rahim Azari
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Yousefi
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Aziz A. Fallah
- Department of Food Hygiene and Quality Control, School of Veterinary Medicine, Shahrekord University, Shahrekord, 34141, Iran
| | - Arezoo Alimohammadi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Nikjoo
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Enayat Berizi
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, 71946-84471, Iran
| | - Mohammad Ghasemi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran
| | - Amin Mousavi Khaneghah
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
4
|
Papkovsky DB, Kerry JP. Oxygen Sensor-Based Respirometry and the Landscape of Microbial Testing Methods as Applicable to Food and Beverage Matrices. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094519. [PMID: 37177723 PMCID: PMC10181535 DOI: 10.3390/s23094519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The current status of microbiological testing methods for the determination of viable bacteria in complex sample matrices, such as food samples, is the focus of this review. Established methods for the enumeration of microorganisms, particularly, the 'gold standard' agar plating method for the determination of total aerobic viable counts (TVC), bioluminescent detection of total ATP, selective molecular methods (immunoassays, DNA/RNA amplification, sequencing) and instrumental methods (flow cytometry, Raman spectroscopy, mass spectrometry, calorimetry), are analyzed and compared with emerging oxygen sensor-based respirometry techniques. The basic principles of optical O2 sensing and respirometry and the primary materials, detection modes and assay formats employed are described. The existing platforms for bacterial cell respirometry are then described, and examples of particular assays are provided, including the use of rapid TVC tests of food samples and swabs, the toxicological screening and profiling of cells and antimicrobial sterility testing. Overall, O2 sensor-based respirometry and TVC assays have high application potential in the food industry and related areas. They detect viable bacteria via their growth and respiration; the assay is fast (time to result is 2-8 h and dependent on TVC load), operates with complex samples (crude homogenates of food samples) in a simple mix-and-measure format, has low set-up and instrumentation costs and is inexpensive and portable.
Collapse
Affiliation(s)
- Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, T12 YT20 Cork, Ireland
| | - Joseph P Kerry
- School of Food and Nutritional Sciences, University College Cork, Microbiology Building, College Road, T12 YT20 Cork, Ireland
| |
Collapse
|
5
|
Biofilm formation risk assessment for psychrotrophic pseudomonas in raw milk by MALDI-TOF mass spectrometry. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Orhan-Yanıkan E, Gülseren G, Ayhan K. Antimicrobial characteristics of Thymus vulgaris and Rosa damascena oils against some milk-borne bacteria. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Du B, Meng L, Liu H, Zheng N, Zhang Y, Zhao S, Li M, Wang J. Diversity and proteolytic activity of Pseudomonas species isolated from raw cow milk samples across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156382. [PMID: 35660435 DOI: 10.1016/j.scitotenv.2022.156382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas spp. are common microorganisms from cold-storage raw milk, and protease secreted by Pseudomonas spp. can cause the deterioration of stored milk. However, analyses of Pseudomonas spp. diversity and proteolytic activity in raw milk from different regions of China have not been extensively examined. With this aim, the diversity and proteolytic activity of Pseudomonas isolated from 25 raw cow milk samples from Inner Mongolia, Heilongjiang, Gansu, Henan, Anhui, Jiangsu, Chongqing and Hunan of China in different seasons were evaluated by PCR targeting 16S rDNA and rpoD, as well as TNBS method, respectively. A total of 116 Pseudomonas isolates from 25 raw cow milk samples were identified at the species level, including P. fluorescens, P. veronii, P. psychrophila, P. lundensis, P. lactis, P. azotoformans, P. granadensis, P. lurida, P. rhizosphaerae, P. rhodesiae and P. extremorientalis. P. fluorescens accounted for 75.8% of the total. Of all 116 Pseudomonas isolates, 68.9% of them displayed proteolytic activity at 4 °C, 81.9% at 10 °C and 85.3% at 25 °C, respectively. The aprX gene encoded a secreted and heat-resistant metalloprotease that was present in 60.3% of the Pseudomonas isolates tested. The proteases showed residual activity ranged from 73 ± 4% to 84 ± 7% residual activity after the heat treatment at 72 °C for 15 s and 62 ± 3% to 74 ± 2% after the heat treatment at 132 °C for 4 s. This is the first report to compare Pseudomonas spp. diversity and proteolytic activity at species levels in raw milk from different regions of China. The results of this study provide valuable data about the diversity and spoilage potential of Pseudomonas species in raw milk and the thermal resistance of the proteases. Therefore, these findings provide a reference for the importance to prevent Pseudomonas spp. contamination of raw cow milk to ensure the quality and safety of milk and dairy products.
Collapse
Affiliation(s)
- Bingyao Du
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ming Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
Ramos-Vivas J, Tapia O, Elexpuru-Zabaleta M, Pifarre KT, Armas Diaz Y, Battino M, Giampieri F. The Molecular Weaponry Produced by the Bacterium Hafnia alvei in Foods. Molecules 2022; 27:molecules27175585. [PMID: 36080356 PMCID: PMC9457839 DOI: 10.3390/molecules27175585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hafnia alvei is receiving increasing attention from both a medical and veterinary point of view, but the diversity of molecules it produces has made the interest in this bacterium extend to the field of probiotics, the microbiota, and above all, to its presence and action on consumer foods. The production of Acyl Homoserine Lactones (AHLs), a type of quorum-sensing (QS) signaling molecule, is the most often-studied chemical signaling molecule in Gram-negative bacteria. H. alvei can use this communication mechanism to promote the expression of certain enzymatic activities in fermented foods, where this bacterium is frequently present. H. alvei also produces a series of molecules involved in the modification of the organoleptic properties of different products, especially cheeses, where it shares space with other microorganisms. Although some strains of this species are implicated in infections in humans, many produce antibacterial compounds, such as bacteriocins, that inhibit the growth of true pathogens, so the characterization of these molecules could be very interesting from the point of view of clinical medicine and the food industry. Lastly, in some cases, H. alvei is responsible for the production of biogenic amines or other compounds of special interest in food health. In this article, we will review the most interesting molecules that produce the H. alvei strains and will discuss some of their properties, both from the point of view of their biological activity on other microorganisms and the properties of different food matrices in which this bacterium usually thrives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- CIBER of Infectious Diseases—CIBERINFEC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.R.-V.); (M.B.)
| | - Olga Tapia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Kilian Tutusaus Pifarre
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.R.-V.); (M.B.)
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| |
Collapse
|
9
|
Elbehiry A, Marzouk E, Aldubaib M, Moussa I, Abalkhail A, Ibrahem M, Hamada M, Sindi W, Alzaben F, Almuzaini AM, Algammal AM, Rawway M. Pseudomonas species prevalence, protein analysis, and antibiotic resistance: an evolving public health challenge. AMB Express 2022; 12:53. [PMID: 35532863 PMCID: PMC9086069 DOI: 10.1186/s13568-022-01390-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Psychrotrophic Pseudomonas is one of the significant microbes that lead to putrefaction in chilled meat. One of the biggest problems in the detection of Pseudomonas is that several species are seemingly identical. Currently, antibiotic resistance is one of the most significant challenges facing the world's health and food security. Therefore, this study was designed to apply an accurate technique for eliminating the identification discrepancy of Pseudomonas species and to study their resistance against various antimicrobials. A total of 320 chicken meat specimens were cultivated, and the isolated bacteria’ were phenotypically recognized. Protein analysis was carried out for cultured isolates via Microflex LT. The resistance of Pseudomonas isolates was recorded through Vitek® 2 AST-GN83 cards. Overall, 69 samples were identified as Pseudomonas spp. and included 18 Pseudomonas lundensis (P. lundensis), 16 Pseudomonas fragi (P. fragi), 13 Pseudomonas oryzihabitans (P. oryzihabitans), 10 Pseudomonas stutzeri (P. stutzeri), 5 Pseudomonas fluorescens (P. fluorescens), 4 Pseudomonas putida (P. putida), and 3 Pseudomonas aeruginosa (P. aeruginosa) isolates. Microflex LT identified all Pseudomonas isolates (100%) correctly with a score value ≥ 2.00. PCA positively discriminated the identified isolates into various groups. The antimicrobial resistance levels against Pseudomonas isolates were 81.16% for nitrofurantoin, 71% for ampicillin and ampicillin/sulbactam, 65.22% for cefuroxime and ceftriaxone, 55% for aztreonam, and 49.28% for ciprofloxacin. The susceptibilities were 100% for cefotaxime, 98.55% for ceftazidime, 94.20% for each piperacillin/tazobactam and cefepime, 91.3% for cefazolin. In conclusion, chicken meat was found to be contaminated with different Pseudomonas spp., with high incidence rates of P. lundensis. Microflex LT is a potent tool for distinguishing Pseudomonads at the species level.
Collapse
|
10
|
A Comparison of Methods for Identifying Enterobacterales Isolates from Fish and Prawns. Pathogens 2022; 11:pathogens11040410. [PMID: 35456084 PMCID: PMC9032566 DOI: 10.3390/pathogens11040410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/05/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Enterobacterales is a prevalent order, which inhabits a variety of environments including food. Due to the high similarities between pathogenic and non-pathogenic species, their identification might be difficult and laborious, and therefore there is a need for rapid and precise identification. The aim of this study was to compare the effectiveness of the available methods of identifying order Enterobacterales strains isolated from fresh fish and shrimps (n = 62). The following methods were used in this study: biochemical, sequencing and identification using the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). For this purpose, biochemical identification was performed with the use of the EnteroTest 24N set, while the identification using the MALDI-TOF MS technology was operated on VITEK® MS. Results were compared with identification made by 16S rRNA sequencing. The results of the study showed that conventional identification methods might provide a false result. Identification by VITEK® MS to the species level was correct at 70.97%, and the accuracy of EnteroTest 24N identification did not exceed 50.0%. The genus identification reached 90.32% for the MALDI-TOF technique, while for EnteroTest 24N it was nearly 70.0%. Due to errors in identification, especially of pathogenic organisms, the use of each of these methods should be confirmed by another method, preferably sequencing.
Collapse
|
11
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
12
|
KANAK EK, YILMAZ SÖ. Identification, antibacterial and antifungal effects, antibiotic resistance of some lactic acid bacteria. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.07120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Schlusselhuber M, Girard L, Cousin FJ, Lood C, De Mot R, Goux D, Desmasures N. Pseudomonas crudilactis sp. nov., isolated from raw milk in France. Antonie van Leeuwenhoek 2021; 114:719-730. [PMID: 33715105 DOI: 10.1007/s10482-021-01552-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Strains belonging to the Pseudomonas genus have been isolated worldwide from various biotic (humans, animals and plant tissues) and abiotic (food, soil, water and air) environments. Raw milk provides a favorable environment for the growth of a broad spectrum of microorganisms, including Pseudomonas. Here we present the description of Pseudomonas sp. UCMA 17988 isolated from raw milk, which was previously reported to produce new antimicrobial lipopeptides. MultiLocus Sequence Analysis of four housekeeping genes (16S rRNA, gyrB, rpoD and rpoB), whole genome sequence comparison (orthoANI value, original ANI value and dDDH value), microscopy, FAME analysis, and biochemical tests were performed. Digital DNA-DNA hybridization and average nucleotide identity values between strain UCMA 17988 and its closest relatives, P. helmanticensis CECT 8548T (46.9%, 92.07%) and P. baetica CECT 7720T (26.8%, 88.50%), rate well below the designed threshold for assigning prokaryotic strains to the same species. In conclusion, strain UCMA 17988 belongs to a novel species, for which the name Pseudomonas crudilactis sp. nov (type strain UCMA 17988T = DSM 109949T = LMG 31804T) is proposed.
Collapse
Affiliation(s)
| | - Léa Girard
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Fabien J Cousin
- UNICAEN, UNIROUEN, ABTE, Normandie Univ, 14000, Caen, France
| | - Cédric Lood
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium.,Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, Box 2462, 3001, Leuven, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Box 2460, 3001, Leuven, Belgium
| | - Didier Goux
- UNICAEN, Centre de Microscopie Appliquée á la Biologie, SF 4206 Interaction Cellule-Organisme-Environnement (ICORE), Normandie Univ, 14000, Caen, France.,ENSICAEN, UNICAEN, CNRS, CRISMAT, Normandie Univ, 14000, Caen, France
| | | |
Collapse
|
14
|
Jadhav SR, Shah RM, Palombo EA. MALDI-ToF MS: A Rapid Methodology for Identifying and Subtyping Listeria monocytogenes. Methods Mol Biol 2021; 2220:17-29. [PMID: 32975763 DOI: 10.1007/978-1-0716-0982-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Listeria monocytogenes is a major food-borne pathogen and causative agent of a fatal disease, listeriosis. Stringent regulatory guidelines and zero tolerance policy toward this bacterium necessitate rapid, accurate, and reliable methods of identification and subtyping. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) has recently become a method of choice for routine identification of pathogens in clinical settings and has largely replaced biochemical assays. Identification relies on well-curated databases such as SARAMIS. Extensive use of SARAMIS to generate consensus mass spectra, in conjunction with statistical analysis, such as partial least square-discriminant analysis and hierarchical cluster analysis, is useful in subtyping bacteria. While MALDI-ToF MS has been extensively used for pathogen detection, its application in bacterial subtyping has been limited. The protocol describes a MALDI-ToF MS workflow as a single tool for simultaneous identification and subtyping of L. monocytogenes directly from solid culture medium.
Collapse
Affiliation(s)
- Snehal R Jadhav
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia.
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Yang X, Guo X, Liu W, Tian Y, Gao P, Ren Y, Zhang W, Jiang Y, Man C. The complex community structures and seasonal variations of psychrotrophic bacteria in raw milk in Heilongjiang Province, China. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Snapshot of Cyprus Raw Goat Milk Bacterial Diversity via 16S rDNA High-Throughput Sequencing; Impact of Cold Storage Conditions. FERMENTATION 2020. [DOI: 10.3390/fermentation6040100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In general, it is a common practice among dairy producers to store the milk in the refrigerator directly after milking, in order to preserve it and prevent the development of spoilage microbes. However, the impact of keeping the milk in the refrigerator overnight on milk microbial diversity has been poorly investigated. This study aimed to provide a snapshot of the bacterial composition of goat milk after direct storage at −80 °C and after being kept overnight at 4 °C and then in storage at −80 °, using high-throughput sequencing (HTS). Goat milk samples from four different farms were analyzed, to reveal that milk bacterial diversity differed between the two different storage conditions. Goat milk directly stored at −80 °C was characterized by the presence of the Gram-negative contaminants Pseudomonas and Acinetobacter, in addition to the genera Corynebacterium, Chryseobacterium, Bacteroides and Clostridium. Milk samples that were kept overnight at 4 °C were characterized by a reduction in their bacterial biodiversity and the predominance of the Gram-negative, aerobic Phyllobacterium. Overall, HTS methodologies provide an in-depth identification and characterization of the goat raw milk microbiome. Further, they offer a better understanding of the contribution of cold storage conditions to milk microbiota formation. This study may assist dairy producers in improving raw milk and raw milk cheeses quality and guaranteeing consumers’ safety.
Collapse
|
17
|
Radmehr B, Zaferanloo B, Tran T, Beale DJ, Palombo EA. Prevalence and Characteristics of Bacillus cereus Group Isolated from Raw and Pasteurised Milk. Curr Microbiol 2020; 77:3065-3075. [PMID: 32696237 DOI: 10.1007/s00284-020-02129-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
Abstract
The elimination of spore-forming bacteria is not guaranteed by current pasteurisation processes and is a challenging problem for the dairy industry. Given that Bacillus cereus sensu lato (B. cereus group) is an important foodborne pathogen and spoiler in the dairy industry, this study aimed at evaluating the prevalence and characteristics of B. cereus group in raw and pasteurised milk samples collected in Victoria, Australia. Isolated B. cereus group were tested for antimicrobial susceptibility, biofilm formation and virulence properties. Genetic diversity was assessed using ERIC-PCR. Proteomic profiling using MALDI-TOF MS and chemical profiling using Fourier-transform infrared (FTIR) spectroscopy were also applied for clustering of the isolates. Results showed 42.3% of milk samples contained B. cereus group, with a higher contamination level for pasteurised milk. Virulence studies identified genes nheA, nheB, hblA and nheC in most isolates and cyk gene in 46% of all isolates. Antimicrobial susceptibility testing showed a high prevalence of resistance towards ampicillin, ceftriaxone and penicillin. The biofilm-forming capacity of our isolates showed that most (53.7%) had the ability to form a biofilm. Genetic profiling using ERIC-PCR placed most B. cereus group isolates from pasteurised milk in the same cluster, indicating that they probably originated from a similar source. Raw milk isolates showed greater diversity indicating various sources. FTIR spectroscopy showed high agreement with genetic profiling. In contrast, low agreement between proteomic (MALDI-TOF MS) and genetic typing was observed. The present study showed that the FTIR spectroscopy could be adopted as a rapid tool for the typing of B. cereus group. Overall, the virulence and antimicrobial resistance characteristics, together with the ability of isolates to produce biofilm, indicate the importance of B. cereus group in the Australian dairy industry.
Collapse
Affiliation(s)
- Behrad Radmehr
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Thien Tran
- Bruker Pty Ltd, Preston, VIC, 3072, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD, 4102, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
18
|
KANAK EK, YILMAZ SÖ. Maldi-tof mass spectrometry for the identification and detection of antimicrobial activity of lactic acid bacteria isolated from local cheeses. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.19418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Yuan L, Sadiq FA, Burmølle M, Wang NI, He G. Insights into Psychrotrophic Bacteria in Raw Milk: A Review. J Food Prot 2019; 82:1148-1159. [PMID: 31225978 DOI: 10.4315/0362-028x.jfp-19-032] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIGHLIGHTS Levels of psychrotrophic bacteria in raw milk are affected by to habitats and farm hygiene. Biofilms formed by psychrotrophic bacteria are persistent sources of contamination. Heat-stable enzymes produced by psychrotrophic bacteria compromise product quality. Various strategies are available for controlling dairy spoilage caused by psychrotrophic bacteria.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Faizan A Sadiq
- 3 School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - N I Wang
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
20
|
Hahne J, Isele D, Berning J, Lipski A. The contribution of fast growing, psychrotrophic microorganisms on biodiversity of refrigerated raw cow's milk with high bacterial counts and their food spoilage potential. Food Microbiol 2019; 79:11-19. [DOI: 10.1016/j.fm.2018.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023]
|
21
|
Gyawali P, Kc S, Beale DJ, Hewitt J. Current and Emerging Technologies for the Detection of Norovirus from Shellfish. Foods 2019; 8:foods8060187. [PMID: 31159220 PMCID: PMC6617275 DOI: 10.3390/foods8060187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
Reports of norovirus infections associated with the consumption of contaminated bivalve molluscan shellfish negatively impact both consumers and commercial shellfish operators. Current virus recovery and PCR detection methods can be expensive and time consuming. Due to the lack of rapid, user-friendly and onsite/infield methods, it has been difficult to establish an effective virus monitoring regime that is able to identify contamination points across the production line (i.e., farm-to-plate) to ensure shellfish quality. The focus of this review is to evaluate current norovirus detection methods and discuss emerging approaches. Recent advances in omics-based detection approaches have the potential to identify novel biomarkers that can be incorporated into rapid detection kits for onsite use. Furthermore, some omics techniques have the potential to simultaneously detect multiple enteric viruses that cause human disease. Other emerging technologies discussed include microfluidic, aptamer and biosensor-based detection methods developed to detect norovirus with high sensitivity from a simple matrix. Many of these approaches have the potential to be developed as user-friendly onsite detection kits with minimal costs. However, more collaborative efforts on research and development will be required to commercialize such products. Once developed, these emerging technologies could provide a way forward that minimizes public health risks associated with shellfish consumption.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand.
| | - Sanjaya Kc
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - David J Beale
- Commonwealth Scientific and Industrial Research Organization, Ecoscience Precinct, Dutton Park, QLD 4102, Australia.
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand.
| |
Collapse
|
22
|
Zhang C, Bijl E, Svensson B, Hettinga K. The Extracellular Protease AprX fromPseudomonasand its Spoilage Potential for UHT Milk: A Review. Compr Rev Food Sci Food Saf 2019; 18:834-852. [DOI: 10.1111/1541-4337.12452] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Chunyue Zhang
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| | - Etske Bijl
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| | - Birgitta Svensson
- Tetra Pak Processing Systems ABRuben Rausings gata 221 86 Lund Sweden
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| |
Collapse
|
23
|
Application of MALDI Biotyper System for Rapid Identification of Bacteria Isolated from a Fresh Produce Market. Curr Microbiol 2019; 76:290-296. [PMID: 30603962 DOI: 10.1007/s00284-018-01624-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022]
Abstract
MALDI-TOF MS has revolutionized the identification of microorganisms and has become an indispensable part of routine diagnostics in the clinical microbiological laboratory. However, application of this technique in microbial surveillance outside of clinical settings is limited. In this study, we have evaluated the performance of a Bruker MALDI Biotyper System for the identification of bacteria isolated from the hand palms of fresh produce handlers and their surrounding environments in a wholesale fresh produce market in Doha, Qatar. The accuracy was verified against the results obtained by bacterial 16S rRNA gene sequencing. A total of 105 isolates were tested, of which 67 (64%) isolates were identified by MALDI-TOF MS and 101 isolates (96%) were identified by 16S rRNA gene sequencing, either at the genus level or species level. However, MALDI-TOF MS identified more isolates (41%) at the species level than 16S rRNA gene sequencing (28%). MALDI-TOF MS was particularly useful in the species level identification of Enterobacteriaceae. MALDI-TOF MS successfully identified most known human pathogens in a rapid and cost-effective manner but failed to identify a significant number of isolates that were of environmental origin, suggesting room for further expansion of the reference database.
Collapse
|
24
|
Jadhav SR, Shah RM, Karpe AV, Morrison PD, Kouremenos K, Beale DJ, Palombo EA. Detection of Foodborne Pathogens Using Proteomics and Metabolomics-Based Approaches. Front Microbiol 2018; 9:3132. [PMID: 30619201 PMCID: PMC6305589 DOI: 10.3389/fmicb.2018.03132] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022] Open
Abstract
Considering the short shelf-life of certain food products such as red meat, there is a need for rapid and cost-effective methods for pathogen detection. Routine pathogen testing in food laboratories mostly relies on conventional microbiological methods which involve the use of multiple selective culture media and long incubation periods, often taking up to 7 days for confirmed identifications. The current study investigated the application of omics-based approaches, proteomics using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) and metabolomics using gas chromatography-mass spectrometry (GC-MS), for detection of three red meat pathogens - Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7. Species-level identification was achieved within 18 h for S. enterica and E. coli O157:H7 and 30 h for L. monocytogenes using MALDI-ToF MS analysis. For the metabolomics approach, metabolites were extracted directly from selective enrichment broth samples containing spiked meat samples (obviating the need for culturing on solid media) and data obtained using GC-MS were analyzed using chemometric methods. Putative biomarkers relating to L. monocytogenes, S. enterica and E. coli O157:H7 were observed within 24, 18, and 12 h, respectively, of inoculating meat samples. Many of the identified metabolites were sugars, fatty acids, amino acids, nucleosides and organic acids. Secondary metabolites such as cadaverine, hydroxymelatonin and 3,4-dihydroxymadelic acid were also observed. The results obtained in this study will assist in the future development of rapid diagnostic tests for these important foodborne pathogens.
Collapse
Affiliation(s)
- Snehal R. Jadhav
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Rohan M. Shah
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Avinash V. Karpe
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Paul D. Morrison
- Australian Centre for Research on Separation Science, RMIT University, Melbourne, VIC, Australia
| | - Konstantinos Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Alegbeleye OO, Guimarães JT, Cruz AG, Sant’Ana AS. Hazards of a ‘healthy’ trend? An appraisal of the risks of raw milk consumption and the potential of novel treatment technologies to serve as alternatives to pasteurization. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Destabilization of UHT milk by protease AprX from Pseudomonas fluorescens and plasmin. Food Chem 2018; 263:127-134. [DOI: 10.1016/j.foodchem.2018.04.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023]
|
27
|
Khan LB, Swift S, Kamal T, Read HM. Simulation of MICROBACT Strip Assay Using Colored Liquids to Demonstrate Identification of Unknown Gram-Negative Organisms in Undergraduate Laboratory. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2018; 19:19.2.76. [PMID: 29983847 PMCID: PMC6022772 DOI: 10.1128/jmbe.v19i2.1565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Identification of unknown microorganisms to the species level is an important component of a microbiology course. Modern technologies such as matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing offer a rapid species level identification when compared to conventional phenotype-based methods, however they rely on a well-established taxonomy database and phenotypic assays can still play an important role in species determination. Another major limitation is the up-front cost of purchasing these modern specialized instruments and the requirement of skilled personnel to operate specialized equipment and software, which makes them unsuitable to use in the undergraduate teaching laboratory. Commercial biochemical identification systems such as the Oxoid Microbact™ GNB 12A/12E/24E kit is used for the identification of Enterobacteriaceae and other Gram negative bacteria in clinical and veterinary diagnostic laboratories, and food industries for disease control and treatment. In this article, we describe a method of reliably simulating this Microbact™ strip assay using artificial color liquids (which are affordable and easy to source) for the demonstration of phenotypic characterization of unknown Gram negative organisms while providing a safe teaching environment as no bacteria are used, familiarizing students with the concept of using Microbact™ 12A kit to identify a range of unknown Gram negative organisms.
Collapse
Affiliation(s)
- Latifa B. Khan
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Tania Kamal
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
| | - Hannah M. Read
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
28
|
Stern Bauer T, Hayouka Z. Random mixtures of antimicrobial peptides inhibit bacteria associated with pasteurized bovine milk. J Pept Sci 2018; 24:e3088. [DOI: 10.1002/psc.3088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 04/30/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Tal Stern Bauer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; PO Box 12 Rehovot 76100 Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; PO Box 12 Rehovot 76100 Israel
| |
Collapse
|
29
|
Meng L, Zhang Y, Liu H, Zhao S, Wang J, Zheng N. Characterization of Pseudomonas spp. and Associated Proteolytic Properties in Raw Milk Stored at Low Temperatures. Front Microbiol 2017; 8:2158. [PMID: 29167660 PMCID: PMC5682325 DOI: 10.3389/fmicb.2017.02158] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/20/2017] [Indexed: 01/24/2023] Open
Abstract
Milk spoilage is caused by the presence of proteolytic enzymes produced by Pseudomonas spp. during storage at low temperatures. The aim of this study was to identify Pseudomonas spp. in raw milk and investigate their associated proteolytic properties at low temperatures. Raw milk samples (n = 87) were collected from 87 bulk tanks in Shaanxi Province in China. Pseudomonas spp. were identified using Pseudomonas specific 16S, universal 16S rRNA sequencing, and rpoB gene sequencing. The proteolytic properties of Pseudomonas spp. were examined using milk agar, quantitative trinitrobenzenesulfonic acid assay, and by the presence of alkaline metallopeptidase gene (aprX). A total 143 isolates from all 87 samples were confirmed as Pseudomonas, and were identified as belonging to 14 Pseudomonas species. Of these, 40 (28.0%) isolates revealed proteolysis on milk agar at 2°C, 74 (51.8%) at 4°C, 104 (72.7%) at 7°C, and 102 (71.3%) at 10°C. However, proteolytic activity of 45 (31.5%) isolates exceeded 2 μmol of glycine equivalents per mL at 7°C, followed by 43 (30.1%) at 10°C, 18 (12.6%) at 4°C, and 7 (4.9%) at 2°C. The results reveal proteolytic activity of Pseudomonas spp. present in milk and their spoilage potential at different temperatures.
Collapse
Affiliation(s)
- Lu Meng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Ministry of Agriculture Milk and Dairy Product Inspection Center, Beijing, China
| | - Yangdong Zhang
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Ministry of Agriculture Milk and Dairy Product Inspection Center, Beijing, China
| | - Huimin Liu
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Ministry of Agriculture Milk and Dairy Product Inspection Center, Beijing, China
| | - Shengguo Zhao
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Ministry of Agriculture Milk and Dairy Product Inspection Center, Beijing, China
| | - Jiaqi Wang
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Ministry of Agriculture Milk and Dairy Product Inspection Center, Beijing, China
| | - Nan Zheng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Ministry of Agriculture Milk and Dairy Product Inspection Center, Beijing, China
| |
Collapse
|
30
|
The current status on the taxonomy of Pseudomonas revisited: An update. INFECTION GENETICS AND EVOLUTION 2017; 57:106-116. [PMID: 29104095 DOI: 10.1016/j.meegid.2017.10.026] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous bacterial genera which encompass species isolated worldwide. In the last years more than 70 new species have been described, which were isolated from different environments, including soil, water, sediments, air, animals, plants, fungi, algae, compost, human and animal related sources. Some of these species have been isolated in extreme environments, such as Antarctica or Atacama desert, and from contaminated water or soil. Also, some species recently described are plant or animal pathogens. In this review, we revised the current status of the taxonomy of genus Pseudomonas and the methodologies currently used for the description of novel species which includes, in addition to the classic ones, new methodologies such as MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species described in the last years are listed, together with the available genome sequences of the type strains of Pseudomonas species present in different databases.
Collapse
|
31
|
Xu Y, Chen W, You C, Liu Z. Development of a Multiplex PCR Assay for Detection of Pseudomonas fluorescens with Biofilm Formation Ability. J Food Sci 2017; 82:2337-2342. [PMID: 28950041 DOI: 10.1111/1750-3841.13845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/01/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
Under the cold storage and processing conditions of raw milk, the psychrotrophic Pseudomonas fluorescens is usually found as predominant bacteria causing its spoilage. In this study, a multiplex PCR assay was developed for rapid and selective detection of P. fluorescens with biofilm formation ability. The target sequences were 2 genes (adnA and fliC) related to biofilm formation and flagella biosynthesis of P. fluorescens. The specificity of the mPCR assay was evaluated with 7 reference strains, isolated from raw milk, belonging to P. fluorescens, Pseudomonas fragi, Pseudomonas lundensis, Pseudomonas putida, Pseudomonas monteilii, and 2 unclassified Pseudomonas species (Pseudomonas sp1 and Pseudomonas sp8). The detection limit for the target strain was 102 CFU/mL. Seventy-three strains were evaluated by the mPCR assay. The adnA gene was detected in 23 strains while fliC gene was detected in only 3 strains. However, both target genes (adnA and fliC) were detected by amplification in 12 strains belonging to P. fluorescens species. The biofilm formation ability of P. fluorescens following cultivation in 10% UHT milk at 30 °C or 4 °C were evaluated by the microtiter plate assay. The result showed that all the P. fluorescens strains with the target gene (adnA or fliC, or both 2 genes) had the biofilm-forming ability. The phylogenetic analysis showed that adnA gene tree had a higher resolution than rpoB tree, and the strains in adnA phylogenetic dendrogram could be divided into 4 different groups according with the matrix of their biofilm-forming ability. The results indicated a promising use of adnA gene as a taxonomic marker for subdividing P. fluorescens. PRACTICAL APPLICATION A mPCR assay targeting adnA and fliC genes showed rapid and reliable detection of P. fluorescens with biofilm formation ability, which could be useful to detect this contamination in milk samples.
Collapse
Affiliation(s)
- Yu Xu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Synergetic Innovation Center for Food Safety and Nutrition, Dairy Research Inst., Bright Dairy & Food Co, Ltd, 1518 West of Jiangchang Road, Shanghai 200436, P. R. China
| | - Wanyi Chen
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Synergetic Innovation Center for Food Safety and Nutrition, Dairy Research Inst., Bright Dairy & Food Co, Ltd, 1518 West of Jiangchang Road, Shanghai 200436, P. R. China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Synergetic Innovation Center for Food Safety and Nutrition, Dairy Research Inst., Bright Dairy & Food Co, Ltd, 1518 West of Jiangchang Road, Shanghai 200436, P. R. China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Synergetic Innovation Center for Food Safety and Nutrition, Dairy Research Inst., Bright Dairy & Food Co, Ltd, 1518 West of Jiangchang Road, Shanghai 200436, P. R. China
| |
Collapse
|
32
|
Turvey ME, Weiland F, Keller EJ, Hoffmann P. The changing face of microbial quality control practices in the brewing industry: Introducing mass spectrometry proteomic fingerprinting for microbial identification. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M. E. Turvey
- Adelaide Proteomics Centre; The University of Adelaide; Australia
- Institute of Photonics and Advanced Sensing; Australia
- Singapore-MIT Alliance for Research and Technology Centre; Singapore
| | - F. Weiland
- Adelaide Proteomics Centre; The University of Adelaide; Australia
- Institute of Photonics and Advanced Sensing; Australia
| | - E. J. Keller
- Adelaide Proteomics Centre; The University of Adelaide; Australia
- Institute of Photonics and Advanced Sensing; Australia
| | - P. Hoffmann
- Adelaide Proteomics Centre; The University of Adelaide; Australia
- Institute of Photonics and Advanced Sensing; Australia
| |
Collapse
|
33
|
Vithanage NR, Bhongir J, Jadhav SR, Ranadheera CS, Palombo EA, Yeager TR, Datta N. Species-Level Discrimination of Psychrotrophic Pathogenic and Spoilage Gram-Negative Raw Milk Isolates Using a Combined MALDI-TOF MS Proteomics–Bioinformatics-based Approach. J Proteome Res 2017; 16:2188-2203. [DOI: 10.1021/acs.jproteome.6b01046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nuwan R. Vithanage
- College
of Health and Biomedicine, Victoria University, Werribee, Victoria 3030, Australia
- Advanced
Food Systems, Victoria University, Werribee, Victoria 3030, Australia
| | - Jeevana Bhongir
- College
of Health and Biomedicine, Victoria University, Werribee, Victoria 3030, Australia
| | - Snehal R. Jadhav
- Faculty
of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Chaminda S. Ranadheera
- College
of Health and Biomedicine, Victoria University, Werribee, Victoria 3030, Australia
- Advanced
Food Systems, Victoria University, Werribee, Victoria 3030, Australia
| | - Enzo A. Palombo
- Faculty
of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Thomas R. Yeager
- College
of Engineering and Science, Victoria University, Melbourne, Victoria 8001, Australia
- Institute
for Sustainability and Innovation, Victoria University, Werribee, Victoria 3030, Australia
- Advanced
Food Systems, Victoria University, Werribee, Victoria 3030, Australia
| | - Nivedita Datta
- College
of Health and Biomedicine, Victoria University, Werribee, Victoria 3030, Australia
- Institute
for Sustainability and Innovation, Victoria University, Werribee, Victoria 3030, Australia
- Advanced
Food Systems, Victoria University, Werribee, Victoria 3030, Australia
| |
Collapse
|
34
|
Abstract
Refrigerated storage of raw milk is a prerequisite in dairy industry. However, temperature abused conditions in the farming and processing environments can significantly affect the microbiological quality of raw milk. Thus, the present study investigated the effect of different refrigeration conditions such as 2, 4, 6, 8, 10 and 12 °C on microbiological quality of raw milk from three different dairy farms with significantly different initial microbial counts. The bacterial counts (BC), protease activity (PA), proteolysis (PL) and microbial diversity in raw milk were determined during storage. The effect of combined heating (75 ± 0·5 °C for 15 s) and refrigeration on controlling those contaminating microorganisms was also investigated. Results of the present study indicated that all of the samples showed increasing BC, PA and PL as a function of temperature, time and initial BC with a significant increase in those criteria ≥6 °C. Similar trends in BC, PA and PL were observed during the extended storage of raw milk at 4 °C. Both PA and PL showed strong correlation with the psychrotrophic proteolytic count (PPrBC: at ≥4 °C) and thermoduric psychrotrophic count (TDPC: at ≥8 °C) compared to total plate count (TPC) and psychrotrophic bacterial count (PBC), that are often used as the industry standard. Significant increases in PA and PL were observed when PPrBC and TDPC reached 5 × 104cfu/ml and 1 × 104cfu/ml, and were defined as storage life for quality (SLQ), and storage life for safety (SLS) aspects, respectively. The storage conditions also significantly affected the microbial diversity, wherePseudomonas fluorescensandBacillus cereuswere found to be the most predominant isolates. However, deep cooling (2 °C) and combination of heating and refrigeration (≤4 °C) significantly extended theSLQandSLsof raw milk.
Collapse
|
35
|
Machado SG, Baglinière F, Marchand S, Van Coillie E, Vanetti MCD, De Block J, Heyndrickx M. The Biodiversity of the Microbiota Producing Heat-Resistant Enzymes Responsible for Spoilage in Processed Bovine Milk and Dairy Products. Front Microbiol 2017; 8:302. [PMID: 28298906 PMCID: PMC5331058 DOI: 10.3389/fmicb.2017.00302] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/14/2017] [Indexed: 12/28/2022] Open
Abstract
Raw bovine milk is highly nutritious as well as pH-neutral, providing the ideal conditions for microbial growth. The microbiota of raw milk is diverse and originates from several sources of contamination including the external udder surface, milking equipment, air, water, feed, grass, feces, and soil. Many bacterial and fungal species can be found in raw milk. The autochthonous microbiota of raw milk immediately after milking generally comprises lactic acid bacteria such as Lactococcus, Lactobacillus, Streptococcus, and Leuconostoc species, which are technologically important for the dairy industry, although they do occasionally cause spoilage of dairy products. Differences in milking practices and storage conditions on each continent, country and region result in variable microbial population structures in raw milk. Raw milk is usually stored at cold temperatures, e.g., about 4°C before processing to reduce the growth of most bacteria. However, psychrotrophic bacteria can proliferate and contribute to spoilage of ultra-high temperature (UHT) treated and sterilized milk and other dairy products with a long shelf life due to their ability to produce extracellular heat resistant enzymes such as peptidases and lipases. Worldwide, species of Pseudomonas, with the ability to produce these spoilage enzymes, are the most common contaminants isolated from cold raw milk although other genera such as Serratia are also reported as important milk spoilers, while for others more research is needed on the heat resistance of the spoilage enzymes produced. The residual activity of extracellular enzymes after high heat treatment may lead to technological problems (off flavors, physico-chemical instability) during the shelf life of milk and dairy products. This review covers the contamination patterns of cold raw milk in several parts of the world, the growth potential of psychrotrophic bacteria, their ability to produce extracellular heat-resistant enzymes and the consequences for dairy products with a long shelf life. This problem is of increasing importance because of the large worldwide trade in fluid milk and milk powder.
Collapse
Affiliation(s)
- Solimar G Machado
- Instituto Federal do Norte de Minas Gerais - Campus Salinas Salinas, Brazil
| | | | - Sophie Marchand
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fischeries and Food (ILVO) Melle, Belgium
| | - Els Van Coillie
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fischeries and Food (ILVO) Melle, Belgium
| | - Maria C D Vanetti
- Department of Microbiology, Universidade Federal de Viçosa Viçosa, Brazil
| | - Jan De Block
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fischeries and Food (ILVO) Melle, Belgium
| | - Marc Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fischeries and Food (ILVO)Melle, Belgium; Department of Pathology, Bacteriology and Poultry Diseases, Ghent UniversityMerelbeke, Belgium
| |
Collapse
|
36
|
Savage E, Chothe S, Lintner V, Pierre T, Matthews T, Kariyawasam S, Miller D, Tewari D, Jayarao B. Evaluation of Three Bacterial Identification Systems for Species Identification of Bacteria Isolated from Bovine Mastitis and Bulk Tank Milk Samples. Foodborne Pathog Dis 2017; 14:177-187. [DOI: 10.1089/fpd.2016.2222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Emily Savage
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Shubhada Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Valerie Lintner
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Traci Pierre
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Tammy Matthews
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Subhashinie Kariyawasam
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Dawn Miller
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania
| | - Bhushan Jayarao
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
37
|
Gabriel AA, Aba RPM, Tayamora DJL, Colambo JCR, Siringan MAT, Rosario LMD, Tumlos RB, Ramos HJ. Reference organism selection for microwave atmospheric pressure plasma jet treatment of young coconut liquid endosperm. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles. Int J Food Microbiol 2016; 247:2-8. [PMID: 27423415 DOI: 10.1016/j.ijfoodmicro.2016.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/11/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022]
Abstract
In this study we identified the culturable population of mesophilic lactic acid bacteria (LAB) from a French cheese Maroilles made either with raw or pasteurized milk using MALDI-TOF mass spectrometry (MS). Samples from rind and heart of Maroilles cheese were used, the LAB were selected on MRS agar at 30°C and 197 Gram-positive and catalase-negative strains were subjected to identification by MALDI-TOF MS profiling. All strains were unambiguously identified: 105 strains from Maroilles made with raw milk (38 on the rind and 67 in the heart) and 92 strains from Maroilles made with pasteurized milk (39 on the rind and 53 in the heart). MALDI-TOF MS identification allowed identification of three genera belonging to LAB including Lactobacillus, Enterococcus and Leuconostoc. Lactobacillus was the most represented genus with seven species: Lactobacillus plantarum (L. plantarum), L. paracasei, L. curvatus, L. rhamnosus, L. fructivorans, L. parabuchneri, L. brevis found in Maroilles made with both kind of milk. The correlation between the 16S rDNA-based identification performed on selected strains and those obtained by MALDI-TOF-MS demonstrates that this fast, economically affordable, robust and reliable method for bacteria characterisation stands as an attractive alternative to the commonly-used methods and its application in food industry is discussed.
Collapse
|
39
|
Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.02.042] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Loong SK, Khor CS, Jafar FL, AbuBakar S. Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria. J Clin Lab Anal 2016; 30:1056-1060. [PMID: 27184222 DOI: 10.1002/jcla.21980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/13/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification. METHODS One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method. RESULTS Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates. CONCLUSION The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools.
Collapse
Affiliation(s)
- Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Sieng Khor
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Faizatul Lela Jafar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
|
42
|
Hu Z, Meng XC, Liu F. Isolation and characterisation of lytic bacteriophages against Pseudomonas spp., a novel biological intervention for preventing spoilage of raw milk. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Liu H, Zhang L, Yi H, Han X, Gao W, Chi C, Song W, Li H, Liu C. A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese. World J Microbiol Biotechnol 2016; 32:21. [PMID: 26745981 DOI: 10.1007/s11274-015-1973-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/28/2015] [Indexed: 11/26/2022]
Abstract
An enterocin-producing Enterococcus faecium T1 was isolated from Chinese Tibet cheese. The enterocin was purified by SP-Sepharose and reversed phase HPLC. It was identified as unique from other reported bacteriocins based on molecular weight (4629 Da) and amino acid compositions; therefore it was subsequently named enterocin T1. Enterocin T1 was stable at 80-100 °C and over a wide pH range, pH 3.0-10.0. Protease sensitivity was observed to trypsin, pepsin, papain, proteinase K, and pronase E. Importantly, enterocin T1 was observed to inhibit the growth of numerous Gram-negative and Gram-positive bacteria including Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Escherichia coli, Salmonella typhimurium, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Listeria monocytogenes. Take together, these results suggest that enterocin T1 is a novel bacteriocin with the potential to be used as a bio-preservative to control Pseudomonas spp. in food.
Collapse
Affiliation(s)
- Hui Liu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Lanwei Zhang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Huaxi Yi
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Xue Han
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Wei Gao
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Chunliang Chi
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Wei Song
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Haiying Li
- College of Life Sciences, Heilongjiang University, Harbin, 150070, Heilongjiang, China
| | - Chunguang Liu
- College of Life Sciences, Heilongjiang University, Harbin, 150070, Heilongjiang, China
| |
Collapse
|
44
|
Changes in bacterial populations in refrigerated raw milk collected from a semi-arid area of Algeria. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1163-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|