1
|
Neggazi I, Colás-Medà P, Viñas I, Bainotti MB, Alegre I. Influence of physicochemical characteristics on the growth and guaiacol production of Alicyclobacillus acidoterrestris in fruit juices. Int J Food Microbiol 2024; 425:110856. [PMID: 39214026 DOI: 10.1016/j.ijfoodmicro.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Alicyclobacillus acidoterrestris is a bacterium known for causing spoilage in the taste and odour of fruit juices due to its thermoacidophilic nature. Its spoilage is attributed to the formation of guaiacol, which requires the presence of suitable precursors in the juices that A. acidoterrestris can metabolize. Therefore, A. acidoterrestris could exhibit different behaviour depending on the physicochemical characteristics the juice. In this study, we aimed to evaluate the behaviour of five A. acidoterrestris strains in seven different fruit juices by monitoring total cell and spore populations and quantifying guaiacol production. Also, physicochemical and phenolic profile, focusing on antimicrobials and guaiacol precursors, were analysed to better understand differences. Results showed growth in orange, apple, and plum juices for all the tested strains, with total cell populations reaching approximately 7 log cfu/mL, except for plum juice. In persimmon juice, growth was only observed in 3 out of 5 strains, for both total cells and spores. In contrast, all strains were inhibited in peach, black grape, and strawberry juices, maintaining a consistent population around 4 log cfu/mL. A strong negative correlation was observed between bacterial population and compounds such as kaempferol (for strains R3, R111, and P1), cyanidin chloride (for strains R111 and P1), and p-coumaric acid (for strain 7094 T). Regarding guaiacol production, orange and persimmon juices exhibited the highest guaiacol levels, with strain P1 (362.3 ± 12.6 ng/mL) and strain EC1 (325.1 ± 1.4 ng/mL) as the top producers, respectively. Plum, black grape, and strawberry juices showed similar guaiacol concentrations (16.9 ± 2.8 to 105.0 ± 33.7 ng/mL). Vanillin was showed positive correlations with guaiacol production in almost all strains (7094 T, R3, R111, and P1), with correlation coefficients of 0.97, 0.99, 0.82, and 0.87, respectively. We have reported different behaviour of A. acidoterrestris strains depending on juice type. Despite growth inhibition observed in some juices, enough guaiacol quantities to spoil the juice can be produced. This highlights the necessity of exploring strategies to prevent guaiacol production, even under growth restriction.
Collapse
Affiliation(s)
- Isma Neggazi
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Pilar Colás-Medà
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Inmaculada Viñas
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Maria Belén Bainotti
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Isabel Alegre
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
2
|
Roth K, Rana YS, Worobo R, Snyder AB. Alicyclobacillus suci produces more guaiacol in media and has duplicate copies of vdcC compared to closely related Alicyclobacillus acidoterrestris. Appl Environ Microbiol 2024:e0042224. [PMID: 39382294 DOI: 10.1128/aem.00422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024] Open
Abstract
Some species of the genus Alicyclobacillus cause spoilage in juices and other beverages due to the production of guaiacol, a phenolic compound, and off-aroma. However, little is known about the genomic determinants of guaiacol production across the genus. In this study, we found that several of the genes significantly enriched in guaiacol-producing Alicyclobacillus spp. are associated with oxidative stress response, including vdcC, a phenolic acid decarboxylase putatively responsible for guaiacol synthesis. The food industry recognizes Alicyclobacillus acidoterrestris as the primary guaiacol-producing species found in beverages, though that species was recently split into two closely related yet genetically distinct species, Alicyclobacillus suci and A. acidoterrestris. We found that strains of A. suci (63.0 ± 14.2 ppm) produced significantly (P < 0.01) more guaiacol on average in media than did strains of A. acidoterrestris (25.2 ± 7.0 ppm). Additionally, A. suci and Alicyclobacillus fastidiosus genomes each had duplicate copies of vdcC, while only a single copy of vdcC was found in the genomes of A. acidoterrestris, Alicyclobacillus acidiphilus, and Alicyclobacillus herbarius. Although the food industry has not historically differentiated between A. suci and A. acidoterrestris, it may be increasingly important to target the species with greater spoilage potential. Therefore, we also demonstrated that sequencing a single locus, such as the full-length 16S region or rpoB, is sufficient to differentiate between A. acidoterrestris and A. suci. IMPORTANCE Microbial spoilage increases food waste. To address that challenge, it is critical to recognize and control those microbial groups with the greatest spoilage potential. Non-specific targeting of broad microbial groups (e.g., the genus of Alicyclobacillus) in which only some members cause food spoilage results in untenable, overly broad interventions. Much of the food industry does not differentiate between guaiacol-producing and non-guaiacol-producing Alicyclobacillus species. This is overly broad because Alicyclobacillus spp. which cannot produce guaiacol can be present in beverages without causing spoilage. Furthermore, no distinction is made between Alicyclobacillus suci and Alicyclobacillus acidoterrestris because A. suci is newly split from A. acidoterrestris and most of the food industry still considers them to be the same. However, these findings indicate that A. suci may have greater spoilage potential than A. acidoterrestris due to differences in their genomic determinants for guaiacol production.
Collapse
Affiliation(s)
- Katerina Roth
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | | | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Bucka-Kolendo J, Kiousi DE, Dekowska A, Mikołajczuk-Szczyrba A, Karadedos DM, Michael P, Galanis A, Sokołowska B. Exploration of Alicyclobacillus spp. Genome in Search of Antibiotic Resistance. Int J Mol Sci 2024; 25:8144. [PMID: 39125715 PMCID: PMC11312215 DOI: 10.3390/ijms25158144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The study investigates the antibiotic resistance (AR) profiles and genetic determinants in three strains of guaiacol-producing Alicyclobacillus spp. isolated from orchard soil and pears. Their phenotypic characteristics, such as spore formation; resistance to different factors, including drugs or disinfectants; or production of off-flavor compounds, can affect the taste and aroma of spoiled products. Food and beverages are potential vectors for the transfer of antibiotic resistance genes, which is a growing health concern; thus, microorganisms in food and beverages should not be a potential source of drug resistance to consumers. Whole-genome sequencing (WGS) was utilized to identify antibiotic resistance genes, metabolic pathways, and elements associated with guaiacol and halophenol production. Minimum inhibitory concentration (MIC) testing revealed that all strains were susceptible to eight out of nine tested antibiotics (ampicillin, gentamycin, kanamycin, streptomycin, clindamycin, tetracycline, chloramphenicol, and vancomycin) but exhibited high resistance to erythromycin. Analysis indicated that the erythromycin resistance gene, ribosomal RNA small subunit methyltransferase A (RsmA), was intrinsic and likely acquired through horizontal gene transfer (HGT). The comprehensive genomic analysis provides insights into the molecular mechanisms of antibiotic resistance in Alicyclobacillus spp., highlighting the potential risk of these bacteria as vectors for antibiotic resistance genes in the food chain. This study expands the understanding of the genetic makeup of these spoilage bacteria and their role in antimicrobial resistance dissemination.
Collapse
Affiliation(s)
- Joanna Bucka-Kolendo
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.D.); (A.M.-S.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (P.M.); (A.G.)
| | - Agnieszka Dekowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.D.); (A.M.-S.)
| | - Anna Mikołajczuk-Szczyrba
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.D.); (A.M.-S.)
| | - Dimitrios Marinos Karadedos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (P.M.); (A.G.)
| | - Panagiotis Michael
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (P.M.); (A.G.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (D.M.K.); (P.M.); (A.G.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.D.); (A.M.-S.)
| |
Collapse
|
4
|
Shi Y, Tan Z, Wu D, Wu Y, Li G. Pyrococcus furiosus argonaute based Alicyclobacillus acidoterrestrsis detection in fruit juice. Food Microbiol 2024; 120:104475. [PMID: 38431321 DOI: 10.1016/j.fm.2024.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.
Collapse
Affiliation(s)
- Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zishan Tan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
5
|
Ulfadillah SA, Chang SH. Antibacterial effects of various molecular weight chitosans against Alicyclobacillus acidoterrestris in orange juice. Int J Biol Macromol 2024; 262:130214. [PMID: 38367781 DOI: 10.1016/j.ijbiomac.2024.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Alicyclobacillus acidoterrestris has been gaining attention due to its unique thermo-acidophilic properties and being associated with the deterioration of pasteurized beverages. The objective of this study was to evaluate the antibacterial activity of chitosan with various molecular weights (MWs) (164, 85, 29.2, and 7.1 kDa) and concentrations (0-100 μg/mL) against A. acidoterrestris and its effect on guaiacol production. Various chitosan MWs were co-incubated for 7 days, and the bacterial growth, guaiacol, and vanillic acid contents during storage were determined. The chitosans performed antibacterial effects against A. acidoterrestris. Further, 164 kDa chitosan showed excellent results in controlling the growth and guaiacol formation in A. acidoterrestris. These findings demonstrated the efficacy of chitosan antibacterial activity against A. acidoterrestris and mitigating the guaiacol formation. Chitosan's antibacterial properties are attributed to the elimination of cells and suppression of guaiacol production. This study introduces a new approach for reducing A. acidoterrestris contamination in fruit juices, with potential product quality and safety advantages.
Collapse
Affiliation(s)
- Siti Ayu Ulfadillah
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC.
| |
Collapse
|
6
|
Shang C, Zhang T, Xu J, Zhao N, Zhang W, Fan M. Exploring the growth characteristics of Alicyclobacillus acidoterrestris for controlling juice spoilage with zero additives. Food Chem X 2023; 19:100790. [PMID: 37780307 PMCID: PMC10534113 DOI: 10.1016/j.fochx.2023.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 10/03/2023] Open
Abstract
Fruit juice spoilage that caused by contaminated Alicyclobacillus has brought huge losses to beverage industry worldwide. Thus, it is very essential to understand the growth and metabolism processing of Alicyclobacillus acidoterrestris (A. acidoterrestris) in controlling juice spoilage caused by Alicyclobacillus. In this work, simulative models for the growth and metabolism of A. acidoterrestris were systematically conducted in the medium and fruit juice. The results showed that low temperature (4 ℃) and strong acidic environment (pH 3.0-2.0) of medium inhibited the growth and reproduction of A. acidoterrestris. In addition, with decreasing temperature, the color, smell and turbidity of commercially available juice supplemented with A. acidoterrestris significantly improved. This work provided a clear exploration of growth characteristics of A. acidoterrestris by applying theory (medium) to reality (fruit juices), and pave fundamental for exploring the zero additives of controlling juice spoilage.
Collapse
Affiliation(s)
| | | | - Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, Yangling 712100, China
| |
Collapse
|
7
|
Sun Y, Yue T, Yuan Y, Shi Y. Unlabeled fluorescence ELISA using yellow emission carbon dots for the detection of
Alicyclobacillus acidoterrestris
in apple juice. EFOOD 2023. [DOI: 10.1002/efd2.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Affiliation(s)
- Yuhan Sun
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Tianli Yue
- College of Food Science and Technology Northwest University Xi'an China
| | - Yahong Yuan
- College of Food Science and Technology Northwest University Xi'an China
| | - Yiheng Shi
- School of Food Science and Engineering Shaanxi University of Science and Technology Xi'an China
| |
Collapse
|
8
|
Shi Y, Sun Y, Yue T, Yuan Y. Facile fabrication of metal‐organic frameworks with peroxidase‐like activity for the colorimetric detection of
Alicyclobacillus acidoterrestris. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Yiheng Shi
- School of Food Science and Engineering Shaanxi University of Science and Technology Xi'an China
| | - Yuhan Sun
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Tianli Yue
- College of Food Science and Technology Northwest University Xi'an China
| | - Yahong Yuan
- College of Food Science and Technology Northwest University Xi'an China
| |
Collapse
|
9
|
Leonardo IC, Barreto Crespo MT, Gaspar FB. Unveiling the complete genome sequence of Alicyclobacillus acidoterrestris DSM 3922T, a taint-producing strain. G3 (BETHESDA, MD.) 2022; 12:jkac225. [PMID: 36240455 PMCID: PMC9713406 DOI: 10.1093/g3journal/jkac225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 09/10/2024]
Abstract
Several species from the Alicyclobacillus genus have received much attention from the food and beverages industries. Their presence has been co-related with spoilage events of acidic food matrices, namely fruit juices and other fruit-based products, the majority attributed to Alicyclobacillus acidoterrestris. In this work, a combination of short and long reads enabled the assembly of the complete genome of A. acidoterrestris DSM 3922T, perfecting the draft genome already available (AURB00000000), and revealing the presence of one chromosome (4,222,202 bp; GC content 52.3%) as well as one plasmid (124,737 bp; GC content 46.6%). From the 4,288 genes identified, 4,004 sequences were attributed to coding sequences with proteins, with more than 80% being functionally annotated. This allowed the identification of metabolic pathways and networks and the interpretation of high-level functions with significant reliability. Furthermore, the additional genes of interest related to spore germination, off-flavor production, namely the vdc cluster, and CRISPR arrays, were identified. More importantly, this is the first complete and closed genome sequence for a taint-producing Alicyclobacillus species and thus represents a valuable reference for further comparative and functional genomic studies.
Collapse
Affiliation(s)
- Inês Carvalho Leonardo
- Food & Health Division, iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Maria Teresa Barreto Crespo
- Food & Health Division, iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Frédéric Bustos Gaspar
- Food & Health Division, iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
10
|
Wang Z, Liang Y, Wang Q, Jia H, Yue T, Yuan Y, Gao Z, Cai R. Integrated analysis of transcriptome and proteome for exploring the mechanism of guaiacol production by Alicyclobacillus acidoterrestris. Food Res Int 2021; 148:110621. [PMID: 34507765 DOI: 10.1016/j.foodres.2021.110621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
Alicyclobacillus spp. can cause commercially pasteurized fruit juices/beverages to spoil and the spoilage is characterized by the formation of a distinct medicinal or antiseptic off-odor attributed to guaiacol. The aim of this study was to reveal the mechanism of guaiacol production in A. acidoterrestris by combining transcriptomic and proteomic approaches. RNA-sequencing and iTRAQ analyses were conducted to investigate differences in expression levels of genes and proteins in A. acidoterrestris when producing (with 500 μM vanillic acid) and not producing (without vanillic acid) guaiacol. A total of 225 differentially expressed genes and 77 differentially expressed proteins were identified. The transcription of genes vdcBCD encoding subunits of vanillic acid decarboxylase were 626.47, 185.01 and 52.81-fold up-regulated, respectively; they were the most up-regulated genes involved in guaiacol production. Expressions of the benzoate membrane transport protein, fusaric acid resistance protein, resistance-nodulation- division transporter, some ATP-binding cassette transporters and major facilitator superfamily transporters were increased at either mRNA, protein or both levels, indicating that they participated in the uptake of vanillic acid and extrusion of guaiacol. In the metabolic process of vanillic acid to guaiacol in A. acidoterrestris, genes related to the pathway of tricarboxylic acid cycle and ribosome were up-regulated, while the expression of some genes associated with valine, leucine and isoleucine biosynthesis was decreased. These findings provide novel insight to understand the mechanism of guaiacol production in A. acidoterrestris, which will serve as an important guide for developing strategies for the control of A. acidoterrestris problems in the fruit juice industry.
Collapse
Affiliation(s)
- Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Yunhao Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Fan Q, Liu C, Gao Z, Hu Z, Wang Z, Xiao J, Yuan Y, Yue T. Inactivation Effect of Thymoquinone on Alicyclobacillus acidoterrestris Vegetative Cells, Spores, and Biofilms. Front Microbiol 2021; 12:679808. [PMID: 34149671 PMCID: PMC8206486 DOI: 10.3389/fmicb.2021.679808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
Alicyclobacillus acidoterrestris (A. acidoterrestris), a spore-forming bacterium, has become a main challenge and concern for the juices and acid beverage industry across the world due to its thermo-acidophilic characteristic. Thymoquinone (TQ) is one of the active components derived from Nigella sativa seeds. The objective of this study was to investigate antibacterial activity and associated molecular mechanism of TQ against A. acidoterrestris vegetative cells, and to evaluate effects of TQ on A. acidoterrestris spores and biofilms formed on polystyrene and stainless steel surfaces. Minimum inhibitory concentrations of TQ against five tested A. acidoterrestris strains ranged from 32 to 64 μg/mL. TQ could destroy bacterial cell morphology and membrane integrity in a concentration-dependent manner. Field-emission scanning electron microscopy observation showed that TQ caused abnormal morphology of spores and thus exerted a killing effect on spores. Moreover, TQ was effective in inactivating and removing A. acidoterrestris mature biofilms. These findings indicated that TQ is promising as a new alternative to control A. acidoterrestris and thereby reduce associated contamination and deterioration in the juice and acid beverage industry.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Cheng Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling, China.,College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
12
|
Development of a colorimetric and fluorescence dual-mode immunoassay for the precise identification of Alicyclobacillus acidoterrestris in apple juice. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Shi Y, Zhou L, Qu X, Yue T, Yuan Y. Targeting the cell wall: Preparation of monoclonal antibody for accurate identification of Alicyclobacillus acidoterrestris in apple juice. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Wang Z, Yue T, Yuan Y, Zhang Y, Gao Z, Cai R. Targeting the vanillic acid decarboxylase gene for Alicyclobacillus acidoterrestris quantification and guaiacol assessment in apple juices using real time PCR. Int J Food Microbiol 2020; 338:109006. [PMID: 33302194 DOI: 10.1016/j.ijfoodmicro.2020.109006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/31/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Alicyclobacillus spp. has recently received much attention due to its implication in the spoilage of pasteurized fruit juices, which is characterized by the formation of guaiacol. Previous researches indicate that not all Alicyclobacillus spp. are able to produce guaiacol. The aim of this study was to identify possible differences in the vanillic acid decarboxylase gene involved in guaiacol biosynthesis and then develop specific detection methods for guaiacol producing Alicyclobacillus. Agarose gel electrophoresis results showed that the partial vdcC gene was present in all the guaiacol producing Alicyclobacillus, but absent in non-guaicaol producing strains apart from A. fastidiosus DSM 17978. On the basis of the vdcC gene sequence, a primer pair specific to A. acidoterrestris was designed; then a SYBR Green I real time PCR was established for the direct quantification of A. acidoterrestris in apple juice, and the detection limit was 2.6 × 101 CFU/mL. The developed real time PCR system was used to detect A. acidoterrestris in 36 artificially contaminated apple juice samples and guaiacol production in the sample was also analyzed by GC-MS. The Gompertz model was employed to describe the relationship between A. acidoterrestris cell concentration and guaiacol content, and the value of R2 was 0.854. This work provides an alternative to conventional methods of guaiacol quantification and A. acidoterrestris detection and could be very useful for the early recognition of A. acidoterrestris contamination in fruit juices.
Collapse
Affiliation(s)
- Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Yanchen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Hayes PE, Buzid A, Luong JHT, Glennon JD. Rapid Nanomolar Detection of Guaiacol from its Precursors Using a Core‐shell Reversed‐phase Column Coupled with a Boron‐doped Diamond Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Phyllis E. Hayes
- Innovative Chromatography Group Irish Separation Science Cluster (ISSC), School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF) University College Cork College Road Cork T12 YN60 Ireland
| | - Alyah Buzid
- Department of Chemistry, College of Science King Faisal University P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | - John H. T. Luong
- Innovative Chromatography Group Irish Separation Science Cluster (ISSC), School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF) University College Cork College Road Cork T12 YN60 Ireland
| | - Jeremy D. Glennon
- Innovative Chromatography Group Irish Separation Science Cluster (ISSC), School of Chemistry and the Analytical & Biological Chemistry Research Facility (ABCRF) University College Cork College Road Cork T12 YN60 Ireland
| |
Collapse
|
16
|
Luong TSV, Moir C, Bowman JP, Chandry PS. Heat resistance and genomics of spoilage Alicyclobacillus spp. Isolated from fruit juice and fruit-based beverages. Food Microbiol 2020; 94:103662. [PMID: 33279087 DOI: 10.1016/j.fm.2020.103662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/14/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
Alicyclobacillus acidoterrestris is a spore-forming bacterium of importance to the fruit juice industry due to its remarkable heat resistance and production of guaiacol taint. Whole genome sequencing analysis reveals species demarcation corresponds to the two major genotypic groups to which A. acidoterrestris isolates belong. Heat resistance was significantly different between genotypic groups 1 and 2 with D90 values of 15.5 and 9.3 min, respectively (p < 0.01). Comparison of squalene-hopene cyclase (shc) encoding sequences reveals non-synonymous changes and the alteration of glutamine residues. Glutamine absence may link to the stability reinforcement of the enzyme structure against thermal denaturation. Genomic islands harbouring heavy metal resistance genes are found in the majority of genotypic group 1 genomes (63%) but occurs in only one genome (5%) of genotypic group 2. Distribution of the genomic islands in the genotypic groups 1 and 2 is also consistent with phylogenetic trees and ANI and dDDH values. Subsequently, we propose genotypic group 1 as a new species closely related to A. acidoterrestris that possesses enhanced heat resistance.
Collapse
Affiliation(s)
- Thi Song Van Luong
- CSIRO Agriculture and Food, North Ryde, 2113, New South Wales, Australia; Centre for Food Safety and Innovation, Tasmanian Agriculture Institute, University of Tasmania, Hobart, 7005, Tasmania, Australia.
| | - Catherine Moir
- CSIRO Agriculture and Food, North Ryde, 2113, New South Wales, Australia
| | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Agriculture Institute, University of Tasmania, Hobart, 7005, Tasmania, Australia.
| | - P Scott Chandry
- CSIRO Agriculture and Food, Werribee, 3030, Victoria, Australia
| |
Collapse
|
17
|
Contreras-Jácquez V, Rodríguez-González J, Mateos-Díaz JC, Valenzuela-Soto EM, Asaff-Torres A. Differential Activation of Ferulic Acid Catabolic Pathways of Amycolatopsis sp. ATCC 39116 in Submerged and Surface Cultures. Appl Biochem Biotechnol 2020; 192:494-516. [PMID: 32399842 DOI: 10.1007/s12010-020-03336-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
Amycolatopsis sp. ATCC 39116 catabolizes ferulic acid by the non-oxidative deacetylation and β-oxidation pathways to produce vanillin and vanillic acid, respectively. In submerged culture, vanillin productivity decreased more than 8-fold, when ferulic, p-coumaric, and caffeic acids were employed in pre-cultures of the microorganism in order to activate the ferulic acid catabolic pathways, resulting in a carbon redistribution since vanillic acid and guaiacol productivities increased more than 5-fold compared with control. In contrast, in surface culture, the effects of ferulic and sinapic acids in pre-cultures were totally opposite to those of the submerged culture, directing the carbon distribution into vanillin formation. In surface culture, more than 30% of ferulic acid can be used as carbon source for other metabolic processes, such as ATP regeneration. In this way, the intracellular ATP concentration remained constant during the biotransformation process by surface culture (100 μg ATP/mg protein), demonstrating a high energetic state, which can maintain active the non-oxidative deacetylation pathway. In contrast, in submerged culture, it decreased 3.15-fold at the end of the biotransformation compared with the initial content, showing a low energetic state, while the NAD+/NADH ratio (23.15) increased 1.81-fold. It seems that in submerged culture, low energetic and high oxidative states are the physiological conditions that can redirect the ferulic catabolism into β-oxidative pathway and/or vanillin oxidation to produce vanillic acid.
Collapse
Affiliation(s)
- Victor Contreras-Jácquez
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Coordinación de Ciencia de los Alimentos), Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, CP, 83304, Hermosillo, Sonora, Mexico
| | - Jorge Rodríguez-González
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (Unidad de Biotecnología Industrial), Camino el Arenero 1227, El Bajío del Arenal, CP, 45019, Zapopan, Jalisco, Mexico
| | - Juan Carlos Mateos-Díaz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (Unidad de Biotecnología Industrial), Camino el Arenero 1227, El Bajío del Arenal, CP, 45019, Zapopan, Jalisco, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Coordinación de Ciencia de los Alimentos), Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, CP, 83304, Hermosillo, Sonora, Mexico
| | - Ali Asaff-Torres
- Centro de Investigación en Alimentación y Desarrollo, A.C. (Coordinación de Ciencia de los Alimentos), Carretera Gustavo Enrique Astiazarán Rosas 46, La Victoria, CP, 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
18
|
Kilicli M, Baslar M, Durak MZ, Sagdic O. Effect of ultrasound and low-intensity electrical current for microbial safety of lettuce. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
20
|
Cai R, Zhang M, Cui L, Yuan Y, Yang Y, Wang Z, Yue T. Antibacterial activity and mechanism of thymol against Alicyclobacillus acidoterrestris vegetative cells and spores. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Cai R, Miao M, Yue T, Zhang Y, Cui L, Wang Z, Yuan Y. Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid againstAlicyclobacillus acidoterrestrisvegetative cells in apple juice. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rui Cai
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Miao Miao
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Tianli Yue
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Yijun Zhang
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Lu Cui
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Zhouli Wang
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shaanxi 712100 China
- National Engineering Research Center of Agriculture Integration Test (Yangling) Yangling Shaanxi 712100 China
| |
Collapse
|
22
|
Synthesis of multifunctional fluorescent magnetic nanoparticles for the detection of Alicyclobacillus spp. in apple juice. Food Res Int 2018; 114:104-113. [DOI: 10.1016/j.foodres.2018.07.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/28/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022]
|
23
|
A novel developed method based on single primer isothermal amplification for rapid detection of Alicyclobacillus acidoterrestris in apple juice. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Cai R, Li D, Yuan Y, Wang Z, Guo C, Liu B, Yue T. Extraction, partial purification and characterisation of vanillic acid decarboxylase from Alicyclobacillus acidoterrestris DSM 3923. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2925-2931. [PMID: 26350615 DOI: 10.1002/jsfa.7455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Vanillic acid decarboxylase (VAD) is the key enzyme responsible for guaiacol production in Alicyclobacillus acidoterrestris; however, information related to this enzyme is currently unavailable. The aim of this study is to characterise the VAD from A. acidoterrestris. RESULTS Specific activity of VAD in vanillic acid-induced A. acidoterrestris DSM 3923 cells was highest in the early stage of the log phase, and almost undetectable in the stationary and death phases. Of the four techniques used to extract VAD, sonication was found to be the most effective and recovered 3.23 U mg(-1) of VAD. Through optimisation of the crucial parameters for sonication, the recovery of VAD had more than doubled (6.81 U mg(-1) ). The crude enzyme extract was purified by ammonium sulfate precipitation and a 9.87-fold purification was obtained. The partially purified VAD exhibited optimum activity at pH 6.0-6.5, 45°C and was stable at pH 5.0-7.5, 20-45°C. The Km and Vmax values of the VAD were 0.53 mmol L(-1) and 96 U mg(-1) protein, respectively. VAD activity was stimulated by Co(2+) and Mn(2+) , but was inhibited by Ni(2+) , Cu(2+) , Ba(2+) and Fe(3+) . Cinnamic acid, ferulic acid, resveratrol, quercetin and rutin at the concentration of 1 mmol L(-1) could completely inhibit the activity of VAD. CONCLUSION The present study provides the first report on the characteristics of the VAD from A. acidoterrestris, which will contribute to the development of more effective control methods to minimise A. acidoterrestris-related spoilage in fruit juices. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongyu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
25
|
Effects of preservatives on Alicyclobacillus acidoterrestris growth and guaiacol production. Int J Food Microbiol 2015; 214:145-150. [DOI: 10.1016/j.ijfoodmicro.2015.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/01/2015] [Accepted: 08/15/2015] [Indexed: 11/19/2022]
|