1
|
Fei X, Schroll C, Huang K, Christensen JP, Christensen H, Lemire S, Kilstrup M, Thomsen LE, Jelsbak L, Olsen JE. The global transcriptomes of Salmonella enterica serovars Gallinarum, Dublin and Enteritidis in the avian host. Microb Pathog 2023; 182:106236. [PMID: 37419218 DOI: 10.1016/j.micpath.2023.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Salmonella enterica serovar Gallinarum causes Fowl Typhoid in poultry, and it is host specific to avian species. The reasons why S. Gallinarum is restricted to avians, and at the same time predominately cause systemic infections in these hosts, are unknown. In the current study, we developed a surgical approach to study gene expression inside the peritoneal cavity of hens to shed light on this. Strains of the host specific S. Gallinarum, the cattle-adapted S. Dublin and the broad host range serovar, S. Enteritidis, were enclosed in semi-permeable tubes and surgically placed for 4 h in the peritoneal cavity of hens and for control in a minimal medium at 41.2 °C. Global gene-expression under these conditions was compared between serovars using tiled-micro arrays with probes representing the genome of S. Typhimurium, S. Dublin and S. Gallinarum. Among other genes, genes of SPI-13, SPI-14 and the macrophage survival gene mig-14 were specifically up-regulated in the host specific serovar, S. Gallinarum, and further studies into the role of these genes in host specific infection are highly indicated. Analysis of pathways and GO-terms, which were enriched in the host specific S. Gallinarum without being enriched in the two other serovars indicated that host specificity was characterized by a metabolic fine-tuning as well as unique expression of virulence associated pathways. The cattle adapted serovar S. Dublin differed from the two other serovars by a lack of up-regulation of genes encoded in the virulence associated pathogenicity island 2, and this may explain the inability of this serovar to cause disease in poultry.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China
| | - Casper Schroll
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kaisong Huang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Jens P Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sebastien Lemire
- Department of Systems Biology, Technical University of Denmark, Denmark
| | - Mogens Kilstrup
- Department of Systems Biology, Technical University of Denmark, Denmark
| | - Line E Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
2
|
Antimicrobial and cytocompatible chitosan, N,N,N-trimethyl chitosan, and tanfloc-based polyelectrolyte multilayers on gellan gum films. Int J Biol Macromol 2021; 183:727-742. [PMID: 33915214 DOI: 10.1016/j.ijbiomac.2021.04.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
In this work free-standing gels formed from gellan gum (GG) by solvent evaporation are coated with polysaccharide-based polyelectrolyte multilayers, using the layer-by-layer approach. We show that PEMs composed of iota-carrageenan (CAR) and three different natural polycationic polymers have composition-dependent antimicrobial properties, and support mammalian cell growth. Cationic polymers (chitosan (CHT), N,N,N-trimethyl chitosan (TMC), and an amino-functionalized tannin derivative (TN)) are individually assembled with the anionic iota-carrageenan (CAR) at pH 5.0. PEMs (15-layers) are alternately deposited on the GG film. The GG film and coated GG films with PEMs are characterized by infrared spectroscopy with attenuated total reflectance (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle (WCA) measurements. The TN/CAR coating provides a hydrophobic (WCA = 127°) and rough surface (Rq = 243 ± 48 nm), and the TMC/CAR coating provides a hydrophilic surface (WCA = 78°) with the lowest roughness (Rq = 97 ± 12 nm). Polymer coatings promote stability and durability of the GG film, and introduce antimicrobial properties against Gram-negative (Salmonella enteritidis) and Gram-positive (Staphylococcus aureus) bacteria. The films are also cytocompatible. Therefore, they have properties that can be further developed as wound dressings and food packaging.
Collapse
|
3
|
The Antibacterial Efficacy and Mechanism of Plasma-Activated Water Against Salmonella Enteritidis (ATCC 13076) on Shell Eggs. Foods 2020; 9:foods9101491. [PMID: 33086594 PMCID: PMC7603095 DOI: 10.3390/foods9101491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022] Open
Abstract
Eggs are one of the most commonly consumed food items. Currently, chlorine washing is the most common method used to sanitize shell eggs. However, chlorine could react with organic matters to form a potential carcinogen, trihalomethanes, which can have a negative impact on human health. Plasma-activated water (PAW) has been demonstrated to inactivate microorganisms effectively without compromising the sensory qualities of shell eggs. For this study, various amounts (250, 500, 750, or 1000 mL) of PAW were generated by using one or two plasma jet(s) at 60 watts for 20 min with an air flow rate at 6 or 10 standard liters per minute (slm). After being inoculated with 7.0 log CFU Salmonella Enteritidis, one shell egg was placed into PAW for 30, 60, or 90 s with 1 or 2 acting plasma jet(s). When 2 plasma jets were used in a large amount of water (1000 mL), populations of S. Enteritidis were reduced from 7.92 log CFU/egg to 2.84 CFU/egg after 60 s of treatment. In addition, concentrations of ozone, hydrogen peroxide, nitrate, and nitrite in the PAW were correlated with the levels of antibacterial efficacy. The highest concentrations of ozone (1.22 ppm) and nitrate (55.5 ppm) were obtained with a larger water amount and lower air flow rate. High oxidation reduction potential (ORP) and low pH values were obtained with longer activation time, more plasma jet, and a lower air flow rate. Electron paramagnetic resonance (EPR) analyses demonstrated that reactive oxygen species (ROS) were generated in the PAW. The observation under the scanning electron microscope (SEM) revealed that bacterial cells were swollen, or even erupted after treatment with PAW. These results indicate that the bacterial cells lost control of cell permeability after the PAW treatment. This study shows that PAW is effective against S. Enteritidis on shell eggs in a large amount of water. Ozone, nitrate, and ROS could be the main causes for the inactivation of bacterial cells.
Collapse
|
4
|
Hu S, Yu Y, Lv Z, Shen J, Ke Y, Xiao X. Proteomics study unveils ROS balance in acid-adapted Salmonella Enteritidis. Food Microbiol 2020; 92:103585. [PMID: 32950169 DOI: 10.1016/j.fm.2020.103585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Salmonella Enteritidis is a major cause of foodborne gastroenteritis and is thus a persistent threat to global public health. The acid adaptation response helps Salmonella survive exposure to gastric environment during ingestion. In a previous study we highlighted the damage caused to cell membrane and the regulation of intracellular reactive oxygen species (ROS) in S. Enteritidis. In this study, we applied both physiologic and iTRAQ analyses to explore the regulatory mechanism of acid resistance in Salmonella. It was found that after S. Enteritidis was subject to a 1 h period of acid adaptation at pH 5.5, an additional 1 h period of acid shock stress at pH 3.0 caused less Salmonella cell death than in non-acid adapted Salmonella cells. Although there were no significant differences between adapted and non-adapted cells in terms of cell membrane damage (e.g., membrane permeability or lipid peroxidation) after 30 min, intracellular ROS level in acid adapted cells was dramatically reduced compared to that in non-acid adapted cells, indicating that acid adaption promoted less ROS generation or increased the ability of ROS scavenging with little reduction in the integrity of the cell membrane. These findings were confirmed via an iTRAQ analysis. The adapted cells were shown to trigger incorporation of exogenous long-chain fatty acids into the cellular membrane, resulting in a different membrane lipid profile and promoting survival rate under acid stress. S. Enteritidis experiences oxidative damage and iron deficiency under acid stress, but after acid adaption S. Enteritidis cells were able to balance their concentrations of intracellular ROS. Specifically, SodAB consumed the free protons responsible for forming reactive oxygen intermediates (ROIs) and KatE protected cells from the toxic effects of ROIs. Additionally, acid-labile proteins released free unbound iron promoting ferroptotic metabolism, and NADH reduced GSSH to G-SH, protecting cells from acid/oxidative stress.
Collapse
Affiliation(s)
- Shuangfang Hu
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yigang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China
| | - Ziquan Lv
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 10083, PR China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province, 518055, PR China.
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, 510640, PR China.
| |
Collapse
|
5
|
Guerra PR, Liu G, Lemire S, Nawrocki A, Kudirkiene E, Møller-Jensen J, Olsen JE, Jelsbak L. Polyamine depletion has global effects on stress and virulence gene expression and affects HilA translation in Salmonella enterica serovar typhimurium. Res Microbiol 2020; 171:143-152. [PMID: 31991172 DOI: 10.1016/j.resmic.2019.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Polyamines are small cationic amines required for modulating multiple cell process, including cell growth and DNA and RNA stability. In Salmonella polyamines are primarily synthesized from L-arginine or L-ornithine. Based on a previous study, which demonstrated that polyamines affect the expression of virulence gene in S. Typhimurium, we investigated the role of polyamines in the global gene and protein expression in S. Typhimurium. The depletion of polyamine biosynthesis led to down-regulation of genes encoding structural components of the Type Three Secretion system 1 (TTSS1) and its secreted effectors. Interestingly, Expression of HilA, which is the master regulator of Salmonella Pathogenicity Island 1 (SPI1), was only reduced at the post-transcriptional in the polyamine mutant. Enzymes related to biosynthesis and/or transport of several amino acids were up-regulated, just as the Mg2+-transport systems were three to six-fold up-regulated at both the transcriptional and protein levels. Furthermore, in the polyamine depletion mutant, proteins related to stress response (IbpA, Dps, SodB), were 2-5 fold up-regulated. Together our data provide strong evidence that polyamine depletion affects expression of proteins linked with virulence and stress response of S. Typhimurium. Furthermore, polyamines positively affected translation of HilA, the major regulator of SPI1.
Collapse
Affiliation(s)
- Priscila R Guerra
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Gang Liu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Sebastien Lemire
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.
| | - Arkadiusz Nawrocki
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Jakob Møller-Jensen
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
6
|
The Optimization of Plasma-Activated Water Treatments to Inactivate Salmonella Enteritidis (ATCC 13076) on Shell Eggs. Foods 2019; 8:foods8100520. [PMID: 31640162 PMCID: PMC6836110 DOI: 10.3390/foods8100520] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 11/25/2022] Open
Abstract
Egg is a regularly consumed food item. Currently, chlorinated water washing is the most common practice used to disinfect eggs, but this process has a negative environmental impact. A new physical technique, plasma-activated water (PAW), has been demonstrated to possess effective antibacterial activities without long-term chemical residue. In this study, air PAW was used to inactivate Salmonella enterica serovar Enteritidis on shell eggs. Different combinations of activation parameters, including water sources (reverse osmotic (RO) water, tap water), power (40 W, 50 W, 60 W) and activation time (10 min, 20 min, 30 min), were evaluated. The oxidation–reduction potential (ORP) and pH values of each combination were measured, and their antibacterial activity was tested in a bacterial suspension. Higher antibacterial activities, higher ORP values, and lower pH values were obtained with higher power, longer activation time, and lower water hardness. The antibacterial activities of PAW decreased rapidly by increasing the storage time both at room and refrigeration temperatures. Afterwards, RO water was pre-activated for 20 min at 60 W, and then the eggs inoculated with S. enteritidis were placed into PAW for 30 s, 60 s, 90 s, or 120 s with a plasma on-site treatment in the water. More than a 4 log reduction was obtained with 60-s and 120-s treatments. The results showed that the freshness indexes of the eggs treated with PAW were similar to those of the untreated controls and better than those of the eggs treated with commercial processes. In addition, observation under a scanning electron microscope also showed less surface damage of the cuticle on the PAW-treated eggs than on the commercially treated eggs. The results of this study indicate that PAW could be an effective antibacterial agent with less damage to the freshness of shell eggs than commercial methods.
Collapse
|
7
|
Li Z, Guo R, Wang F, Geng S, Kang X, Meng C, Gu D, Jiao X, Pan Z. Inactivation of Salmonella Enteritidis on eggshells by lactic acid spray. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Qin X, He S, Zhou X, Cheng X, Huang X, Wang Y, Wang S, Cui Y, Shi C, Shi X. Quantitative proteomics reveals the crucial role of YbgC for Salmonella enterica serovar Enteritidis survival in egg white. Int J Food Microbiol 2019; 289:115-126. [DOI: 10.1016/j.ijfoodmicro.2018.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
9
|
Wang Y, Jia B, Xu X, Zhang L, Wei C, Ou H, Cui Y, Shi C, Shi X. Comparative Genomic Analysis and Characterization of Two Salmonella enterica Serovar Enteritidis Isolates From Poultry With Notably Different Survival Abilities in Egg Whites. Front Microbiol 2018; 9:2111. [PMID: 30245675 PMCID: PMC6137255 DOI: 10.3389/fmicb.2018.02111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Salmonellaenterica serovar Enteritidis (Salmonella Enteritidis) is a globally important foodborne pathogen, and the contaminated chicken eggs are the major source of salmonellosis in humans. Salmonella Enteritidis strains are differentially susceptible to the hostile environment of egg whites. Strains with superior survival ability in egg whites are more likely to contaminate eggs and consequently infect humans. However, the genetic basis for this phenotype is unclear. We characterized two Salmonella Enteritidis strains isolated from chicken meat that had similar genetic backgrounds but large differences in survival ability in egg whites. Although genome comparisons indicated that the gene content and genomic synteny were highly conserved, variations including six insertions or deletions (INDELs) and 70 single nucleotide polymorphisms (SNPs) were observed between the two genomes. Of these, 38 variations including four INDELs and 34 non-synonymous SNPs (nsSNP) were annotated to result in amino acid substitutions or INDELs in coding proteins. These variations were located in 38 genes involved in lysozyme inhibition, vitamin biosynthesis, cell division and DNA damage response, osmotic and oxidative protection, iron-related functions, cell envelope maintenance, amino acid and carbohydrate metabolism, antimicrobial resistance, and type III secretion system. We carried out allelic replacements for two nsSNPs in bioC (biotin synthesis) and pliC (lysozyme inhibition), and two INDELs in ftsK and yqiJ (DNA damage response) by homologous recombination, and these replacements did not alter the bacterial survival ability in egg whites. However, the bacterial survival ability in egg whites was reduced when deletion mutation of the genes bioC and pliC occurred. This study provides initial correlations between observed genotypes and phenotypes and serves as an important caveat for further functional studies.
Collapse
Affiliation(s)
- Yanyan Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Ben Jia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Lida Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Ou
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
|