1
|
Dušková M, Dorotíková K, Bartáková K, Králová M, Šedo O, Kameník J. The microbial contaminants of plant-based meat analogues from the retail market. Int J Food Microbiol 2024; 425:110869. [PMID: 39151231 DOI: 10.1016/j.ijfoodmicro.2024.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The aim of the study was to analyse the key microbial contaminants of plant-based meat analogues (PBMA) from retail. A total of 43 samples of PBMAs (12 frozen/31 chilled) in the "ready-to-cook" category, such as hamburgers, meatballs or breaded imitation steaks were purchased in retail stores in the Czech Republic in summer (n = 21) and autumn 2022 (n = 22). The detected indicator bacteria (total viable count, lactic acid bacteria, Enterobacteriaceae, yeasts, moulds) had relatively low values in the analysed PBMA samples and only rarely reached levels of 7 log CFU/g. E. coli, STEC and coagulase-positive staphylococci were not detected by isolation from plates in any of analysed samples. Mannitol positive Bacillus spp. were isolated from almost half of the analysed samples of the PBMA. B. cereus sensu lato was isolated from 3 samples by isolation from plates, and after enrichment in 35 samples (81 %). Clostridium perfringens could not be detected by isolation from plates, nevertheless after multiplication, it was detected in 21 % of samples. Analyses of PBMA samples revealed considerable variability in microbial quality. The presence of spore-forming bacteria with the potential to cause foodborne diseases is alarming. However, to evaluate the risks, further research focused on the possibilities of growth under different conditions of culinary treatment and preservation is needed.
Collapse
Affiliation(s)
- Marta Dušková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Kateřina Dorotíková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Klára Bartáková
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Michaela Králová
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Josef Kameník
- Department of Animal Origin Food and Gastronomic Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
2
|
Comi G, Colautti A, Bernardi CEM, Stella S, Orecchia E, Coppola F, Iacumin L. Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested. Microorganisms 2024; 12:1175. [PMID: 38930557 PMCID: PMC11206102 DOI: 10.3390/microorganisms12061175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Cooked sausages packaged in a modified atmosphere (MAP: 20% CO2, 70% N2, <0.2% O2) with evident yellow stains were analyzed. The aims of this work were to study the microbial cause of the spoilage and to evaluate different antimicrobial compounds to prevent it. Leuconostoc gelidum was identified as the primary cause of the yellow coating in spoiled cooked sausage, as confirmed by its intentional inoculation on slices of unspoiled sausage. Leuconostoc gelidum was the main bacteria responsible for the yellow coating in spoiled cooked sausage, as confirmed by its intentional inoculation on slices of unspoiled sausage. The yellow color was also evident during growth in the model system containing cooked sausage extract, but the colonies on MRS agar appeared white, demonstrating that the food substrate stimulated the production of the yellow pigment. The spoilage was also characterized by different volatile compounds, including ketones, ethanol, acetic acid, and ethyl acetate, found in the spoiled cooked sausage packages. These compounds explained the activity of Leuc. gelidum because they are typical of heterofermentative LAB, cultivated either on food substrates or in artificial broths. Leuc. gelidum also produced slight swelling in the spoiled packages. The efficacy of different antimicrobials was assessed in model systems composed of cooked sausage extract with the antimicrobials added at food product concentrations. The data showed that sodium lactate, sodium acetate, and a combination of sodium lactate and sodium diacetate could only slow the growth of the spoiler-they could not stop it from occurring. Conversely, hop extract inhibited Leuc. gelidum, showing a minimal inhibitory concentration (MIC) of approximately 0.008 mg CAE/mL in synthetic broth and 4 mg CAE/kg in cooked sausage slices. Adding hop extract at the MIC did not allow Leuc. gelidum growth and did not change the sensorial characteristics of the cooked sausages. To our knowledge, this is the first report of the antimicrobial activities of hop extracts against Leuc. gelidum either in vitro or in vivo.
Collapse
Affiliation(s)
- Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| | - Andrea Colautti
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| | - Cristian Edoardo Maria Bernardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (C.E.M.B.); (S.S.)
| | - Simone Stella
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (C.E.M.B.); (S.S.)
| | - Elisabetta Orecchia
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| | - Francesca Coppola
- Food Sciences Institute, National Research Council, Via Roma, 64, 83100 Avellino, Italy;
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, Via Sondrio 2/a, 33100 Udine, Italy; (A.C.); (E.O.); (L.I.)
| |
Collapse
|
3
|
Barcenilla C, Puente A, Cobo-Díaz JF, Alexa EA, Garcia-Gutierrez E, O'Connor PM, Cotter PD, González-Raurich M, López M, Prieto M, Álvarez-Ordóñez A. Selection of lactic acid bacteria as biopreservation agents and optimization of their mode of application for the control of Listeria monocytogenes in ready-to-eat cooked meat products. Int J Food Microbiol 2023; 403:110341. [PMID: 37543003 DOI: 10.1016/j.ijfoodmicro.2023.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
In order to meet consumers´ demands for more natural foods and to find new methods to control foodborne pathogens in them, research is currently being focused on alternative preservation approaches, such as biopreservation with lactic acid bacteria (LAB). Here, a collection of lactic acid bacteria (LAB) isolates was characterized to identify potential biopreservative agents. Six isolates (one Lactococcus lactis, one Lacticaseibacillus paracasei and four Lactiplantibacillus plantarum) were selected based on their antimicrobial activity in in vitro assays. Whole genome sequencing showed that none of the six LAB isolates carried known virulence factors or acquired antimicrobial resistance genes, and that the L. lactis isolate was potentially a nisin Z producer. Growth of L. monocytogenes was successfully limited by L. lactis ULE383, L. paracasei ULE721 and L. plantarum ULE1599 throughout the shelf-life of cooked ham, meatloaf and roasted pork shoulder. These LAB isolates were also applied individually or as a cocktail at different inoculum concentrations (4, 6 and 8 log10 CFU/g) in challenge test studies involving cooked ham, showing a stronger anti-Listerial activity when a cocktail was used at 8 log10 CFU/g. Thus, a reduction of up to ~5.0 log10 CFU/g in L. monocytogenes growth potential was attained in cooked ham packaged under vacuum, modified atmosphere packaging or vacuum followed by high pressure processing (HPP). Only minor changes in color and texture were induced, although there was a significant acidification of the product when the LAB cultures were applied. Remarkably, this acidification was delayed when HPP was applied to the LAB inoculated batches. Metataxonomic analyses showed that the LAB cocktail was able to grow in the cooked ham and outcompete the indigenous microbiota, including spoilage microorganisms such as Brochothrix. Moreover, none of the batches were considered unacceptable in a sensory evaluation. Overall, this study shows the favourable antilisterial activity of the cocktail of LAB employed, with the combination of HPP and LAB achieving a complete inhibition of the pathogen with no detrimental effects in physico-chemical or sensorial evaluations, highlighting the usefulness of biopreservation approaches involving LAB for enhancing the safety of cooked meat products.
Collapse
Affiliation(s)
- Coral Barcenilla
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Alba Puente
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Elena-Alexandra Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Enriqueta Garcia-Gutierrez
- Food Bioscience Department, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Paula M O'Connor
- Food Bioscience Department, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Food Bioscience Department, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Montserrat González-Raurich
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain; Institute of Food Science and Technology, Universidad de León, León, Spain.
| |
Collapse
|
4
|
Mustedanagic A, Schrattenecker A, Dzieciol M, Tichy A, Thalguter S, Wagner M, Stessl B. Characterization of Leuconostoc carnosum and Latilactobacillus sakei during Cooked Pork Ham Processing. Foods 2023; 12:2475. [PMID: 37444213 DOI: 10.3390/foods12132475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cooked ham is a popular, ready-to-eat product made of pork meat that is susceptible to microbial growth throughout its shelf life. In this study, we aimed to monitor the microbial growth and composition of nine vacuum-packed cooked ham lots using plate counting until the microbial limit of 7.4 log10 AMC/LAB CFU/g was exceeded. Eight out of nine lots exceeded the microbial limit after 20 days of storage. Lactic acid bacteria strains, particularly Leuconostoc carnosum and Latilactobacillus sakei, prevailed in vacuum-packed cooked ham. Leuconostoc carnosum 2 (Leuc 2) and Latilactobacillus sakei 4 (Sakei 4) were isolated from raw meat and the post-cooking area of the food processing facility. Carbohydrate utilization patterns of Leuc. carnosum PFGE types isolated from raw meat and the food processing environment differed from those isolated from cooked ham. These findings demonstrate how raw meat and its processing environment impact the quality and shelf life of cooked ham.
Collapse
Affiliation(s)
- Azra Mustedanagic
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Anna Schrattenecker
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Monika Dzieciol
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Alexander Tichy
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sarah Thalguter
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Beatrix Stessl
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
5
|
Alessandria V, Ferrocino I, Carta V, Zuliani V, Seibert TM, Soeltoft-Jensen J, Rantsiou K, Cocolin L. Selection of food cultures with protective properties for cooked ham. Food Microbiol 2023; 112:104218. [PMID: 36906317 DOI: 10.1016/j.fm.2023.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Sliced cooked ham stored in modified atmosphere packaging (MAP) can be spoiled by lactic acid bacteria (LAB) which are dominating under psychrotrophic conditions. Depending on the strains, the colonization can result in a premature spoilage characterized by off-flavors, gas and slime production, discoloration, and acidification. The purpose of this study was the isolation, identification and characterization of potential food culture with protective properties, able to prevent or delay spoilage in cooked-ham. The first step was to identify by means of microbiological analysis, the microbial consortia both in unspoiled and in spoiled lots of sliced cooked ham by the use of media for the detection lactic acid bacteria and total viable count. Counts ranged from values lower than 1 Log CFU/g to 9 Log CFU/g in spoiled and unflawed samples. The interaction between consortia was then studied in order to screen for strains able to inhibit spoilage consortia. Strains showing antimicrobial activity were identified and characterized by molecular methods and tested for their physiological features. Among a total of 140 strains isolated, nine were selected for their ability to inhibit a large number of spoilage consortia, to grow and ferment at 4 °C and to produce bacteriocins. The effectiveness of the fermentation made by food culture was evaluated, through challenge tests in situ, analysing the microbial profiles of artificially inoculated cooked-ham slices during storage by high throughput 16 S rRNA gene sequencing. The native population in situ resulted competitive against the inoculated strains and only one strain was able to significantly reduce the native populations reaching about 46.7% of the relative abundance. The results obtained in this study provide information about the selection of autochthonous LAB on the base of their action against spoilage consortia, in order to select protective potential cultures able to improve the microbial quality of sliced cooked ham.
Collapse
Affiliation(s)
- Valentina Alessandria
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università Degli Studi di Torino, Largo Paolo Braccini N°2, 10095, Grugliasco (TO), Italy.
| | - Ilario Ferrocino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università Degli Studi di Torino, Largo Paolo Braccini N°2, 10095, Grugliasco (TO), Italy
| | - Valerio Carta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università Degli Studi di Torino, Largo Paolo Braccini N°2, 10095, Grugliasco (TO), Italy
| | | | | | | | - Kalliopi Rantsiou
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università Degli Studi di Torino, Largo Paolo Braccini N°2, 10095, Grugliasco (TO), Italy
| | - Luca Cocolin
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università Degli Studi di Torino, Largo Paolo Braccini N°2, 10095, Grugliasco (TO), Italy
| |
Collapse
|
6
|
Mougiou N, Tsoureki A, Didos S, Bouzouka I, Michailidou S, Argiriou A. Microbial and Biochemical Profile of Different Types of Greek Table Olives. Foods 2023; 12:foods12071527. [PMID: 37048348 PMCID: PMC10094447 DOI: 10.3390/foods12071527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Analysis of table olives microbiome using next-generation sequencing has enriched the available information about the microbial community composition of this popular fermented food. In this study, 16S and 18S rRNA sequencing was performed on table olives of five Greek popular cultivars, Halkidikis, Thassou, Kalamon, Amfissis, and Konservolia, fermented either by Greek style (in brine or salt-drying) or by Spanish style, in order to evaluate their microbial communities. Moreover, analytical methods were used to evaluate their biochemical properties. The prevailing bacterial species of all olives belonged to Lactobacillaceae, Leuconostocaceae, and Erwiniaceae families, while the most abundant yeasts were of the Pichiaceae family. Principal coordinates analysis showed a clustering of samples cured by salt-drying and of samples stored in brine, regardless of their cultivar. The biochemical evaluation of total phenol content, antioxidant activity, hydroxytyrosol, oleuropein, oleocanthal, and oleacein showed that salt-dried olives had low amounts of hydroxytyrosol, while Spanish-style green olives had the highest amounts of oleocanthal. All the other values exhibited various patterns, implying that more than one factor affects the biochemical identity of the final product. The protocols applied in this study can provide useful insights for the final product, both for the producers and the consumers.
Collapse
Affiliation(s)
- Niki Mougiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
| | - Antiopi Tsoureki
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
| | - Spyros Didos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400 Lemnos, Greece
| | - Ioanna Bouzouka
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
- Department of Medicine, Aristotle University of Thessaloniki, 54154 Thessaloniki, Greece
| | - Sofia Michailidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, 57001 Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400 Lemnos, Greece
| |
Collapse
|
7
|
Charmpi C, Thamsborg KKM, Mikalsen SO, Magnussen E, Sosa Fajardo A, Van der Veken D, Leisner JJ, Leroy F. Bacterial species diversity of traditionally ripened sheep legs from the Faroe Islands (skerpikjøt). Int J Food Microbiol 2023; 386:110023. [PMID: 36463775 DOI: 10.1016/j.ijfoodmicro.2022.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Skerpikjøt is a traditionally ripened sheep leg product from the Faroe Islands, constituting a relatively underexplored microbial ecosystem. The objective of this study is to achieve a deeper understanding of the microbial composition of this artisanal product. Nine ripened hind legs, obtained from three different producers, were assessed regarding their bacterial communities and contents of biogenic amines, including both surface and core samples. Biogenic amine concentrations were generally low, although one sample had a somewhat elevated concentration of cadaverine. Bacterial diversity was investigated by culture-dependent and culture-independent techniques. Gram-positive catalase-positive cocci (GCC) constituted the most abundant group. Within this group, Staphylococcus equorum was the most prevailing species, followed by Kocuria sp., Mammaliicoccus vitulinus, and Staphylococcus saprophyticus. Lactic acid bacteria prevailed in only one sample and were mainly represented by Latilactobacillus curvatus. Enterobacterial communities were characterised by the prevalence of Serratia proteamaculans. Despite the majority of GCC, Clostridium putrefaciens was the most abundant bacterial species in some core samples. Taken together, the culture-dependent and culture-independent identification methods gave complementary results.
Collapse
Affiliation(s)
- Christina Charmpi
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Kristian Key Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Svein-Ole Mikalsen
- Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Eyðfinn Magnussen
- Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO-100 Tórshavn, Faroe Islands
| | - Ana Sosa Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Jørgen J Leisner
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg C, Denmark
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium.
| |
Collapse
|
8
|
Candeliere F, Simone M, Leonardi A, Rossi M, Amaretti A, Raimondi S. Indole and p-cresol in feces of healthy subjects: Concentration, kinetics, and correlation with microbiome. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:959189. [PMID: 39086966 PMCID: PMC11285674 DOI: 10.3389/fmmed.2022.959189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 08/02/2024]
Abstract
Indole and p-cresol are precursors of the most important uremic toxins, generated from the fermentation of amino acids tryptophan and tyrosine by the proteolytic community of intestinal bacteria. The present study focused on the relationship between the microbiome composition, the fecal levels of indole and p-cresol, and their kinetics of generation/degradation in fecal cultures. The concentration of indole and p-cresol, the volatilome, the dry weight, and the amount of ammonium and carbohydrates were analyzed in the feces of 10 healthy adults. Indole and p-cresol widely differed among samples, laying in the range of 1.0-19.5 μg/g and 1.2-173.4 μg/g, respectively. Higher fecal levels of indole and p-cresol were associated with lower carbohydrates and higher ammonium levels, that are markers of a more pronounced intestinal proteolytic metabolism. Positive relationship was observed also with the dry/wet weight ratio, indicator of prolonged intestinal retention of feces. p-cresol and indole presented a statistically significant negative correlation with OTUs of uncultured Bacteroidetes and Firmicutes, the former belonging to Bacteroides and the latter to the families Butyricicoccaceae (genus Butyricicoccus), Monoglobaceae (genus Monoglobus), Lachnospiraceae (genera Faecalibacterium, Roseburia, and Eubacterium ventriosum group). The kinetics of formation and/or degradation of indole and p-cresol was investigated in fecal slurries, supplemented with the precursor amino acids tryptophan and tyrosine in strict anaerobiosis. The presence of the precursors bursted indole production but had a lower effect on the rate of p-cresol formation. On the other hand, supplementation with indole reduced the net rate of formation. The taxa that positively correlated with fecal levels of uremic toxins presented a positive correlation also with p-cresol generation rate in biotransformation experiments. Moreover other bacterial groups were positively correlated with generation rate of p-cresol and indole, further expanding the range of taxa associated to production of p-cresol (Bacteroides, Alistipes, Eubacterium xylanophylum, and Barnesiella) and indole (e.g., Bacteroides, Ruminococcus torques, Balutia, Dialister, Butyricicoccus). The information herein presented contributes to disclose the relationships between microbiota composition and the production of uremic toxins, that could provide the basis for probiotic intervention on the gut microbiota, aimed to prevent the onset, hamper the progression, and alleviate the impact of nephropaties.
Collapse
Affiliation(s)
- Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alan Leonardi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
9
|
Novel cadaverine non-invasive biosensor technology on the prediction of shelf life of modified atmosphere packed pork cutlets. Meat Sci 2022; 192:108876. [DOI: 10.1016/j.meatsci.2022.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
|
10
|
The Pork Meat or the Environment of the Production Facility? The Effect of Individual Technological Steps on the Bacterial Contamination in Cooked Hams. Microorganisms 2022; 10:microorganisms10061106. [PMID: 35744624 PMCID: PMC9229742 DOI: 10.3390/microorganisms10061106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to analyse the influence of the contamination level of fresh meat on the bacterial population in raw material before cooking and on the microbiota of cooked hams following heat treatment. The effect of incubation temperatures of 6.5 and 15 °C on the results obtained was also evaluated during the bacteriological investigation. The total viable count (TVC), the number of Enterobacteriaceae and lactic acid bacteria (LAB) were determined in the samples. LAB were isolated from 13 samples out of the 50 fresh meat samples. The species most frequently detected included Latilactobacillus sakei, Leuconostoc carnosum, Enterococcus gilvus, Latilactobacillus curvatus, and Leuconostoc gelidum. The meat sampled after the brine injection and tumbler massaging showed higher bacterial counts compared to fresh meat samples (p < 0.001). The heat treatment destroyed the majority of the bacteria, as the bacterial counts were beneath the limit of detection with a few exceptions. Although the primary cultivation of samples of cooked hams did not reveal the presence of LAB, their presence was confirmed in 11 out of 12 samples by a stability test. Bacteria of the genus Leuconostoc were the most numerous.
Collapse
|
11
|
Spampinato G, Candeliere F, Amaretti A, Licciardello F, Rossi M, Raimondi S. Microbiota Survey of Sliced Cooked Ham During the Secondary Shelf Life. Front Microbiol 2022; 13:842390. [PMID: 35350621 PMCID: PMC8957903 DOI: 10.3389/fmicb.2022.842390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Sliced cooked ham packaged in a modified atmosphere is a popular ready-to-eat product, subjected to abundant microbial contamination throughout its shelf life that can lead to deterioration of both sensorial properties and safety. In this study, the microbial load and the chemical-physical features of cooked ham of five producers were monitored for a period of 12 days after the opening of the packages (i.e., the secondary shelf life), during which the products were stored in a domestic refrigerator at 5.2 ± 0.6°C. The sensorial properties presented a perceivable decay after 8 days and became unacceptable after 12 days. High-performance liquid chromatography analysis and solid-phase microextraction coupled with gas chromatography profiling of volatile metabolites indicated that lactic acid, ethanol, acetic acid, acetoin, 3-methyl-1-butanol, and 2-3 butanediol were the main metabolites that characterized the evolution of the analyzed cooked ham. The microbiota was monitored by 16S ribosomal RNA gene profiling and culture-dependent techniques. Already at the opening of packages, all the products presented high microbial load, generally dominated by lactic acid bacteria, with evident differences among the products. The increase of lactic acid bacteria somehow protected samples from abundant contamination by other bacteria, concurring with the evolution of more safe products. This role was exerted by numerous Latilactobacillus, Leuconostoc, and Carnobacterium species, among which the most frequently detected were Latilactobacillus sakei, Latilactobacillus sakei carnosum, Leuconostoc mesenteroides, and Carnobacterium divergens. Some products presented more complex communities that encompassed Proteobacteria such as Moellerella wisconsensis, Proteus hauseri, Brochothrix thermosphacta, and less frequently Pseudomonas, Erwinia, and Massilia. Opportunistic pathogenic bacteria such as Escherichia coli and Vibrio sp. were found in small quantities. The yeasts Kazachstania servazzii and Debaryomyces hansenii occurred already at 0 days, whereas various species of Candida (Candida zeylanoides, Candida sake, Candida norvegica, and Candida glaebosa) were abundant only after 12 days. These results indicated that the microbiological contaminants overgrowing during the secondary shelf life did not derive from environmental cross-contamination at the opening of the tray but were already present when the packages were opened, highlighting the phases of production up to the packaging as those crucial in managing the safety risk associated to this product.
Collapse
Affiliation(s)
- Gloria Spampinato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- BIOGEST-SITEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- BIOGEST-SITEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- BIOGEST-SITEIA, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Combination of High-Pressure Treatment at 500 MPa and Biopreservation with a Lactococcus lactis Strain for Lowering the Bacterial Growth during Storage of Diced Cooked Ham with Reduced Nitrite Salt. Microorganisms 2022; 10:microorganisms10020456. [PMID: 35208910 PMCID: PMC8880240 DOI: 10.3390/microorganisms10020456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
We investigated the combined effects of biopreservation and high-pressure treatment on bacterial communities of diced cooked ham prepared with diminished nitrite salt. First, bacterial communities of four commercial brands of diced cooked ham from local supermarkets were characterized and stored frozen. Second, sterile diced cooked ham, prepared with reduced levels of nitrite, was inoculated with two different microbiota collected from the aforementioned commercial samples together with a nisin-producing Lactococcus lactis protective strain able to recover from a 500 MPa high-pressure treatment. Samples were then treated at 500 MPa for 5 min, and bacterial dynamics were monitored during storage at 8 °C. Depending on samples, the ham microbiota was dominated by different Proteobacteria (Pseudomonas, Serratia, Psychrobacter, or Vibrio) or by Firmicutes (Latilactobacillus and Leuconostoc). Applied alone, none of the treatments stabilized during the growth of the ham microbiota. Nevertheless, the combination of biopreservation and high-pressure treatment was efficient in reducing the growth of Proteobacteria spoilage species. However, this effect was dependent on the nature of the initial microbiota, showing that the use of biopreservation and high-pressure treatment, as an alternative to nitrite reduction for ensuring cooked ham microbial safety, merits attention but still requires improvement.
Collapse
|
13
|
Effects of Modified Atmosphere Packaging with Various CO2 Concentrations on the Bacterial Community and Shelf-Life of Smoked Chicken Legs. Foods 2022; 11:foods11040559. [PMID: 35206036 PMCID: PMC8870794 DOI: 10.3390/foods11040559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
The effects of modified atmosphere packaging (MAP) with various CO2 concentrations on the bacterial community and shelf-life of smoked chicken legs during 25 d of storage at 4 °C were evaluated herein. Four treatments were stored in pallets (PAL) and MAP under 20% (M20), 60% (M60), and 100% (M100) CO2, respectively. The results indicated that the MAP treatments provided the legs with higher redness and hardness and lower yellowness, luminance, and lipid oxidation, compared with the PAL treatment. In addition, the MAP treatments effectively inhibited the growth of viable bacteria, delayed bacterial spoilage, and extended the shelf-life of the samples. The M60 and M100 treatments had a better inhibition effect on bacteria. In terms of bacterial community, Carnobacterium, Pseudomonas, Brochothrix, and Lactococcus were the most predominant genera in the 25 d-stored MAP samples, with Carnobacterium maltaromaticum, Pseudomonas fragi, Shewanella baltica, and Lactococcus piscium being the dominant species. However, while the inhibition effects of the M60 and M100 treatments on the bacterial community at Day 25 were similar, the outer package of the M100 treatment collapsed. Overall, the M60 treatment may be a promising approach to improving the quality and extending the shelf-life of smoked chicken legs.
Collapse
|
14
|
Blanco – Lizarazo CM, Sierra-Cadavid A, Montoya R AM, Ospina-E JC. Analysis of microbiota structure in cooked ham as influenced by chemical composition and processing treatments: Identification of spoilage bacteria and elucidation on contamination route. Curr Res Food Sci 2022; 5:726-734. [PMID: 35497775 PMCID: PMC9046883 DOI: 10.1016/j.crfs.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Spoilage in cooked ham is one of the main challenges where microbial contamination can play a fundamental role. This study aimed to characterize pork-cooked ham's microbial community changes among different food production conditions (formulation and processing) using 16S rRNA sequencing and also to investigate the spoilage bacteria in order to elucidate their contamination route. Samples of three pork-cooked ham references with and without post-pasteurization treatment and in contact with the slicing-packaging conveyor belt and slicer and packager surfaces were performed by 16S rRNA gene sequencing. In order to clarify the contamination route, surfaces were sampled by conventional microbiological methods. Results showed that Leuconostoc spp. was the principal genera in spoiled cooked ham and had no relation neither to formulation nor contact with the slicing-packaging conveyor belt. The contamination route found for Leuconostoc spp. was associated with the storage and packaging zone. In addition, the calculated shelf-life decreased to 57.5% independently of the environment interaction minimization when ham casing permeability was changed and linked to contamination of spoilage bacteria during the slicing and packaging process. This research illustrates how the combined approach provides complementary results to implement suggestions in the facility to reduce the cross-contamination with spoilage bacteria. It also generates tools to comprehend and propose transference models understanding the environmental and intrinsic factors related to microbial transfer rate. The structure of the bacterial community in cooked ham had no relation to the formulation. Genus Leuconostoc dominated the spoilage in cooked ham. The methodology allows validating the contamination route for spoilage bacteria. Post-pasteurization treatment reduce microbiota diversity. The ham shelf lifetime decrease get related to cross-contamination during slicing.
Collapse
|
15
|
Zhang Z, Han Z, Wu Y, Jiang S, Ma C, Zhang Y, Zhang J. Metagenomics assembled genome scale analysis revealed the microbial diversity and genetic polymorphism of Lactiplantibacillus plantarum in traditional fermented foods of Hainan, China. Food Res Int 2021; 150:110785. [PMID: 34865800 DOI: 10.1016/j.foodres.2021.110785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
Exploring the microbiome in fermented foods and their effects on food quality and sustainability is beneficial to provide data support for understanding how they affects human physiology. Here, metagenomic sequencing and metagenomic assembled genomes (MAGs) were applied to appraise the microbial diversity of fermented Yucha (FYC) and fermented vegetables (FVE). The antibiotic resistance genes (ARGs) enrichment and genetic polymorphism of Lactiplantibacillus plantarum in fermented foods of different regions were compared. The results showed that Lactiplantibacillus plantarum was the dominant species in FYC, while Lactiplantibacillus fermentum in FVE occupied the dominant position. From 32 high-quality MAGs, the central differential Lactic acid bacteria were higher in FVE. By comparing the Lactiplantibacillus plantarum MAGs in Hainan and Other regions, we found that the total Single Nucleotide Polymorphisms of Lactiplantibacillus plantarum in Hainan were significantly higher than other areas. Six non-synonymous mutations were included in the primary differential mutation, especially TrkA family potassium uptake protein and MerR family transcriptional regulator, which may be related to the hypersaline environment and highest ARGs enrichment in Hainan. This research provides valuable insight into our understanding of the microbiome of fermented food. Meanwhile, the analysis of Lactiplantibacillus plantarum genetic polymorphism based on MAGs helps us understand this strain's evolutionary history.
Collapse
Affiliation(s)
- Zeng Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Zhe Han
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yuqing Wu
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Shuaiming Jiang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Chenchen Ma
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Yanjun Zhang
- Chinese Academy of Tropical Agricultural Science, Spice and Beverages Research Institute, Wanning, Hainan 571533, China.
| | - Jiachao Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
16
|
Raimondi S, Spampinato G, Candeliere F, Amaretti A, Brun P, Castagliuolo I, Rossi M. Phenotypic Traits and Immunomodulatory Properties of Leuconostoc carnosum Isolated From Meat Products. Front Microbiol 2021; 12:730827. [PMID: 34512608 PMCID: PMC8425591 DOI: 10.3389/fmicb.2021.730827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Twelve strains of Leuconostoc carnosum from meat products were investigated in terms of biochemical, physiological, and functional properties. The spectrum of sugars fermented by L. carnosum strains was limited to few mono- and disaccharides, consistently with the natural habitats of the species, including meat and fermented vegetables. The strains were able to grow from 4 to 37°C with an optimum of approximately 32.5°C. The ability to grow at temperatures compatible with refrigeration and in presence of up to 60 g/L NaCl explains the high loads of L. carnosum frequently described in many meat-based products. Six strains produced exopolysaccharides, causing a ropy phenotype of colonies, according to the potential involvement on L. carnosum in the appearance of slime in packed meat products. On the other side, the study provides evidence of a potential protective role of L. carnosum WC0321 and L. carnosum WC0323 against Listeria monocytogenes, consistently with the presence in these strains of the genes encoding leucocin B. Some meat-based products intended to be consumed without cooking may harbor up to 108 CFU/g of L. carnosum; therefore, we investigated the potential impact of this load on health. No strains survived the treatment with simulated gastric juice. Three selected strains were challenged for the capability to colonize a mouse model and their immunomodulatory properties were investigated. The strains did not colonize the intestine of mice during 10 days of daily dietary administration. Intriguingly, despite the loss of viability during the gastrointestinal transit, the strains exhibited different immunomodulatory effect on the maturation of dendritic cells in vivo, the extent of which correlated to the production of exopolysaccharides. The ability to stimulate the mucosal associated immune system in such probiotic-like manner, the general absence of antibiotic resistance genes, and the lack of the biosynthetic pathways for biogenic amines should reassure on the safety of this species, with potential for exploitation of selected starters.
Collapse
Affiliation(s)
- Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gloria Spampinato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Duthoo E, Rasschaert G, Leroy F, Weckx S, Heyndrickx M, De Reu K. The Microbiota of Modified-Atmosphere-Packaged Cooked Charcuterie Products throughout Their Shelf-Life Period, as Revealed by a Complementary Combination of Culture-Dependent and Culture-Independent Analysis. Microorganisms 2021; 9:microorganisms9061223. [PMID: 34200022 PMCID: PMC8229102 DOI: 10.3390/microorganisms9061223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
Although refrigeration and modified-atmosphere packaging (MAP) allow for an extended shelf life of cooked charcuterie products, they are still susceptible to bacterial spoilage. To obtain better insights into factors that govern product deterioration, ample information is needed on the associated microbiota. In this study, sliced MAP cooked ham and cooked chicken samples were subjected to culture-dependent and culture-independent microbial analysis. In total, 683 bacterial isolates were obtained and identified from 60 samples collected throughout the storage period. For both charcuterie types, lactic acid bacteria (LAB) constituted the most abundant microbial group. In cooked ham, Brochothrix thermosphacta was highly abundant at the beginning of the shelf-life period, but was later overtaken by Leuconostoc carnosum and Lactococcus piscium. For cooked chicken products, Latilactobacillus sakei was most abundant throughout the entire period. Additionally, 13 cooked ham and 16 cooked chicken samples were analyzed using metabarcoding. Findings obtained with this method were generally in accordance with the results from the culture-dependent approach, yet they additionally demonstrated the presence of Photobacterium at the beginning of the shelf-life period in both product types. The results indicated that combining culture-dependent methods with metabarcoding can give complementary insights into the evolution of microorganisms in perishable foods.
Collapse
Affiliation(s)
- Evelyne Duthoo
- Fisheries and Food (ILVO)—Technology and Food Science Unit, Flanders Research Institute for Agriculture, 9090 Melle, Belgium; (E.D.); (G.R.); (M.H.)
| | - Geertrui Rasschaert
- Fisheries and Food (ILVO)—Technology and Food Science Unit, Flanders Research Institute for Agriculture, 9090 Melle, Belgium; (E.D.); (G.R.); (M.H.)
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (F.L.); (S.W.)
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (F.L.); (S.W.)
| | - Marc Heyndrickx
- Fisheries and Food (ILVO)—Technology and Food Science Unit, Flanders Research Institute for Agriculture, 9090 Melle, Belgium; (E.D.); (G.R.); (M.H.)
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, 9820 Merelbeke, Belgium
| | - Koen De Reu
- Fisheries and Food (ILVO)—Technology and Food Science Unit, Flanders Research Institute for Agriculture, 9090 Melle, Belgium; (E.D.); (G.R.); (M.H.)
- Correspondence: ; Tel.: +32-92723043
| |
Collapse
|
18
|
Identification of mucin degraders of the human gut microbiota. Sci Rep 2021; 11:11094. [PMID: 34045537 PMCID: PMC8159939 DOI: 10.1038/s41598-021-90553-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Mucins are large glycoproteins consisting of approximately 80% of hetero-oligosaccharides. Gut mucin degraders of healthy subjects were investigated, through a culture dependent and independent approach. The faeces of five healthy adults were subjected to three steps of anaerobic enrichment in a medium with sole mucins as carbon and nitrogen sources. The bacterial community was compared before and after the enrichment by 16S rRNA gene profiling. Bacteria capable of fermenting sugars, such as Anaerotruncus, Holdemania, and Enterococcaceae likely took advantage of the carbohydrate chains. Escherichia coli and Enterobacteriaceae, Peptococcales, the Coriobacteriale Eggerthella, and a variety of Clostridia such as Oscillospiraceae, Anaerotruncus, and Lachnoclostridium, significantly increased and likely participated to the degradation of the protein backbone of mucin. The affinity of E. coli and Enterobacteriaceae for mucin may facilitate the access to the gut mucosa, promoting gut barrier damage and triggering systemic inflammatory responses. Only three species of strict anaerobes able to grow on mucin were isolated from the enrichments of five different microbiota: Clostridium disporicum, Clostridium tertium, and Paraclostridium benzoelyticum. The limited number of species isolated confirms that in the gut the degradation of these glycoproteins results from cooperation and cross-feeding among several species exhibiting different metabolic capabilities.
Collapse
|
19
|
Chitrakar B, Zhang M, Bhandari B. Improvement strategies of food supply chain through novel food processing technologies during COVID-19 pandemic. Food Control 2021; 125:108010. [PMID: 33679006 PMCID: PMC7914018 DOI: 10.1016/j.foodcont.2021.108010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a contagious disease caused by a novel corona virus (SARS-CoV-2). No medical intervention has yet succeeded, though vaccine success is expected soon. However, it may take months or years to reach the vaccine to the whole population of the world. Therefore, the technological preparedness is worth to discuss for the smooth running of food processing activities. We have explained the impact of the COVID-19 pandemic on the food supply chain (FSC) and then discussed the technological interventions to overcome these impacts. The novel and smart technologies during food processing to minimize human-to-human and human-to-food contact were compiled. The potential virus-decontamination technologies were also discussed. Finally, we concluded that these technologies would make food processing activities smarter, which would ultimately help to run the FSC smoothly during COVID-19 pandemic.
Collapse
Affiliation(s)
- Bimal Chitrakar
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
20
|
Van Reckem E, De Vuyst L, Weckx S, Leroy F. Next-generation sequencing to enhance the taxonomic resolution of the microbiological analysis of meat and meat-derived products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Candeliere F, Raimondi S, Spampinato G, Tay MYF, Amaretti A, Schlundt J, Rossi M. Comparative Genomics of Leuconostoc carnosum. Front Microbiol 2021; 11:605127. [PMID: 33505375 PMCID: PMC7829361 DOI: 10.3389/fmicb.2020.605127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/04/2020] [Indexed: 01/15/2023] Open
Abstract
Leuconostoc carnosum is a known colonizer of meat-related food matrices. It reaches remarkably high loads during the shelf life in packaged meat products and plays a role in spoilage, although preservative effects have been proposed for some strains. In this study, the draft genomes of 17 strains of L. carnosum (i.e., all the strains that have been sequenced so far) were compared to decipher their metabolic and functional potential and to determine their role in food transformations. Genome comparison and pathway reconstruction indicated that L. carnosum is a compact group of closely related heterofermentative bacteria sharing most of the metabolic features. Adaptation to a nitrogen-rich environment, such as meat, is evidenced by 23 peptidase genes identified in the core genome and by the autotrophy for nitrogen compounds including several amino acids, vitamins, and cofactors. Genes encoding the decarboxylases yielding biogenic amines were not present. All the strains harbored 1–4 of 32 different plasmids, bearing functions associated to proteins hydrolysis, transport of amino acids and oligopeptides, exopolysaccharides, and various resistances (e.g., to environmental stresses, bacteriophages, and heavy metals). Functions associated to bacteriocin synthesis, secretion, and immunity were also found in plasmids. While genes for lactococcin were found in most plasmids, only three harbored the genes for leucocin B, a class IIa antilisterial bacteriocin. Determinants of antibiotic resistances were absent in both plasmids and chromosomes.
Collapse
Affiliation(s)
- Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gloria Spampinato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Moon Yue Feng Tay
- Nanyang Technological University Food Technology Centre (NAFTEC), Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Italy
| | - Joergen Schlundt
- Nanyang Technological University Food Technology Centre (NAFTEC), Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
Samelis J, Kakouri A. Growth Inhibitory and Selective Pressure Effects of Sodium Diacetate on the Spoilage Microbiota of Frankfurters Stored at 4 °C and 12 °C in Vacuum. Foods 2021; 10:E74. [PMID: 33401509 PMCID: PMC7824339 DOI: 10.3390/foods10010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 01/01/2023] Open
Abstract
This study evaluated microbial growth in commercial frankfurters formulated with 1.8% sodium lactate (SL) singly or combined with 0.25% sodium diacetate (SDA), vacuum-packaged (VP) and stored at 4 °C and 12 °C. Standard frankfurters without SDA, containing 0.15% SL, served as controls (CN). Lactic acid bacteria (LAB) were the exclusive spoilers in all treatments at both storage temperatures. However, compared to the CN and SL treatments, SL + SDA delayed growth of LAB by an average of 5.1 and 3.1 log units, and 3.0 and 2.0 log units, respectively, after 30 and 60 days at 4 °C. On day 90, the SL + SDA frankfurters were unspoiled whereas the SL and CN frankfurters had spoiled on day 60 and day 30 to 60, respectively. At 12 °C, LAB growth was similar in all treatments after day 15, but strong defects developed in the CN and SL frankfurters only. Differential spoilage patterns were associated with a major reversal of the LAB biota from gas- and slime-producing Leuconostoc mesenteroides and Leuconostoc carnosum in the CN and SL frankfurters to Lactobacillus sakei/curvatus in the SL + SDA frankfurters. Thus, SL + SDA extends the retail shelf life of VP frankfurters by delaying total LAB growth and selecting for lactobacilli with a milder cured meat spoilage potential than leuconostocs, particularly under refrigeration.
Collapse
Affiliation(s)
- John Samelis
- Hellenic Agricultural Organization ‘DIMITRA’, Dairy Research Department, 45221 Katsikas, Ioannina, Greece;
| | | |
Collapse
|
23
|
Cenci-Goga BT, Sechi P, Iulietto MF, Amirjalali S, Barbera S, Karama M, Aly SS, Grispoldi L. Characterization and Growth under Different Storage Temperatures of Ropy Slime-Producing Leuconostoc mesenteroides Isolated from Cooked Meat Products. J Food Prot 2020; 83:1043-1049. [PMID: 31930931 DOI: 10.4315/jfp-19-521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/08/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The presence of lactic acid bacteria can be detrimental when the abundant growth of slime-producing strains (Lactobacillus spp. and Leuconostoc spp.) causes spoilage of meat products. Two strains of lactic acid bacteria were isolated from vacuum-packed cooked hams that had been withdrawn from the market for the so-called ropy slime defect and identified as Leuconostoc mesenteroides. In an attempt to define the behavior of ropy slime-producing bacteria, two strains of L. mesenteroides were incubated in de Man Rogosa Sharpe broth at different storage temperatures and conditions of thermal abuse (4, 12, 20, 30, 37, and 44°C). Both strains showed a lack of growth at 44°C, a good level of development at 30 and 37°C, and evident growth ability at low temperatures, with a long stationary phase. In particular, the bacterial concentration at 4°C was >105 CFU mL-1 after more than 120 days of incubation. This study demonstrates that the refrigeration temperature for cooked meat products does not constitute a hurdle for ropy slime producers and their subsequent ability to spoil. HIGHLIGHTS
Collapse
Affiliation(s)
- Beniamino T Cenci-Goga
- Dipartimento di Medicina Veterinaria, Laboratorio di Ispezione degli Alimenti di Origine Animale, Università degli Studi di Perugia, 06126 Perugia, Italy (ORCID: https://orcid.org/0000-0001-6887-3383 [L.G.]).,Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Paola Sechi
- Dipartimento di Medicina Veterinaria, Laboratorio di Ispezione degli Alimenti di Origine Animale, Università degli Studi di Perugia, 06126 Perugia, Italy (ORCID: https://orcid.org/0000-0001-6887-3383 [L.G.])
| | - Maria F Iulietto
- Dipartimento di Medicina Veterinaria, Laboratorio di Ispezione degli Alimenti di Origine Animale, Università degli Studi di Perugia, 06126 Perugia, Italy (ORCID: https://orcid.org/0000-0001-6887-3383 [L.G.])
| | - Shahin Amirjalali
- Dipartimento di Medicina Veterinaria, Laboratorio di Ispezione degli Alimenti di Origine Animale, Università degli Studi di Perugia, 06126 Perugia, Italy (ORCID: https://orcid.org/0000-0001-6887-3383 [L.G.])
| | - Salvatore Barbera
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Italy
| | - Musafiri Karama
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Sharif S Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, California 93274, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - Luca Grispoldi
- Dipartimento di Medicina Veterinaria, Laboratorio di Ispezione degli Alimenti di Origine Animale, Università degli Studi di Perugia, 06126 Perugia, Italy (ORCID: https://orcid.org/0000-0001-6887-3383 [L.G.])
| |
Collapse
|
24
|
Zagdoun M, Coeuret G, N'Dione M, Champomier-Vergès MC, Chaillou S. Large microbiota survey reveals how the microbial ecology of cooked ham is shaped by different processing steps. Food Microbiol 2020; 91:103547. [PMID: 32539984 DOI: 10.1016/j.fm.2020.103547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 05/03/2020] [Indexed: 01/19/2023]
Abstract
Cooked ham production involves numerous steps shaping the microbial communities of the final product, with consequences on spoilage metabolites production. To identify the main factors driving the ecology of ham and its spoilage, we designed a study encompassing five variables related to ham production: type of storage during meat transportation, churning speed, drain-off time, slicing line and O2 packaging permeability. About 200 samples from the same facility were obtained and characterized with respect to i) their microbiota based on gyrB amplicon sequencing ii) their production of spoilage-related metabolites based on E-Nose analysis and enzymatic assays. The slicing was the most critical step, shaping two general types of microbiota according to the slicing line: one dominated by Carnobacterium divergens and another one dominated by Leuconostoc carnosum and Serratia proteamaculans. Regarding metabolites production, L. carnosum was associated to d-lactic acid, ethanol and acetic acid production, whereas Serratia proteamaculans was associated to acetic acid production. This last species prevailed with highly O2-permeable packaging. Within a given slicing line, campaign-based variations were observed, with Lactobacillus sakei, Leuconostoc mesenteroides and Carnobacterium maltaromaticum prevalent in summer. L. sakei was associated with l-lactic acid production and C. maltaromaticum with formic and acetic acid productions.
Collapse
Affiliation(s)
- Marine Zagdoun
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Gwendoline Coeuret
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Méry N'Dione
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Stéphane Chaillou
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
25
|
Sekoai PT, Feng S, Zhou W, Ngan WY, Pu Y, Yao Y, Pan J, Habimana O. Insights into the Microbiological Safety of Wooden Cutting Boards Used for Meat Processing in Hong Kong's Wet Markets: A Focus on Food-Contact Surfaces, Cross-Contamination and the Efficacy of Traditional Hygiene Practices. Microorganisms 2020; 8:E579. [PMID: 32316436 PMCID: PMC7232214 DOI: 10.3390/microorganisms8040579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/02/2023] Open
Abstract
Hong Kong's wet markets play a crucial role in the country's supply of safe, fresh meat to satisfy the dietary needs of its population. Whilst food safety regulations have been introduced over the past few years to maintain the microbial safety of foods sold from these wet markets, it remains unclear whether the hygiene maintenance that is performed on the wooden cutting boards used for meat-processing is effective. In fact, hygiene maintenance may often be overlooked, and hygiene standards may be insufficient. If so, this may lead to the spread of harmful pathogens through cross-contamination, thereby causing severe risks to public health. The aim of this study was to determine the level of microbial transfer between wooden cutting boards and swine meat of various qualities, using 16S metagenomic sequencing, strain identification and biofilm screening of isolated strains. The results established that: (a) the traditional hygiene practices used for cleaning wooden cutting boards in Hong Kong's wet markets expose the surfaces to potentially harmful microorganisms; (b) the processing of microbially contaminated meat on cutting boards cleaned using traditional practices leads to cross-contamination; and (c) several potentially pathogenic microorganisms found on the cutting boards have good biofilm-forming abilities. These results reinforce the need to review the traditional methods used to clean wooden cutting boards after the processing of raw meat in Hong Kong' wet markets so as to prevent cross-contamination events. The establishment of proper hygiene protocols may reduce the spread of disease-causing microorganisms (including antibiotic-resistant microorganisms) in food-processing environments.
Collapse
Affiliation(s)
- Patrick T Sekoai
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Shiqi Feng
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Wenwen Zhou
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Wing Y Ngan
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yang Pu
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yuan Yao
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Olivier Habimana
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| |
Collapse
|
26
|
Wang Z, He Z, Zhang D, Li H, Wang Z. Using oxidation kinetic models to predict the quality indices of rabbit meat under different storage temperatures. Meat Sci 2020; 162:108042. [DOI: 10.1016/j.meatsci.2019.108042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
|
27
|
Amaretti A, Righini L, Candeliere F, Musmeci E, Bonvicini F, Gentilomi GA, Rossi M, Raimondi S. Antibiotic Resistance, Virulence Factors, Phenotyping, and Genotyping of Non- Escherichia coli Enterobacterales from the Gut Microbiota of Healthy Subjects. Int J Mol Sci 2020; 21:ijms21051847. [PMID: 32156029 PMCID: PMC7084377 DOI: 10.3390/ijms21051847] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023] Open
Abstract
Non-Escherichia coli Enterobacterales (NECE) can colonize the human gut and may present virulence determinants and phenotypes that represent severe heath concerns. Most information is available for virulent NECE strains, isolated from patients with an ongoing infection, while the commensal NECE population of healthy subjects is understudied. In this study, 32 NECE strains were isolated from the feces of 20 healthy adults. 16S rRNA gene sequencing and mass spectrometry attributed the isolates to Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Enterobacter kobei, Citrobacter freundii, Citrobacter amalonaticus, Cronobacter sp., and Hafnia alvei, Morganella morganii, and Serratia liquefaciens. Multiplex PCR revealed that K. pneumoniae harbored virulence genes for adhesins (mrkD, ycfM, and kpn) and enterobactin (entB) and, in one case, also for yersiniabactin (ybtS, irp1, irp2, and fyuA). Virulence genes were less numerous in the other NECE species. Biofilm formation was spread across all the species, while curli and cellulose were mainly produced by Citrobacter and Enterobacter. Among the most common antibiotics, amoxicillin-clavulanic acid was the sole against which resistance was observed, only Klebsiella strains being susceptible. The NECE inhabiting the intestine of healthy subjects have traits that may pose a health threat, taking into account the possibility of horizontal gene transfer.
Collapse
Affiliation(s)
- Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (A.A.); (L.R.); (F.C.); (E.M.); (M.R.)
- Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Lucia Righini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (A.A.); (L.R.); (F.C.); (E.M.); (M.R.)
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (A.A.); (L.R.); (F.C.); (E.M.); (M.R.)
| | - Eliana Musmeci
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (A.A.); (L.R.); (F.C.); (E.M.); (M.R.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
- Unit of Microbiology, Alma Mater Studiorum-University of Bologna, S. Orsola-Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (A.A.); (L.R.); (F.C.); (E.M.); (M.R.)
- Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (A.A.); (L.R.); (F.C.); (E.M.); (M.R.)
- Correspondence: ; Tel.: +39-059-205-8595
| |
Collapse
|
28
|
Draft Genome Sequences of 12 Leuconostoc carnosum Strains Isolated from Cooked Ham Packaged in a Modified Atmosphere and from Fresh Sausages. Microbiol Resour Announc 2020; 9:9/2/e01247-19. [PMID: 31919169 PMCID: PMC6952655 DOI: 10.1128/mra.01247-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Leuconostoc carnosum is a lactic acid bacterium that preferentially colonizes meat. In this work, we present the draft genome sequences of 12 Leuconostoc carnosum strains isolated from modified-atmosphere-packaged cooked ham and fresh sausages. Three strains harbor bacteriocin genes. Leuconostoc carnosum is a lactic acid bacterium that preferentially colonizes meat. In this work, we present the draft genome sequences of 12 Leuconostoc carnosum strains isolated from modified-atmosphere-packaged cooked ham and fresh sausages. Three strains harbor bacteriocin genes.
Collapse
|
29
|
Galluzzo FG, Cammilleri G, Ulrici A, Calvini R, Pulvirenti A, Lo Cascio G, Macaluso A, Vella A, Cicero N, Amato A, Ferrantelli V. Land Snails as a Valuable Source of Fatty Acids: A Multivariate Statistical Approach. Foods 2019; 8:foods8120676. [PMID: 31842483 PMCID: PMC6963810 DOI: 10.3390/foods8120676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 11/17/2022] Open
Abstract
The fatty acid (FA) profile of wild Theba pisana, Cornu aspersum, and Eobania vermiculata land snail samples, collected in Sicily (Southern Italy), before and after heat treatment at +100 °C were examined by gas chromatography with a flame ionization detector (GC-FID). The results show a higher content of polyunsaturated fatty acids (PUFAs) in all of the examined raw snails samples, representing up to 48.10% of the total fatty acids contents, followed by monounsaturated fatty acids (MUFAs). The thermal processing of the snail samples examined determined an overall reduction of PUFA levels (8.13%, 7.75%, and 4.62% for T. pisana, C. aspersum and E. vermiculata samples, respectively) and a species-specific variation of saturated fatty acid (SFA) contents. Oleic acid remained the most abundant FA of all of the snails species examined, accounting for up to 29.95% of the total FA content. A relevant decrease of ɷ3/ɷ6 ratio was found only for T. pisana samples. The principal component analysis (PCA) showed a separation of the snail samples in terms of species and heat treatment. The results of this work suggest land snails as a valuable source of MUFA and PUFA contents and boiling as appropriate treatment, according to the maintenance of healthy properties.
Collapse
Affiliation(s)
- Francesco Giuseppe Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (F.G.G.); (G.L.C.); (A.M.); (A.V.); (V.F.)
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (F.G.G.); (G.L.C.); (A.M.); (A.V.); (V.F.)
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy; (A.U.); (R.C.); (A.P.)
- Correspondence: ; Tel.: +39-328-8048262
| | - Alessandro Ulrici
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy; (A.U.); (R.C.); (A.P.)
| | - Rosalba Calvini
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy; (A.U.); (R.C.); (A.P.)
| | - Andrea Pulvirenti
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy; (A.U.); (R.C.); (A.P.)
| | - Giovanni Lo Cascio
- Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (F.G.G.); (G.L.C.); (A.M.); (A.V.); (V.F.)
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (F.G.G.); (G.L.C.); (A.M.); (A.V.); (V.F.)
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy; (A.U.); (R.C.); (A.P.)
| | - Antonio Vella
- Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (F.G.G.); (G.L.C.); (A.M.); (A.V.); (V.F.)
| | - Nicola Cicero
- Dipartimento SASTAS, Università degli studi di Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy; (F.G.G.); (G.L.C.); (A.M.); (A.V.); (V.F.)
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy; (A.U.); (R.C.); (A.P.)
| |
Collapse
|