1
|
Panera-Martínez S, Capita R, Pedriza-González Á, Díez-Moura M, Riesco-Peláez F, Alonso-Calleja C. Occurrence, Antibiotic Resistance and Biofilm-Forming Ability of Listeria monocytogenes in Chicken Carcasses and Cuts. Foods 2024; 13:3822. [PMID: 39682895 DOI: 10.3390/foods13233822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
A total of 104 samples of chicken meat acquired on the day of slaughter from two slaughterhouses in northwestern Spain were analyzed. These comprised 26 carcasses and 26 cuts from each of the two establishments. An average load of 5.39 ± 0.61 log10 cfu/g (total aerobic counts) and 4.90 ± 0.40 log10 cfu/g (psychrotrophic microorganisms) were obtained, with differences (p < 0.05) between types of samples and between slaughterhouses. Culturing methods involving isolation based on the UNE-EN-ISO 11290-1:2018 norm and identification of isolates by polymerase chain reaction (PCR) to detect the lmo1030 gene allowed the detection of Listeria monocytogenes in 75 samples (72.1% of the total; 50.0% of the carcasses and 94.2% of the cuts). The 75 isolates, one for each positive sample, were tested for resistance against a panel of 15 antibiotics of clinical interest by the disc diffusion method. All isolates belonged to the serogroup IIa (multiplex PCR assay) and showed resistance to between four and ten antibiotics, with an average value of 5.7 ± 2.0 resistances per isolate, this rising to 7.0 ± 2.1 when strains with resistance and reduced susceptibility were taken together. A high prevalence of resistance was observed for antibiotics belonging to the cephalosporin and quinolone families. However, the level of resistance was low for antibiotics commonly used to treat listeriosis (e.g., ampicillin or gentamicin). Nine different resistance patterns were noted. One isolate with each resistance pattern was tested for its ability to form biofilms on polystyrene during 72 h at 12 °C. The total biovolume of the biofilms registered through confocal laser scanning microscopy (CLSM) in the observation field of 16,078.24 μm2 ranged between 13,967.7 ± 9065.0 μm3 and 33,478.0 ± 23,874.1 μm3, and the biovolume of inactivated bacteria between 0.5 ± 0.4 μm3 and 179.1 ± 327.6 μm3. A direct relationship between the level of resistance to antibiotics and the ability of L. monocytogenes strains to form biofilms is suggested.
Collapse
Affiliation(s)
- Sarah Panera-Martínez
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | | | - María Díez-Moura
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Félix Riesco-Peláez
- Department of Electrical Engineering and Systems and Automation, School of Industrial, Computer and Aerospace Engineering, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| |
Collapse
|
2
|
Dishan A, Barel M, Hizlisoy S, Arslan RS, Hizlisoy H, Gundog DA, Al S, Gonulalan Z. The ARIMA model approach for the biofilm-forming capacity prediction of Listeria monocytogenes recovered from carcasses. BMC Vet Res 2024; 20:123. [PMID: 38532403 DOI: 10.1186/s12917-024-03950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
The present study aimed to predict the biofilm-formation ability of L. monocytogenes isolates obtained from cattle carcasses via the ARIMA model at different temperature parameters. The identification of L. monocytogenes obtained from carcass samples collected from slaughterhouses was determined by PCR. The biofilm-forming abilities of isolates were phenotypically determined by calculating the OD value and categorizing the ability via the microplate test. The presence of some virulence genes related to biofilm was revealed by QPCR to support the biofilm profile genotypically. Biofilm-formation of the isolates was evaluated at different temperature parameters (37 °C, 22 °C, 4 °C and - 20 °C). Estimated OD values were obtained with the ARIMA model by dividing them into eight different estimation groups. The prediction performance was determined by performance measurement metrics (ME, MAE, MSE, RMSE, MPE and MAPE). One week of incubation showed all isolates strongly formed biofilm at all controlled temperatures except - 20 °C. In terms of the metrics examined, the 3 days to 7 days forecast group has a reasonable prediction accuracy based on OD values occurring at 37 °C, 22 °C, and 4 °C. It was concluded that measurements at 22 °C had lower prediction accuracy compared to predictions from other temperatures. Overall, the best OD prediction accuracy belonged to the data obtained from biofilm formation at -20 °C. For all temperatures studied, especially after the 3 days to 7 days forecast group, there was a significant decrease in the error metrics and the forecast accuracy increased. When evaluating the best prediction group, the lowest RMSE at 37 °C (0.055), 22 °C (0.027) and 4 °C (0.024) belonged to the 15 days to 21 days group. For the OD predictions obtained at -20 °C, the 15 days to 21 days prediction group had also good performance (0.011) and the lowest RMSE belongs to the 7 days to 15 days group (0.007). In conclusion, this study will guide in using indicator parameters to evaluate biofilm forming ability to predict optimum temperature-time. The ARIMA models integrated with this study can be useful tools for industrial application and risk assessment studies using different parameters such as pH, NaCl concentration, and especially temperature applied during food processing and storage on the biofilm-formation ability of L. monocytogenes.
Collapse
Affiliation(s)
- Adalet Dishan
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Yozgat Bozok University, Yozgat, Turkey.
| | - Mukaddes Barel
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| | - Serhat Hizlisoy
- Faculty of Engineering and Architecture, Department of Computer Engineering, Kayseri University, Kayseri, Turkey
| | - Recep Sinan Arslan
- Faculty of Engineering and Architecture, Department of Computer Engineering, Kayseri University, Kayseri, Turkey
| | - Harun Hizlisoy
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| | - Dursun Alp Gundog
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| | - Serhat Al
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| | - Zafer Gonulalan
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Cross-contamination of mature Listeria monocytogenes biofilms from stainless steel surfaces to chicken broth before and after the application of chlorinated alkaline and enzymatic detergents. Food Microbiol 2023; 112:104236. [PMID: 36906320 DOI: 10.1016/j.fm.2023.104236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
The objectives of this study were, firstly, to compare a conventional (i.e., chlorinated alkaline) versus an alternative (chlorinated alkaline plus enzymatic) treatment effectivity for the elimination of biofilms from different L. monocytogenes strains (CECT 5672, CECT 935, S2-bac and EDG-e). Secondly, to evaluate the cross-contamination to chicken broth from non-treated and treated biofilms formed on stainless steel surfaces. Results showed that all L. monocytogenes strains were able to adhere and develop biofilms at approximately the same growth levels (≈5.82 log CFU/cm2). When non-treated biofilms were put into contact with the model food, obtained an average transference rate of potential global cross-contamination of 20.4%. Biofilms treated with the chlorinated alkaline detergent obtained transference rates similar to non-treated biofilms as a high number of residual cells (i.e., around 4 to 5 Log CFU/cm2) were present on the surface, except for EDG-e strain on which transference rate diminished to 0.45%, which was related to the protective matrix. Contrarily, the alternative treatment was shown to not produce cross-contamination to the chicken broth due to its high effectivity for biofilm control (<0.50% of transference) except for CECT 935 strain that had a different behavior. Therefore, changing to more intense cleaning treatments in the processing environments can reduce risk of cross-contamination.
Collapse
|
4
|
Schneider G, Steinbach A, Putics Á, Solti-Hodován Á, Palkovics T. Potential of Essential Oils in the Control of Listeria monocytogenes. Microorganisms 2023; 11:1364. [PMID: 37374865 DOI: 10.3390/microorganisms11061364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen, the causative agent of listeriosis. Infections typically occur through consumption of foods, such as meats, fisheries, milk, vegetables, and fruits. Today, chemical preservatives are used in foods; however, due to their effects on human health, attention is increasingly turning to natural decontamination practices. One option is the application of essential oils (EOs) with antibacterial features, since EOs are considered by many authorities as being safe. In this review, we aimed to summarize the results of recent research focusing on EOs with antilisterial activity. We review different methods via which the antilisterial effect and the antimicrobial mode of action of EOs or their compounds can be investigated. In the second part of the review, results of those studies from the last 10 years are summarized, in which EOs with antilisterial effects were applied in and on different food matrices. This section only included those studies in which EOs or their pure compounds were tested alone, without combining them with any additional physical or chemical procedure or additive. Tests were performed at different temperatures and, in certain cases, by applying different coating materials. Although certain coatings can enhance the antilisterial effect of an EO, the most effective way is to mix the EO into the food matrix. In conclusion, the application of EOs is justified in the food industry as food preservatives and could help to eliminate this zoonotic bacterium from the food chain.
Collapse
Affiliation(s)
- György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Ákos Putics
- Central Laboratory, Aladár Petz Teaching Hospital, Vasvári Pál Street 2-4, H-9024 Győr, Hungary
| | - Ágnes Solti-Hodován
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| | - Tamás Palkovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti St. 12, H-7624 Pécs, Hungary
| |
Collapse
|
5
|
Mazaheri T, Ripolles-Avila C, Rodríguez-Jerez J. Elimination of mature Listeria monocytogenes biofilms formed on preconditioned and non-preconditioned surfaces after the application of cleaning treatments and their cell regeneration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Mazaheri T, Cervantes-Huamán B, Turitich L, Ripolles-Avila C, Rodríguez-Jerez J. Removal of Listeria monocytogenes biofilms on stainless steel surfaces through conventional and alternative cleaning solutions. Int J Food Microbiol 2022; 381:109888. [DOI: 10.1016/j.ijfoodmicro.2022.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
|
7
|
Anti-Biofilm Activity of Cell Free Supernatants of Selected Lactic Acid Bacteria against Listeria monocytogenes Isolated from Avocado and Cucumber Fruits, and from an Avocado Processing Plant. Foods 2022; 11:foods11182872. [PMID: 36141000 PMCID: PMC9498153 DOI: 10.3390/foods11182872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes forms biofilms on food contact surfaces, a niche from where it dislodges to contaminate food products including fresh produce. Probiotics and their derivatives are considered promising alternative strategies to curb the presence of L. monocytogenes in varied food applications. Nonetheless, studies on their anti-biofilm effects against L. monocytogenes from avocados and cucumbers are sparse. This study screened the biofilm formation capabilities of L. monocytogenes strains Avo and Cuc isolated from the avocado and cucumber fruits respectively, and strain 243 isolated from an avocado processing plant; and evaluated the anti-biofilm effects of cell free supernatants (CFS) of Lactobacillus acidophilus La14 150B, Lactiplantibacillus plantarum B411 and Lacticaseibacillus rhamnosus ATCC 53103 against their biofilms formed on polyvinyl chloride (PVC) and stainless steel. All the L. monocytogenes strains formed biofilms (classified either as moderate or strong biofilm formers) on these materials. The presence of CFS reduced the biofilm formation capabilities of these strains and disrupted the integrity of their pre-formed biofilms. Quantitative reverse transcriptase polymerase chain reaction revealed significant reduction of positive regulatory factor A (prfA) gene expression by L. monocytogenes biofilm cells in the presence of CFS (p < 0.05). Thus, these CFS have potential as food grade sanitizers for control of L. monocytogenes biofilms in the avocado and cucumber processing facilities.
Collapse
|
8
|
Ripolles-Avila C, Guitan-Santamaria M, Pizarro-Giménez K, Mazaheri T, Rodríguez-Jerez J. Dual-species biofilms formation between dominant microbiota isolated from a meat processing industry with Listeria monocytogenes and Salmonella enterica: Unraveling their ecological interactions. Food Microbiol 2022; 105:104026. [DOI: 10.1016/j.fm.2022.104026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022]
|
9
|
Repeated sub-inhibitory doses of cassia essential oil do not increase the tolerance pattern in Listeria monocytogenes cells. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Cervantes-Huamán B, Ripolles-Avila C, Mazaheri T, Rodríguez-Jerez J. Pathogenic mono-species biofilm formation on stainless steel surfaces: Quantitative, qualitative, and compositional study. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Alonso VPP, Ferreira RCDC, Cotta MA, Kabuki DY. Influence of milk proteins on the adhesion and formation of Bacillus sporothermodurans biofilms: Implications for dairy industrial processing. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Berlec A, Janež N, Sterniša M, Klančnik A, Sabotič J. Listeria innocua Biofilm Assay Using NanoLuc Luciferase. Bio Protoc 2022; 12:e4308. [DOI: 10.21769/bioprotoc.4308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/02/2022] Open
|
13
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
14
|
Berlec A, Janež N, Sterniša M, Klančnik A, Sabotič J. Expression of NanoLuc Luciferase in Listeria innocua for Development of Biofilm Assay. Front Microbiol 2021; 12:636421. [PMID: 33633716 PMCID: PMC7901905 DOI: 10.3389/fmicb.2021.636421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
Studies of biofilm formation by bacteria are crucial for understanding bacterial resistance and for development of novel antibacterial strategies. We have developed a new bioluminescence biofilm assay for Listeria innocua, which is considered a non-pathogenic surrogate for Listeria monocytogenes. L. innocua was transformed with a plasmid for inducible expression of NanoLuc luciferase (Nluc). Concentration-dependent bioluminescence signals were obtained over a concentration range of more than three log units. This biofilm assay enables absolute quantification of bacterial cells, with the necessary validation. For biofilm detection and quantification, this “Nluc bioluminescence” method has sensitivity of 1.0 × 104 and 3.0 × 104 colony forming units (CFU)/mL, respectively, with a dynamic range of 1.0 × 104 to 5.0 × 107 CFU/mL. These are accompanied by good precision (coefficient of variation, <8%) and acceptable accuracy (relative error for most samples, <15%). This novel method was applied to assess temporal biofilm formation of L. innocua as a function of concentration of inoculant, in comparison with conventional plating and CFU counting, the crystal violet assay, and the resazurin fluorescence assay. Good correlation (r = 0.9684) of this Nluc bioluminescence assay was obtained with CFU counting. The limitations of this Nluc bioluminescence assay include genetic engineering of bacteria and relatively high cost, while the advantages include direct detection, absolute cell quantification, broad dynamic range, low time requirement, and high sensitivity. Nluc-based detection of L. innocua should therefore be considered as a viable alternative or a complement to existing methods.
Collapse
Affiliation(s)
- Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Meta Sterniša
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
15
|
Mazaheri T, Cervantes-Huamán BRH, Bermúdez-Capdevila M, Ripolles-Avila C, Rodríguez-Jerez JJ. Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen? Microorganisms 2021; 9:microorganisms9010181. [PMID: 33467747 PMCID: PMC7830665 DOI: 10.3390/microorganisms9010181] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Biofilms contain microbial cells which are protected by a self-produced matrix and they firmly attach themselves to many different food industry surfaces. Due to this protection, microorganisms within biofilms are much more difficult to eradicate and therefore to control than suspended cells. A bacterium that tends to produce these structures and persist in food processing plants is Listeria monocytogenes. To this effect, many attempts have been made to develop control strategies to be applied in the food industry, although there seems to be no clear direction on how to manage the risk the bacteria poses. There is no standardized protocol that is applied equally to all food sectors, so the strategies for the control of this pathogen depend on the type of surface, the nature of the product, the conditions of the food industry environment, and indeed the budget. The food industry performs different preventive and corrective measures on possible L. monocytogenes-contaminated surfaces. However, a critical evaluation of the sanitization methods applied must be performed to discern whether the treatment can be effective in the long-term. This review will focus on currently used strategies to eliminate biofilms and control their formation in processing facilities in different food sectors (i.e., dairy, meat, fish, chilled vegetables, and ready-to-eat products). The technologies employed for their control will be exemplified and discussed with the objective of understanding how L. monocytogenes can be improved through food safety management systems.
Collapse
|
16
|
Ríos-Castillo AG, Ripolles-Avila C, Rodríguez-Jerez JJ. Evaluation of bacterial population using multiple sampling methods and the identification of bacteria detected on supermarket food contact surfaces. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
One-step and DNA amplification-free detection of Listeria monocytogenes in ham samples: Combining magnetic relaxation switching and DNA hybridization reaction. Food Chem 2020; 338:127837. [PMID: 32818863 DOI: 10.1016/j.foodchem.2020.127837] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Early screening of L. monocytogenes in ready-to-eat food can prevent and control its harmful effects. In this study, we propose a highly sensitive magnetic DNA sensor based on nucleic acid hybridization reaction and magnetic signal readout. We design the L. monocytogenes specific probe1 and probe2 and label them on the 30 and 250 nm magnetic nanoparticles, respectively. The hybridization reaction between the magnetic probes and DNA of L. monocytogenes could form a sandwich nanocomplex. After magnetic separation, the unbound MNP30-probe2 can act as the transverse relaxation time (T2) signal readout probe. This assay allows the one-step detection of L. monocytogenes as low as 50 CFU/mL within 2 h without DNA amplification, and the average recovery in the spiked ham sausage samples can reach 92.6%. This system integrates the high sensitivity of magnetic sensing and high efficiency of hybridization reaction, providing a promising detection platform for pathogens.
Collapse
|
18
|
Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Ríos-Castillo A, Ripolles-Avila C, Rodríguez-Jerez J. Detection of Salmonella Typhimurium and Listeria monocytogenes biofilm cells exposed to different drying and pre-enrichment times using conventional and rapid methods. Int J Food Microbiol 2020; 324:108611. [DOI: 10.1016/j.ijfoodmicro.2020.108611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/28/2023]
|
20
|
Ripolles-Avila C, Martínez-Garcia M, Capellas M, Yuste J, Fung DYC, Rodríguez-Jerez JJ. From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry. Compr Rev Food Sci Food Saf 2020; 19:1877-1907. [PMID: 33337076 DOI: 10.1111/1541-4337.12592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The prevention of foodborne diseases is one of the main objectives of health authorities. To this effect, analytical techniques to detect and/or quantify the microbiological contamination of foods prior to their release onto the market are required. Management and control of foodborne pathogens have generally been based on conventional detection methodologies, which are not only time-consuming and labor-intensive but also involve high consumable materials costs. However, this management perspective has changed over time given that the food industry requires efficient analytical methods that obtain rapid results. This review covers the historical context of traditional methods and their passage in time through to the latest developments in rapid methods and their implementation in the food sector. Improvements and limitations in the detection of the most relevant pathogens are discussed from a perspective applicable to the current situation in the food industry. Considering efforts that are being done and recent developments, rapid and accurate methods already used in the food industry will be also affordable and portable and offer connectivity in near future, which improves decision-making and safety throughout the food chain.
Collapse
Affiliation(s)
- Carolina Ripolles-Avila
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Martínez-Garcia
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Capellas
- Area of Food Technology, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Yuste
- Area of Food Technology, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Y C Fung
- Call Hall, Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas
| | - José-Juan Rodríguez-Jerez
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Fontecha-Umaña F, Ríos-Castillo AG, Ripolles-Avila C, Rodríguez-Jerez JJ. Antimicrobial Activity and Prevention of Bacterial Biofilm Formation of Silver and Zinc Oxide Nanoparticle-Containing Polyester Surfaces at Various Concentrations for Use. Foods 2020; 9:E442. [PMID: 32268566 PMCID: PMC7230149 DOI: 10.3390/foods9040442] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Food contact surfaces are primary sources of bacterial contamination in food industry processes. With the objective of preventing bacterial adhesion and biofilm formation on surfaces, this study evaluated the antimicrobial activity of silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticle-containing polyester surfaces (concentration range from 400 ppm to 850 ppm) using two kinds of bacteria, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli), and the prevention of bacterial biofilm formation using the pathogen Listeria monocytogenes. The results of antimicrobial efficacy (reductions ≥ 2 log CFU/cm2) showed that at a concentration of 850 ppm, ZnO-NPs were effective against only E. coli (2.07 log CFU/cm2). However, a concentration of 400 ppm of Ag-NPs was effective against E. coli (4.90 log CFU/cm2) and S. aureus (3.84 log CFU/cm2). Furthermore, a combined concentration of 850 ppm Ag-NPs and 400 ppm ZnO-NPs showed high antimicrobial efficacy against E. coli (5.80 log CFU/cm2) and S. aureus (4.11 log CFU/cm2). The results also showed a high correlation between concentration levels and the bacterial activity of Ag-ZnO-NPs (R2 = 0.97 for S. aureus, and R2 = 0.99 for E. coli). They also showed that unlike individual action, the joint action of Ag-NPs and ZnO-NPs has high antimicrobial efficacy for both types of microorganisms. Moreover, Ag-NPs prevent the biofilm formation of L. monocytogenes in humid conditions of growth at concentrations of 500 ppm. Additional studies under different conditions are needed to test the durability of nanoparticle containing polyester surfaces with antimicrobial properties to optimize their use.
Collapse
Affiliation(s)
| | | | | | - José Juan Rodríguez-Jerez
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n. Bellaterra, 08193 Barcelona, Spain; (F.F.-U.); (A.G.R.-C.); (C.R.-A.)
| |
Collapse
|
22
|
Ripolles‐Avila C, Ríos‐Castillo AG, Fontecha‐Umaña F, Rodríguez‐Jerez JJ. Removal of
Salmonella enterica
serovar Typhimurium and
Cronobacter sakazakii
biofilms from food contact surfaces through enzymatic catalysis. J Food Saf 2020. [DOI: 10.1111/jfs.12755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carolina Ripolles‐Avila
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - Abel G. Ríos‐Castillo
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - Fabio Fontecha‐Umaña
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| | - José J. Rodríguez‐Jerez
- Area of Human Nutrition and Food Sciences, Departament de Ciència Animal i dels Aliments, Facultat de VeterinariaUniversitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona Spain
| |
Collapse
|
23
|
Ripolles-Avila C, Ramos-Rubio M, Hascoët AS, Castillo M, Rodríguez-Jerez JJ. New approach for the removal of mature biofilms formed by wild strains of Listeria monocytogenes isolated from food contact surfaces in an Iberian pig processing plant. Int J Food Microbiol 2020; 323:108595. [PMID: 32224347 DOI: 10.1016/j.ijfoodmicro.2020.108595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
One of the main objectives of the food industry is to guarantee food safety by providing innocuous food products. Therefore, this sector must consider all the possible biotic or abiotic contamination routes from the entry of raw materials to the release of the final product. Currently, one important problem in this regard is the presence of biofilms on food contact surfaces which can transmit pathogens such as L. monocytogenes. In industrial conditions biofilms are found in a mature state, so it is essential that when carrying out removal effectiveness studies in vitro the tests are realized with models that produce these structures in a similarly mature state. The main objective of this study was to evaluate the effectiveness of an alternative treatment (i.e. enzymatic detergent that include natural antimicrobial agents) and a conventional treatment (i.e. chlorinated alkaline) for the elimination of mature L. monocytogenes biofilms. The results showed a cell detachment from the formed mature biofilms with an effectivity of between 74.75%-97.73% and 53.94%-94.02% for the enzymatic treatment and the chlorinated alkaline detergent, respectively. On a qualitative level, it was observed that the dispersion in the structure was much higher for the enzymatic treatment than for the chlorinated alkaline, which continued to show obvious structure integrity. All this leads to the conclusion that treatments with an enzymatic detergent have a significantly greater impact on the removal of mature L. monocytogenes biofilms, although a further disinfection process would be needed, enhancing even more the treatment effectivity. This may imply that the industrial approach to addressing this problem should be modified to include new perspectives that are more effective than traditional ones.
Collapse
Affiliation(s)
- C Ripolles-Avila
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - M Ramos-Rubio
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - A S Hascoët
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - M Castillo
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - J J Rodríguez-Jerez
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain.
| |
Collapse
|
24
|
Ripolles-Avila C, García-Hernández N, Cervantes-Huamán BH, Mazaheri T, Rodríguez-Jerez JJ. Quantitative and Compositional Study of Monospecies Biofilms of Spoilage Microorganisms in the Meat Industry and Their Interaction in the Development of Multispecies Biofilms. Microorganisms 2019; 7:E655. [PMID: 31817368 PMCID: PMC6956169 DOI: 10.3390/microorganisms7120655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Food spoilage is a serious problem in the food industry, since it leads to significant economic losses. One of its main causes is the cross-contamination of food products from industrial surfaces. Three spoilage bacterial species which are highly present in meat and the gastrointestinal tract of chickens were selected: Pseudomonas fragi, Leuconostoc gasicomitatum, and Lactobacillus reuteri. The dual aim was to determine their ability to form monospecies biofilms and to examine how they interact when they coexist together. To do so, mature monospecies biofilms were produced statically for seven days at a temperature of 30 °C. L. gasicomitatum was also used to investigate the behavior of P. fragi and L. reuteri in the formation of multispecies biofilms. The structure and composition of the monospecies biofilms were evaluated by direct epifluorescence microscopy, and the multispecies biofilms were evaluated by plate counting. Both L. gasicomitatum and L. reuteri were able to form biofilms, with counts of approximately 7 Log CFU/cm2 and a defined structure. However, P. fragi obtained counts to the order of 4 Log CFU/cm2, which is significantly different from the previous species (P < 0.05), and it had no network of cell conglomerates. The content of the L. gasicomitatum and L. reuteri biofilm matrices were 70-80% protein, unlike P. fragi, which presented a higher polysaccharide content (P < 0.05). In the multispecies biofilms, the presence of P. fragi did not affect the growth of L. gasicomitatum, which remained at between 5.76 to 6.1 Log CFU/cm2. However, L. reuteri was able to displace L. gasicomitatum growth after 24 h of coexisting in a mixed biofilm, presenting differences in counts of approximately 2 Log CFU/cm2. The study of the biofilms constructed by food industry resident microbiota can help to understand the ecological relations that exist between species, characterize them, and propose strategies to eliminate them. The name of genes and species should be written in italic.
Collapse
Affiliation(s)
| | | | | | | | - José Juan Rodríguez-Jerez
- Area of Human Nutrition and Food Science, Department of Food and Animal Science, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (C.R.-A.); (N.G.-H.); (B.H.C.-H.); (T.M.)
| |
Collapse
|
25
|
Architecture and Viability of the Biofilms Formed by Nine Listeria Strains on Various Hydrophobic and Hydrophilic Materials. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are a key factor in the persistence of Listeria in food processing plants, representing a potential source of foodstuff contamination. Nine Listeria strains (eight Listeria monocytogenes and one Listeria ivanovii) were studied by confocal laser scanning microscopy (CLSM) for their ability to form biofilm on glass, polystyrene, graphene and resin after 120 h of incubation at 12 °C. The relationship between cell surface hydrophobicity and biofilm formation was also investigated. On comparing the data for all the strains, similar (P > 0.05) biovolume values were obtained on glass (average 3.39 ± 1.69 µm3/µm2) and graphene (2.93 ± 1.14 µm3/µm2), while higher (P < 0.05) values were observed for polystyrene (4.39 ± 4.14 µm3/µm2). The highest (P < 0.01) biovolume levels were found in the biofilms formed on resin (7.35 ± 1.45 µm3/µm2), which also had the smallest biomass of inactivated cells (0.38 ± 0.37 µm3/µm2 vs. 1.20 ± 1.12 µm3/µm2 on the remaining surfaces; P < 0.001). No relationship was noted between cell surface hydrophobicity and biofilm-forming ability.
Collapse
|
26
|
Microbial Ecology Evaluation of an Iberian Pig Processing Plant through Implementing SCH Sensors and the Influence of the Resident Microbiota on Listeria monocytogenes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is a whole community of microorganisms capable of surviving the cleaning and disinfection processes in the food industry. These persistent microorganisms can enhance or inhibit biofilm formation and the proliferation of foodborne pathogens. Cleaning and disinfection protocols will never reduce the contamination load to 0; however, it is crucial to know which resident species are present and the risk they represent to pathogens, such as Listeria monocytogenes, as they can be further used as a complementary control strategy. The aim of this study was to evaluate the resident surface microbiota in an Iberian pig processing plant after carrying out the cleaning and disinfection processes. To do so, surface sensors were implemented, sampled, and evaluated by culture plate count. Further, isolated microorganisms were identified through biochemical tests. The results show that the surfaces are dominated by Bacillus spp., Pseudomonas spp., different enterobacteria, Mannheimia haemolytica, Rhizobium radiobacter, Staphylococcus spp., Aeromonas spp., lactic acid bacteria, and yeasts and molds. Moreover, their probable relationship with the presence of L. monocytogenes in three areas of the plant is also explained. Further studies of the resident microbiota and their interaction with pathogens such as L. monocytogenes are required. New control strategies that promote the most advantageous profile of microorganisms in the resident microbiota could be a possible alternative for pathogen control in the food industry. To this end, the understanding of the resident microbiota on the surfaces of the food industry and its relation with pathogen presence is crucial.
Collapse
|
27
|
Hygienic properties exhibited by single-use wood and plastic packaging on the microbial stability for fish. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Iñiguez-Moreno M, Gutiérrez-Lomelí M, Avila-Novoa MG. Kinetics of biofilm formation by pathogenic and spoilage microorganisms under conditions that mimic the poultry, meat, and egg processing industries. Int J Food Microbiol 2019; 303:32-41. [PMID: 31129476 DOI: 10.1016/j.ijfoodmicro.2019.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
Pathogens and spoilage microorganisms can develop multispecies biofilms on food contact surfaces; however, few studies have been focused on evaluated mixed biofilms of these microorganisms. Therefore this study investigated the biofilm development by pathogenic (Bacillus cereus, Escherichia coli, Listeria monocytogenes, and Salmonella enterica Enteritidis and Typhimurium serotypes) and spoilage (Bacillus cereus and Pseudomonas aeruginosa) microorganisms onto stainless-steel (SS) and polypropylene B (PP) coupons; under conditions that mimic the dairy, meat, and egg processing industry. Biofilms were developed in TSB with 10% chicken egg yolk (TSB + EY), TSB with 10% meat extract (TSB + ME) and whole milk (WM) onto SS and PP. Each tube was inoculated with 25 μL of each bacteria and then incubated at 9 or 25 °C, with enumeration at 1, 48, 120, 180 and 240 h. Biofilms were visualized by epifluorescence and scanning electron microscopy (SEM). Biofilm development occurred at different phases, depending on the incubation conditions. In the reversible adhesion, the cell density of each bacteria was between 1.43 and 6.08 Log10 CFU/cm2 (p < 0.05). Moreover, significant reductions in bacteria appeared at 9 °C between 1 and 48 h of incubation. Additionally, the constant multiplication of bacteria in the biofilm occurred at 25 °C between 48 and 180 h of incubation, with increments of 2.08 Log10 CFU/cm2 to S. Typhimurium. Population establishment was observed between 48 and 180 h and 180-240 h incubation, depending on the environmental conditions (25 and 9 °C, respectively). For example, in TSB + ME at 25 °C, S. Typhimurium, P aeruginosa, and L. monocytogenes showed no statistical differences in the amounts between 48 and 180 h incubation. The dispersion phase was identified for L. monocytogenes and B. cereus at 25 °C. Epifluorescence microscopy and SEM allowed visualizing the bacteria and extracellular polymeric substances at the different biofilm stages. In conclusion, pathogens and spoilage microorganisms developed monospecies with higher cellular densities than multiespecies biofilms. In multispecies biofilms, the time to reach each biofilm phase varied is depending on environmental factors. Cell count decrements of 1.12-2.44 Log10 CFU/cm2 occurred at 48 and 240 h and were most notable in the biofilms developed at 9 °C. Additionally, cell density reached by each microorganism was different, P. aeruginosa and Salmonella were the dominant microorganisms in the biofilms while B. cereus showed the lower densities until undetectable levels.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Laboratorio de Alimentos, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán, Jalisco, Mexico
| | - Melesio Gutiérrez-Lomelí
- Laboratorio de Alimentos, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán, Jalisco, Mexico
| | - María Guadalupe Avila-Novoa
- Laboratorio de Microbiología, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán, Jalisco, Mexico.
| |
Collapse
|
29
|
Ripolles-Avila C, Hascoët A, Martínez-Suárez J, Capita R, Rodríguez-Jerez J. Evaluation of the microbiological contamination of food processing environments through implementing surface sensors in an iberian pork processing plant: An approach towards the control of Listeria monocytogenes. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|