1
|
Nogueira Leite N, Garcia Sperandio V, da Piedade Edmundo Sitoe E, de Assis Silva MV, Rodrigues de Alencar E, Gonçalves Machado S. Ozone as a promising method for controlling Pseudomonas spp. biofilm in the food industry: a systematic review. BIOFOULING 2024:1-19. [PMID: 39494760 DOI: 10.1080/08927014.2024.2420002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
This study aimed to evaluate the effectiveness of ozonation in controlling Pseudomonas spp. biofilm in the food industry, and present possible parameters influencing this process. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was conducted in the PubMed, EMBASE, ScienceDirect, and Scopus databases. Eleven articles published between 1993 and 2023 were included in the study, indicating that the topic has been under investigation for several decades, gaining more prominence in recent years. Studies have demonstrated the antimicrobial effect of ozone under different experimental conditions, indicating that it is an effective strategy. Furthermore, they suggest that, in addition to ozone concentration and exposure time, other parameters such as the type of materials used in processing plants, hydrodynamic conditions, water temperature, and knowledge of commonly found microorganisms contribute to the effectiveness of the process aimed at reducing microbial counts. In conclusion, the available evidence suggests that ozonation in controlling Pseudomonas spp. can be considered a promising antimicrobial strategy. More efforts are needed to adapt the different methodologies according to each industrial reality.
Collapse
|
2
|
Abdelshafy AM, Neetoo H, Al-Asmari F. Antimicrobial Activity of Hydrogen Peroxide for Application in Food Safety and COVID-19 Mitigation: An Updated Review. J Food Prot 2024; 87:100306. [PMID: 38796115 DOI: 10.1016/j.jfp.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Hydrogen peroxide (H2O2) is a well-known agent with a broad-spectrum antimicrobial activity against pathogenic bacteria, fungi, and viruses. It is a colorless liquid and commercially available in aqueous solution over a wide concentration range. It has been extensively used in the food industry by virtue of its strong oxidizing property and its ability to cause cellular oxidative damage in microbial cells. This review comprehensively documents recent research on the antimicrobial activity of H2O2 against organisms of concern for the food industry, as well as its effect against SARS-CoV-2 responsible for the COVID-19 pandemic. In addition, factors affecting the antimicrobial effectiveness of H2O2, different applications of H2O2 as a sanitizer or disinfectant in the food industry as well as safety concerns associated with H2O2 are discussed. Finally, recent efforts in enhancing the antimicrobial efficacy of H2O2 are also outlined.
Collapse
Affiliation(s)
- Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Hudaa Neetoo
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius.
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
3
|
Tian X, Qin Y, Jiang Y, Guo X, Wen Y, Yang H. Chemically renewable SERS sensor for the inspection of H 2O 2 residue in food stuff. Food Chem 2024; 438:137777. [PMID: 37979276 DOI: 10.1016/j.foodchem.2023.137777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/30/2023] [Accepted: 10/14/2023] [Indexed: 11/20/2023]
Abstract
Hydrogen peroxide (H2O2) residue in foodstuffs will bring great harm to human health. We immobilize the composite of the reduced polyaniline (PANIR) modified gold nanoparticles on the surface of ITO (ITO/AuNPs/PANIR) to develop surface-enhanced Raman scattering (SERS) sensor for H2O2.detection. The principle is that PANIR is oxidized by H2O2 to generate a new SERS peak at 1460 cm-1 for realizing quantitative analysis of H2O2. Fe2+-Fenton reaction is introduced to catalytically react with H2O2 to hydroxyl radical, which speeds up the oxidation of PANIR. Before SERS detection, acidic treatment could guarantee the reduced state of PANIR in composite. Limit of detection of ITO/AuNPs/PANIR-based SERS assay for H2O2 is down to 1.78 × 10-12 mol/L and a good linear relationship from 1 × 10-10 to 3.16 × 10-7 mol/L is achieved. Furthermore, the SERS sensor could be regenerated by acidic treatment. As a scenario, the renewable SERS sensor is utilized to monitor H2O2 residues in food and environmental samples.
Collapse
Affiliation(s)
- Xin Tian
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yun Qin
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
4
|
Gacnik S, Munda A, Veberic R, Hudina M, Mikulic-Petkovsek M. Preventive and Curative Effects of Salicylic and Methyl Salicylic Acid Having Antifungal Potential against Monilinia laxa and the Development of Phenolic Response in Apple Peel. PLANTS (BASEL, SWITZERLAND) 2023; 12:1584. [PMID: 37111808 PMCID: PMC10142601 DOI: 10.3390/plants12081584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The effects of salicylic acid (SA) and one of its better-known derivatives-methyl salicylic acid (MeSA)-on the infection of apple fruits with the fungus Monilinia laxa, which causes brown rot, were investigated. Since research to date has focused on preventive effects, we also focused on the curative use of SA and MeSA. Curative use of SA and MeSA slowed the progression of the infection. In contrast, preventive use was generally unsuccessful. HPLC-MS was used to analyze the content of phenolic compounds in apple peels in healthy and boundary peel tissues around lesions. The boundary tissue around the lesions of untreated infected apple peel had up to 2.2-times higher content of total analyzed phenolics (TAPs) than that in the control. Flavanols, hydroxycinnamic acids and dihydrochalcones were also higher in the boundary tissue. During the curative treatment with salicylates, the ratio of TAP content between healthy and boundary tissue was lower (SA up to 1.2-times higher and MeSA up to 1.3-times higher content of TAPs in boundary compared to those in healthy tissue) at the expense of also increasing the content in healthy tissues. The results confirm that salicylates and infection with the fungus M. laxa cause an increased content of phenolic compounds. Curative use of salicylates has a greater potential than preventive use in infection control.
Collapse
Affiliation(s)
- Sasa Gacnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Alenka Munda
- Agricultural Institute of Slovenia, Hacquetova 17, SI-1000 Ljubljana, Slovenia
| | - Robert Veberic
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Metka Hudina
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Peng T, Yue P, Ma WB, Zhao ML, Guo JL, Tong XX. Growth characteristics and phylogenetic analysis of the isolate mycelium, Ophiocordyceps sinensis. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Belloli M, Cigarini M, Milesi G, Mutti P, Berni E. Effectiveness of two UV-C light-emitting diodes (LED) systems in inactivating fungal conidia on polyethylene terephthalate. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Huang Y, Su E, Mu X, Wang J, Wang Y, Xie J, Ying R. The recent development of nanozymes for food quality and safety detection. J Mater Chem B 2022; 10:1359-1368. [DOI: 10.1039/d1tb02667d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As potential mimics of natural enzymes, nanozymes overcome many disadvantages of natural enzymes such as complex preparation and purification process, high price, poor stability and low recycling efficiency. Combined with...
Collapse
|
8
|
Wang Y, Chen J, Zhang L, Liao W, Tong Z, Liu J, Mao L, Gao Y. Electron beam irradiation inactivation of Bacillus atrophaeus on the PET bottle preform and HDPE bottle caps with different original colonies. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Sterilization of food packaging by UV-C irradiation: Is Aspergillus brasiliensis ATCC 16404 the best target microorganism for industrial bio-validations? Int J Food Microbiol 2021; 357:109383. [PMID: 34509931 DOI: 10.1016/j.ijfoodmicro.2021.109383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
In food industries UV-C irradiation is used to achieve decontamination of some packaging devices, such as plastic caps or laminated foils, and of those smooth surfaces that can be directly irradiated. Since its effectiveness can be checked by microbial validation tests, some ascospore-forming molds (Aspergillus hiratsukae, Talaromyces bacillisporus, Aspergillus montevidensis, and Chaetomium globosum) were compared with one of the target microorganisms actually used in industrial bio-validations (Aspergillus brasiliensis ATCC 16404) to find the species most resistant to UV-C. Tests were carried out with an UV-C lamp (irradiance = 127 μW/cm2; emission peak = 253.7 nm) by inoculating HDPE caps with one or more layers of spores. Inactivation kinetics of each strain were studied and both the corresponding 1D-values and the number of Logarithmic Count Reductions (LCR) achieved were calculated. Our results showed the important role played by the type of inoculum (one or more layers) and by the differences in cell structure (thickness, presence of protective solutes, pigmentation, etc.) of the strains tested. With a single-layer inoculum, Chaetomium globosum showed the highest resistance to UV-C irradiation (1D-value = 100 s). With a multi-layer inoculum, Aspergillus brasiliensis ATCC 16404 was the most resistant fungus (1D-value = 188 s), even if it reached a number of logarithmic reductions that was higher than those of some ascospore-forming mycetes (Aspergillus montevidensis, Talaromyces bacillisporus) tested.
Collapse
|
10
|
Cai S, Rico-Munoz E, Snyder AB. Intermediate Thermoresistance in Black Yeast Asexual Cells Variably Increases with Culture Age, Promoting Survival and Spoilage in Thermally Processed Shelf-Stable Foods. J Food Prot 2021; 84:1582-1591. [PMID: 33878188 DOI: 10.4315/jfp-21-103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/20/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Black yeasts are a functional group that has caused spoilage in cold-filled and hot-filled beverages, as well as other water activity-controlled food products. We established quantitative thermoresistance parameters for the inactivation of 12 Aureobasidium and Exophiala isolates through isothermal experiments and a challenge study. Culture age (2 versus 28 days) variably affected the thermoresisitance among the black yeast strains. Variation in thermoresistance exists within each genus, but the two most resistant strains were the Exophiala isolates. The two most heat-resistant isolates were Exophiala phaeomuriformis FSL-E2-0572, with a D60-value of 7.69 ± 0.63 min in 28-day culture and Exophiala dermatitidis YB-734, with a D60-value of 16.32 ± 2.13 min in 28-day culture. Although these thermoresistance levels were, in some cases, greater than those for conidia and vegetative cells from other common food spoilage fungi, they were much more sensitive than the ascospores of heat-resistant molds most associated with spoilage of hot-filled products. However, given that black yeasts have caused spoilage in hot-filled products, we hypothesized that this intermediate degree of thermoresistance may support survival following introduction during active cooling before package seals have formed. A challenge study was performed in an acidic (apple cider) and water activity-controlled (maple syrup) product to evaluate survival. When apple cider was hot filled at 82°C, black yeast counts were reduced by 4.1 log CFU/mL 24 h after the heat treatment, but the survivors increased up to 6.7 log CFU/mL after 2 weeks. In comparison, the counts were below the detection limit after both 24 h and 14 days of shelf life in both products when filled at the boiling points. This suggests that ensuring water microbial quality in cooling tunnels and nozzle sanitation may be essential in mitigating the introduction of these fungi. HIGHLIGHTS
Collapse
Affiliation(s)
- Shiyu Cai
- Department of Food Science, Cornell University, Ithaca, New York 14853
| | - Emilia Rico-Munoz
- BCN Research Laboratories, Inc., 2491 Stock Creek Boulevard, Rockford, Tennessee 37853, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
11
|
Kumasaki M, Yamanobe N, Akiyoshi M, Matsunaga T. The influence of ClO− and acidity in the reaction between H2O2 and CuCl2. J Loss Prev Process Ind 2021. [DOI: 10.1016/j.jlp.2021.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Iuliano A, Fabiszewska A, Kozik K, Rzepna M, Ostrowska J, Dębowski M, Plichta A. Effect of Electron-Beam Radiation and Other Sterilization Techniques on Structural, Mechanical and Microbiological Properties of Thermoplastic Starch Blend. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:1489-1504. [PMID: 33250673 PMCID: PMC7679798 DOI: 10.1007/s10924-020-01972-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
This work investigates the potential application of various sterilization methods for microorganism inactivation on the thermoplastic starch blend surface. The influence of the e-beam and UV radiation, ethanol, isopropanol and microwave autoclave on structural and packaging properties were studied. All the applied methods were successful in the inactivation of yeast and molds, however only the e-beam radiation was able to remove the bacterial microflora. The FTIR analysis revealed no significant changes in the polymer structure, nevertheless, a deterioration of the mechanical properties of the blend was observed. The least invasive method was the UV radiation which did not affect the mechanical parameters and additionally improved the barrier properties of the tested material. Moreover, it was proved that during the e-beam radiation the chain scission and cross-linking occurred. The non-irradiated and irradiated samples were subjected to the enzymatic degradation studies performed in the presence of amylase. The results indicated that irradiation accelerated the decomposition of material, which was confirmed by the measurements of weight loss, and mass of glucose and starch released to the solution in the course of biodegradation, as well as the FTIR and thermal analysis.
Collapse
Affiliation(s)
- Anna Iuliano
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Kozik
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Magdalena Rzepna
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Justyna Ostrowska
- Department of Organic Technologies, The Łukasiewicz Research Network – New Chemical Syntheses Institute, al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland
| | - Maciej Dębowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Plichta
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
13
|
Kure CF, Langsrud S, Møretrø T. Efficient Reduction of Food Related Mould Spores on Surfaces by Hydrogen Peroxide Mist. Foods 2020; 10:foods10010055. [PMID: 33379242 PMCID: PMC7823841 DOI: 10.3390/foods10010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of the study was to evaluate the fungicidal effect of a H2O2 mist generating system for disinfection of spores of six food-related moulds (Alternaria alternata, Aspergillus flavus, Geotrichum candidum, Mucor plumbeus, Paecilomyces variotii, and Penicillium solitum) dried on stainless steel. Exposure to H2O2 mist for 2 or 4 h lead to >3 log reduction in mould spores in the majority of the tests. The presence of the soils 2% skim milk or 3% BSA did not significantly alter the fungicidal effect, while the presence of raw meat juice had an adverse fungicidal effect against Penicillium and Mucor in two out of three tests. Fungicidal suspension tests with liquid H2O2 confirmed the effectiveness of H2O2 on reducing the mould spores. Both the surface test and the suspension test indicated that P. variotii is more resistant to H2O2 compared to the other moulds tested. The study shows the efficiency of H2O2 mist on reducing food-related mould spores on surfaces.
Collapse
|
14
|
Racchi I, Scaramuzza N, Hidalgo A, Berni E. Combined effect of water activity and pH on the growth of food-related ascospore-forming molds. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The contamination of raw materials, packaging, or processing environments by fungal ascospores is a real concern for food industries, where variable rates of spoilage can be reached in pasteurized acidic products such as fruit juices, fruit jams, or soft drinks. The aim of this work was to assess the combined effect of aw and pH on the growth of six isolates from three genera of ascospore-forming molds that may occur in raw materials and in food industrial environments, in order to determine the environmental conditions that prevent the spoilage of pasteurized foods and beverages.
Methods
Growth tests were carried out on 60-day-old ascospores from Aspergillus hiratsukae (≡Neosartorya hiratsukae), Aspergillus thermomutatus (≡Neosartorya pseudofischeri), Chaetomium flavoviride, Chaetomium globosum, Talaromyces bacillisporus, and Talaromyces trachyspermus. The tests were performed up to 90 days at 25 °C, using sucrose solutions at different aw (0.85, 0.88, 0.92, 0.95) and pH (3.20, 3.50, 3.80, 4.20, 4.60) values. Growth was characterized by fitting an ordinary logistic regression model to the collected growth data.
Results
The explained percentage of the growth/no growth models ranged between 81.0 and 99.3%: aw exerted the largest influence on the growth of all tested species, while pH was significant only for Chaetomium isolates. The minimum conditions for germination and growth were aw 0.92 and pH 3.50 or 3.80, respectively, for C. flavoviride (46 days) and C. globosum (39 days), aw 0.92 and pH 3.20 for T. trachyspermus (13 days), aw 0.88 and pH 3.20 for T. bacillisporus (39 days), and aw 0.88 and pH 3.20 for the two aspergilli (33 and 27 days, respectively, for A. hiratsukae and A. thermomutatus).
Conclusions
Most of the spoiling mycetes tested were well-adapted to the formulations considered; therefore, foods strategies aiming to inhibit their growth should explore also the hurdle effect exerted by other factors (e.g., antioxidants, organic acids, oxygen levels).
Collapse
|
15
|
Scaramuzza N, Mutti P, Cigarini M, Berni E. Effect of peracetic acid on ascospore-forming molds and test microorganisms used for bio-validations of sanitizing processes in food plants. Int J Food Microbiol 2020; 332:108772. [PMID: 32622248 DOI: 10.1016/j.ijfoodmicro.2020.108772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022]
Abstract
Industrial sterilization of packaging and filling machineries by peracetic acid (PAA) is a widespread practice. In our study we assessed the resistance to PAA of three ascospore-forming molds (Chaetomium globosum ATCC 6205; Talaromyces bacillisporus SSICA 10915; Aspergillus hiratsukae SSICA 3913) compared to that of Aspergillus brasiliensis ATCC 16404 and Bacillus atrophaeus DSM 675, that are currently used as test microorganisms during industrial bio-validations of food packaging and machineries. Tests were carried out at 40 °C using 1,000 mg/l of PAA, with or without a supporting material (aluminium, tin-plate, PET). At all conditions tested, a greater resistance to PAA was registered for C. globosum, followed by T. bacillisporus, A. hiratsukae, A. brasiliensis and B. atrophaeus. D-values of C. globosum varied from 23 to 68 min, whereas T. bacillisporus showed D-values from 83 to 352 s and A. hiratsukae showed D-values from 32 to 65 s. Surprisingly, both test microorganisms (A. brasiliensis and B. atrophaeus) proved less resistant than ascospore-forming molds tested, their D-values being always lower than 30 s. Cells treated without a supporting material proved more resistant than those deposited on plastic or metallic strips, with the exception of tin-plate, where results approaching those obtained without a supporting materials were obtained. Based on the results obtained in this paper, test microorganisms currently used for bio-validations in industrial plants and also heat-resistant strains proved sensibly less resistant to PAA than C. globosum. Therefore, for practical purposes C. globosum should be furtherly studied to understand if its use during bio-validations of sanitizing processes could lead to more performing results.
Collapse
Affiliation(s)
- Nicoletta Scaramuzza
- Stazione Sperimentale per l'Industria delle Conserve Alimentari, SSICA, Viale F. Tanara, 31/A, 43121 Parma, Italy
| | - Paola Mutti
- Stazione Sperimentale per l'Industria delle Conserve Alimentari, SSICA, Viale F. Tanara, 31/A, 43121 Parma, Italy
| | - Massimo Cigarini
- Stazione Sperimentale per l'Industria delle Conserve Alimentari, SSICA, Viale F. Tanara, 31/A, 43121 Parma, Italy
| | - Elettra Berni
- Stazione Sperimentale per l'Industria delle Conserve Alimentari, SSICA, Viale F. Tanara, 31/A, 43121 Parma, Italy.
| |
Collapse
|