1
|
Kuang Z, Huang H, Chen L, Shang Y, Huang S, Liu J, Chen J, Xie X, Chen M, Wu L, Gao H, Zhao H, Li Y, Wu Q. Development of a High-Resolution Melting Method for the Detection of Clarithromycin-Resistant Helicobacter pylori in the Gastric Microbiome. Antibiotics (Basel) 2024; 13:975. [PMID: 39452241 PMCID: PMC11505316 DOI: 10.3390/antibiotics13100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The issue of Helicobacter pylori (H. pylori) resistance to clarithromycin (CLR) has consistently posed challenges for clinical treatment. Hence, a rapid susceptibility testing (AST) method urgently needs to be developed. Methods: In the present study, 35 isolates of H. pylori were isolated from 203 gastritis patients of the Guangzhou cohort, and the antimicrobial resistance phenotypes were associated with their genomes to analyze the relevant mutations. Based on these mutations, a rapid detection system utilizing high-resolution melting (HRM) curve analysis was designed and verified by the Shenzhen cohort, which consisted of 38 H. pylori strains. Results: Genomic analysis identified the mutation of the 2143 allele from A to G (A2143G) of 23S rRNA as the most relevant mutation with CLR resistance (p < 0.01). In the HRM system, the wild-type H. pylori showed a melting temperature (Tm) of 79.28 ± 0.01 °C, while the mutant type exhibited a Tm of 79.96 ± 0.01 °C. These differences enabled a rapid distinction between two types of H. pylori (p < 0.01). Verification examinations showed that this system could detect target DNA as low as 0.005 ng/μL in samples without being affected by other gastric microorganisms. The method also showed a good performance in the Shenzhen validation cohort, with 81.58% accuracy, and 100% specificity. Conclusions: We have developed an HRM system that can accurately and quickly detect CLR resistance in H. pylori. This method can be directly used for the detection of gastric microbiota samples and provides a new benchmark for the simple detection of H. pylori resistance.
Collapse
Affiliation(s)
- Zupeng Kuang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.K.); (Y.S.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Huishu Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Ling Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Yanyan Shang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Z.K.); (Y.S.)
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Shixuan Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Jun Liu
- Department of Gastroenterology, The Songgang People’s Hospital of Baoan District in Shenzhen, Shenzhen 518105, China;
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Lei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - He Gao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Hui Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (H.H.); (L.C.); (S.H.); (X.X.); (M.C.); (L.W.); (H.G.); (H.Z.)
| |
Collapse
|
2
|
Zhang B, Ren H, Wang X, Han C, Jin Y, Hu X, Shi R, Li C, Wang Y, Li Y, Lu S, Liu Z, Hu P. Comparative genomics analysis to explore the biodiversity and mining novel target genes of Listeria monocytogenes strains from different regions. Front Microbiol 2024; 15:1424868. [PMID: 38962128 PMCID: PMC11220162 DOI: 10.3389/fmicb.2024.1424868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
As a common foodborne pathogen, infection with L. monocytogenes poses a significant threat to human life and health. The objective of this study was to employ comparative genomics to unveil the biodiversity and evolutionary characteristics of L. monocytogenes strains from different regions, screening for potential target genes and mining novel target genes, thus providing significant reference value for the specific molecular detection and therapeutic targets of L. monocytogenes strains. Pan-genomic analysis revealed that L. monocytogenes from different regions have open genomes, providing a solid genetic basis for adaptation to different environments. These strains contain numerous virulence genes that contribute to their high pathogenicity. They also exhibit relatively high resistance to phosphonic acid, glycopeptide, lincosamide, and peptide antibiotics. The results of mobile genetic elements indicate that, despite being located in different geographical locations, there is a certain degree of similarity in bacterial genome evolution and adaptation to specific environmental pressures. The potential target genes identified through pan-genomics are primarily associated with the fundamental life activities and infection invasion of L. monocytogenes, including known targets such as inlB, which can be utilized for molecular detection and therapeutic purposes. After screening a large number of potential target genes, we further screened them using hub gene selection methods to mining novel target genes. The present study employed eight different hub gene screening methods, ultimately identifying ten highly connected hub genes (bglF_1, davD, menE_1, tilS, dapX, iolC, gshAB, cysG, trpA, and hisC), which play crucial roles in the pathogenesis of L. monocytogenes. The results of pan-genomic analysis showed that L. monocytogenes from different regions exhibit high similarity in bacterial genome evolution. The PCR results demonstrated the excellent specificity of the bglF_1 and davD genes for L. monocytogenes. Therefore, the bglF_1 and davD genes hold promise as specific molecular detection and therapeutic targets for L. monocytogenes strains from different regions.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Cheng Han
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xueyu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ruoran Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chengwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuzhu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yansong Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shiying Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Cheng J, Wu S, Ye Q, Gu Q, Zhang Y, Ye Q, Lin R, Liang X, Liu Z, Bai J, Zhang J, Chen M, Wu Q. A novel multiplex PCR based method for the detection of Listeria monocytogenes clonal complex 8. Int J Food Microbiol 2024; 409:110475. [PMID: 37976619 DOI: 10.1016/j.ijfoodmicro.2023.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Listeria monocytogenes is an important foodborne pathogen worldwide, which could cause listeriosis with a 20-30 % fatality rate in immunocompromised individuals. Listeria monocytogenes MLST clonal complex (CC) 8 strain is a common clone in food and clinical cases. The aim of this study was to develop multiplex PCR (mPCR) and high-resolution melting (HRM) qPCR to simultaneously detect L. monocytogenes CC8 and the other L. monocytogenes strains based on pan-genome analysis. A novel multiplex PCR and HRM qPCR targeted for the genes LM5578_1180 (specific for CC8) and LM5578_2262 (for L. monocytogenes) were developed. The specificity of this multiplex PCR and HRM qPCR were verified with other CCs of L. monocytogenes and other species strains. The detection limit of this multiplex PCR and HRM qPCR is 2.1 × 103 CFU/mL and 2.1 × 100 CFU/mL, respectively. This multiplex PCR and HRM qPCR could accurately detect CC8 strains with the interference of different ratios of L. monocytogenes CC9, CC87, CC121, CC155, and L. innocua strains. Subsequently, the detection ability of mPCR and HRM qPCR were also evaluated in spiked samples. The mPCR method could successfully detect 6.2 × 103 CFU/mL of CC8 L. monocytogenes after 6 h enrichment while the multiplex HRM qPCR method could successfully detect 6.2 × 104 CFU/mL of CC8 L. monocytogenes after 3 h enrichment. The feasibility of these methods were satisfactory in terms of sensitivity, specificity, and efficiency after evaluating 12 mushroom samples and was consistent with that of the National Standard Detection Method (GB4789.30-2016). In conclusion, the developed assays could be applied for rapid screening and detection of L. monocytogenes CC8 strains both in food and food production environments, providing accurate results to adopt monitoring measures to improve microbiological safety.
Collapse
Affiliation(s)
- Jianheng Cheng
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Zhang
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinglei Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruoqin Lin
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinwen Liang
- College of Food, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zihao Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jianling Bai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
4
|
Sioutas G, Petridou E, Minoudi S, Papageorgiou KV, Symeonidou I, Giantsis IA, Triantafyllidis A, Papadopoulos E. Isolation of Listeria monocytogenes from poultry red mite (Dermanyssus gallinae) infesting a backyard chicken farm in Greece. Sci Rep 2023; 13:685. [PMID: 36639408 PMCID: PMC9839678 DOI: 10.1038/s41598-023-27862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is arguably the most harmful, ubiquitous haematophagous ectoparasite infesting egg-laying hens. PRM is a vector of various microorganisms, with some being important for food microbiology and public health. The present study aimed to investigate the presence of specific pathogens, including Escherichia coli, Salmonella spp. and Listeria spp., carried by PRM infesting a chicken farm in Greece. Mites were caught using cardboard traps (Avivet), and 100 unwashed PRM were homogenized and used for microbiological cultures. Microbiological cultures were carried out on general and selective substrates to detect the above-mentioned bacteria. Specifically for Listeria spp., DNA was extracted from bacteria grown in Tryptone Soya Yeast Extract Agar using a commercial kit. The hly gene encoding the Listeriolysin O protein was amplified by PCR. Mites were identified as D. gallinae using morphological keys as well as by COI DNA barcoding. Microbiological cultures and PCR assays were positive for Listeria monocytogenes. No other bacteria were detected. The current study constitutes the first molecular isolation of L. monocytogenes from D. gallinae, confirming that PRM can carry this food-borne pathogen. PRM control measures and hygiene practices should be applied to minimize any possible contamination risk of poultry products with L. monocytogenes and safeguard public health.
Collapse
Affiliation(s)
- Georgios Sioutas
- grid.4793.90000000109457005Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evanthia Petridou
- grid.4793.90000000109457005Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Styliani Minoudi
- grid.4793.90000000109457005Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Konstantinos V. Papageorgiou
- grid.4793.90000000109457005Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Isaia Symeonidou
- grid.4793.90000000109457005Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- grid.184212.c0000 0000 9364 8877Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Alexandros Triantafyllidis
- grid.4793.90000000109457005Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece.
| |
Collapse
|
5
|
Fredriksson-Ahomaa M, Sauvala M, Kurittu P, Heljanko V, Heikinheimo A, Paulsen P. Characterisation of Listeria monocytogenes Isolates from Hunted Game and Game Meat from Finland. Foods 2022; 11:foods11223679. [PMID: 36429271 PMCID: PMC9689155 DOI: 10.3390/foods11223679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is an important foodborne zoonotic bacterium. It is a heterogeneous species that can be classified into lineages, serogroups, clonal complexes, and sequence types. Only scarce information exists on the properties of L. monocytogenes from game and game meat. We characterised 75 L. monocytogenes isolates from various game sources found in Finland between 2012 and 2020. The genetic diversity, presence of virulence and antimicrobial genes were studied with whole genome sequencing. Most (89%) of the isolates belonged to phylogenetic lineage (Lin) II and serogroup (SG) IIa. SGs IVb (8%) and IIb (3%) of Lin I were sporadically identified. In total, 18 clonal complexes and 21 sequence types (STs) were obtained. The most frequent STs were ST451 (21%), ST585 (12%) and ST37 (11%) found in different sample types between 2012 and 2020. We observed 10 clusters, formed by closely related isolates with 0-10 allelic differences. Most (79%) of the virulence genes were found in all of the L. monocytogenes isolates. Only fosX and lin were found out of 46 antimicrobial resistance genes. Our results demonstrate that potentially virulent and antimicrobial-sensitive L. monocytogenes isolates associated with human listeriosis are commonly found in hunted game and game meat in Finland.
Collapse
Affiliation(s)
- Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| | - Mikaela Sauvala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Microbiology Unit, Finnish Food Authority, 60100 Seinäjoki, Finland
| | - Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
6
|
Application of metabolomics analysis to aid in understanding the pathogenicity of different lineages and different serotypes of Listeria monocytogenes. Int J Food Microbiol 2022; 373:109694. [DOI: 10.1016/j.ijfoodmicro.2022.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
|
7
|
Advances in nanomaterial-based microfluidic platforms for on-site detection of foodborne bacteria. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116509] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
A novel multiplex PCR method for simultaneous identification of hypervirulent Listeria monocytogenes clonal complex 87 and CC88 strains in China. Int J Food Microbiol 2022; 366:109558. [DOI: 10.1016/j.ijfoodmicro.2022.109558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/20/2022]
|
9
|
Real-Time PCR Method for the Rapid Detection and Quantification of Pathogenic Staphylococcus Species Based on Novel Molecular Target Genes. Foods 2021; 10:foods10112839. [PMID: 34829120 PMCID: PMC8618141 DOI: 10.3390/foods10112839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
Coagulase-positive Staphylococcus aureus is a foodborne pathogen considered one of the causes of food-related disease outbreaks. Like S. aureus, Staphylococcus capitis, Staphylococcus caprae, and S. epidermidis are opportunistic pathogens causing clinical infections and food contamination. The objective of our study was to develop a rapid, accurate, and monitoring technique to detect four Staphylococcus species in food. Four novel molecular targets (GntR family transcriptional regulator for S. aureus, phosphomannomutase for S. epidermidis, FAD-dependent urate hydroxylase for S. capitis, and Gram-positive signal peptide protein for S. caprae) were mined based on pan-genome analysis. Primers targeting molecular target genes showed 100% specificity for 100 non-target reference strains. The detection limit in pure cultures and artificially contaminated food samples was 102 colony-forming unit/mL for S. aureus, S. capitis, S. caprae, and S. epidermidis. Moreover, real-time polymerase chain reaction successfully detected strains isolated from various food matrices. Thus, our method allows an accurate and rapid monitoring of Staphylococcus species and may help control staphylococcal contamination of food.
Collapse
|