1
|
Abdelaziz MNS, Maung AT, El-Telbany M, Lwin SZC, Noor Mohammadi T, Zayda M, Wang C, Damaso CH, Lin Y, Masuda Y, Honjoh KI, Miyamoto T. Applications of bacteriophage in combination with nisin for controlling multidrug-resistant Bacillus cereus in broth and various food matrices. Food Res Int 2024; 191:114685. [PMID: 39059942 DOI: 10.1016/j.foodres.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
This study focused on the isolation and characterization of bacteriophages with specific activity against toxin-producing and multidrug-resistant strains of Bacillus cereus sensu stricto (B. cereus s. s.). Ten different samples yielded six bacteriophages by utilizing the double-layer agar technique. The most promising phage, vB_BceS-M2, was selected based on its broad host range and robust lytic activity against various B. cereus s. s. strains. The phage vB_BceS-M2 had a circular double-stranded DNA genome of 56,482 bp. This phage exhibited stability over a wide range of temperatures and pH values, which is crucial for its potential application in food matrices. The combined effect of phage vB_BceS-M2 and nisin, a widely used antimicrobial peptide, was investigated to enhance antimicrobial efficacy against B. cereus in food. The results suggested that nisin showed synergy and combined effect with the phage, potentially overcoming the growth of phage-resistant bacteria in the broth. Furthermore, practical applications were conducted in various liquid and solid food matrices, including whole and skimmed milk, boiled rice, cheese, and frozen meatballs, both at 4 and 25 °C. Phage vB_BceS-M2, either alone or in combination with nisin, reduced the growth rate of B. cereus in foods other than whole milk. The combination of bacteriophage and nisin showed promise for the development of effective antimicrobial interventions to counteract toxigenic and antibiotic-resistant B. cereus in food.
Collapse
Affiliation(s)
- Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Food Hygiene, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | - Mahmoud Zayda
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Monofiya 32897, Egypt
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Catherine Hofilena Damaso
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Narayanan KB, Bhaskar R, Han SS. Bacteriophages: Natural antimicrobial bioadditives for food preservation in active packaging. Int J Biol Macromol 2024; 276:133945. [PMID: 39029821 DOI: 10.1016/j.ijbiomac.2024.133945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Developing innovative films and coatings is paramount for extending the shelf life of numerous food products and augmenting the barrier and antimicrobial properties of food packaging materials. Many synthetic chemicals used in active packaging and food storage have the potential to leach into food, posing long-term health risks. It is imperative for active packaging materials to inherently possess biological protective properties to ensure food quality and safety throughout its storage. Bacteriophages, or simply phages, are bacteria-eating viruses that serve as promising natural biocontrol agents and antimicrobial bioadditives in food packaging materials, specifically targeting bacterial foodborne pathogens. These phages are generally recognized as safe (GRAS) by regulatory authorities for food safety applications. They exhibit targeted action against various Gram-positive and -negative foodborne pathogens, including Bacillus spp., Campylobacter spp., Escherichia coli, Listeria monocytogenes, Salmonella spp., Shigella spp., and Vibrio spp., associated with foodborne spoilage and illness without affecting the beneficial microbes. Phage cocktails can be applied directly on food surfaces, incorporated into food packaging materials, or utilized during food processing treatments. Unlike chemical agents, phage activity increases proportionally with the rise in pathogenic bacterial populations. Researchers are exploring various packaging materials to deliver phages with broad host range, stability, and viability ensuring their effectiveness in safeguarding various food systems. The effectiveness of phage immobilization or encapsulation on active food packaging materials depends on various factors, including the characteristics of polymers, the choice of solvents, the type of phage, and its loading efficiency. Factors such as the orientation of phage immobilization on substrates, pH, temperature, exposure to carbohydrates and amino acids, exopolysaccharides, lipopolysaccharides, and metals can also influence phage activity. In this review, we comprehensively discuss the various active packaging systems utilizing bacteriophages as natural biocontrols and antimicrobial bioadditives to reduce the incidence of foodborne illness and enhance consumer confidence in the safety of food products.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
3
|
E S, Gummadi SN. Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria. Crit Rev Microbiol 2024; 50:702-727. [PMID: 37861086 DOI: 10.1080/1040841x.2023.2271098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the "farm-to-fork continuum". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.
Collapse
Affiliation(s)
- Suja E
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory (AIM Lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
4
|
Wang K, Yuan X, Wang J, Huang Z, Yu S, Jin H, Wu S, Xue L, Wu Q, Ding Y. Isolation and characterization of a novel Bacillus cereus bacteriophage vBce-DP7. Microb Pathog 2024; 194:106792. [PMID: 39004153 DOI: 10.1016/j.micpath.2024.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Foodborne pathogens have become a major concern for public health. Bacillus cereus, a representative foodborne pathogen, is particularly challenging due to its ability to cause food poisoning and its resilient spores that are difficult to completely eradicate. Therefore, it is crucial to develop measures to prevent and control B. cereus. Bacteriophages, which are high specific towards their host strains and cannot infect eukaryotes, have proven to be effective in combating foodborne pathogens and are safe for human use. In this study, we isolated and characterized a novel bacteriophage named vBce-DP7 that specifically targets B. cereus strains belonging to three different sequence types (STs). Phage vBce-DP7 is a lytic one and has a short latent time of only 15 min. Moreover, it exhibites a good temperature tolerance, retaining high activity across a broad range of 4-55 ℃. Additionally, its activity remains unaffected within a wide pH range spanning from 2 to 10. Interestingly, with only 4 % genetic similarity with known bacteriophages, vBce-DP7 shows a possible classification on a family level though it shares many similar functional proteins with Salasmaviridae bacteriophages. Taken together, vBce-DP7 demonstrates its significant potential for further exploration in terms of phage diversity and its application in controlling B. cereus.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Food Science & Engineering, Institute of International School, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaoming Yuan
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zhichao Huang
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shan Yu
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hui Jin
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shi Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Liang Xue
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Tan S, Chen H, Huang S, Zhu B, Wu J, Chen M, Zhang J, Wang J, Ding Y, Wu Q, Yang M. Characterization of the novel phage vB_BceP_LY3 and its potential role in controlling Bacillus cereus in milk and rice. Int J Food Microbiol 2024; 421:110778. [PMID: 38861847 DOI: 10.1016/j.ijfoodmicro.2024.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Bacillus cereus is a foodborne pathogen that induces vomiting and diarrhea in affected individuals. It exhibits resistance to traditional sterilization methods and has a high contamination rate in dairy products and rice. Therefore, the development of a new food safety controlling strategy is necessary. In this research, we isolated and identified a novel phage named vB_BceP_LY3, which belongs to a new genus of the subfamily Northropvirinae. This phage demonstrates a short latency period and remains stable over a wide range of temperatures (4-60 °C) and pH levels (4-11). The 28,124 bp genome of LY3 does not contain any antibiotic-resistance genes or virulence factors. With regards to its antibacterial properties, LY3 not only effectively inhibits the growth of B. cereus in TSB (tryptic soy broth), but also demonstrates significant inhibitory effects in various food matrices. Specifically, LY3 treatment at 4 °C with a high MOI (MOI = 10,000) can maintain B. cereus levels below the detection limit for up to 24 h in milk. LY3 represents a safe and promising biocontrol agent against B. cereus, possessing long-term antibacterial capabilities and stability.
Collapse
Affiliation(s)
- Shilin Tan
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Hanfang Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Shixuan Huang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Bin Zhu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Junquan Wu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Moutong Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Jumei Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yu Ding
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| | - Meiyan Yang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| |
Collapse
|
6
|
Li Y, Luo L, Wang W, Hong B, Ma Y, Wang J. Characterization of a cell wall hydrolase with high activity against vegetative cells, spores and biofilm of Bacillus cereus. Int J Food Microbiol 2024; 414:110617. [PMID: 38335884 DOI: 10.1016/j.ijfoodmicro.2024.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Bacillus cereus is a prevalent foodborne pathogen that induces food poisoning symptoms such as vomiting and diarrhea. Its capacity to form spores and biofilm enables it to withstand disinfectants and antimicrobials, leading to persistent contamination during food processing. Consequently, it is necessary to develop novel and efficient antimicrobial agents to control B. cereus, its spores, and biofilms. Peptidoglycan hydrolases have emerged as a promising and eco-friendly alternative owing to their specific lytic activity against pathogenic bacteria. Here, we identified and characterized a Lysozyme-like cell wall hydrolase Lys14579, from the genome of B. cereus ATCC 14579. Recombinant Lys14579 specifically lysed B. cereus without affecting other bacteria. Lys14579 exhibited strong lytic activity against B. cereus, effectively lysing B. cereus cell within 20 min at low concentration (10 μg/mL). It also inhibited the germination of B. cereus spores and prevented biofilm formation at 12.5 μg/mL. Moreover, Lys14579 displayed good antimicrobial stability with negligible hemolysis in mouse red blood cells and no cytotoxicity against RAW264.7 cells. Notably, Lys14579 effectively inhibited B. cereus in boiled rice and minced meat in a dose-dependent manner. Furthermore, bioinformatics analysis and point mutagenesis experiments revealed that Glu-47 was the catalytic site, and Asp-57, Gln-60, Ser-61 and Glu-63 were active-site residues related with the cell wall lytic activity. Taken together, Lys14579 could be a promising biocontrol agent against vegetative cells, spores, and biofilm of B. cereus in food industry.
Collapse
Affiliation(s)
- Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Liu H, Wei X, Wang Z, Huang X, Li M, Hu Z, Zhang K, Hu Q, Peng H, Shang W, Yang Y, Wang Y, Lu S, Rao X. LysSYL: a broad-spectrum phage endolysin targeting Staphylococcus species and eradicating S. aureus biofilms. Microb Cell Fact 2024; 23:89. [PMID: 38528536 DOI: 10.1186/s12934-024-02359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Staphylococcus aureus and its single or mixed biofilm infections seriously threaten global public health. Phage therapy, which uses active phage particles or phage-derived endolysins, has emerged as a promising alternative strategy to antibiotic treatment. However, high-efficient phage therapeutic regimens have yet to be established. RESULTS In this study, we used an enrichment procedure to isolate phages against methicillin-resistant S. aureus (MRSA) XN108. We characterized phage SYL, a new member of the Kayvirus genus, Herelleviridae family. The phage endolysin LysSYL was expressed. LysSYL demonstrated stability under various conditions and exhibited a broader range of efficacy against staphylococcal strains than its parent phage (100% vs. 41.7%). Moreover, dynamic live/dead bacterial observation demonstrated that LysSYL could completely lyse MRSA USA300 within 10 min. Scan and transmission electron microscopy revealed evident bacterial cell perforation and deformation. In addition, LysSYL displayed strong eradication activity against single- and mixed-species biofilms associated with S. aureus. It also had the ability to kill bacterial persisters, and proved highly effective in eliminating persistent S. aureus when combined with vancomycin. Furthermore, LysSYL protected BALB/c mice from lethal S. aureus infections. A single-dose treatment with 50 mg/kg of LysSYL resulted in a dramatic reduction in bacterial loads in the blood, liver, spleen, lungs, and kidneys of a peritonitis mouse model, which resulted in rescuing 100% of mice challenged with 108 colony forming units of S. aureus USA300. CONCLUSIONS Overall, the data provided in this study highlight the strong therapeutic potential of endolysin LysSYL in combating staphylococcal infections, including mono- and mixed-species biofilms related to S. aureus.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Xuemei Wei
- Medical Research Institute, Southwest University, Chongqing, 400700, China
| | - Zhefen Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Kexin Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 400700, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
- Medical Research Institute, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
8
|
Huang Z, Yuan X, Zhu Z, Feng Y, Li N, Yu S, Li C, Chen B, Wu S, Gu Q, Zhang J, Wang J, Wu Q, Ding Y. Isolation and characterization of Bacillus cereus bacteriophage DZ1 and its application in foods. Food Chem 2024; 431:137128. [PMID: 37591138 DOI: 10.1016/j.foodchem.2023.137128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Bacillus cereus is a pathogenic bacterium that causes food contamination, resulting in food poisoning such as diarrhea and emesis. Therefore, it is crucial to develop effective strategies to control this bacterium. In this study, we isolated and characterized a novel B. cereus phage, named DZ1. Morphological and genomic analyses revealed that phage DZ1 is a new species belonging to the Andromedavirus genus. Phage DZ1 was tolerant to a wide range of pH values (5-9), temperatures (4-55 ℃), and high concentrations of NaCl solution (1000 mM). B. cereus with 21 different sequence types (STs) can be lysed by phage DZ1. Importantly, phage DZ1 inhibited B. cereus growth in spiked rice substrates or milk up to 36 and 72 h, respectively, with suppression of 3 log. Therefore, phage DZ1 is a useful biocontrol agent for the control of B. cereus in the food industry.
Collapse
Affiliation(s)
- Zhichao Huang
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaoming Yuan
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhenjun Zhu
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China
| | - Ying Feng
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China
| | - Na Li
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shubo Yu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Li
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Bo Chen
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Yuan X, Zhu Z, Huang Z, Yu S, Jin H, Chen B, Yu S, Xue L, Chen M, Zhang J, Wang J, Wu Q, Ding Y. Engineered lytic phage of Bacillus cereus and its application in milk. Int J Food Microbiol 2023; 405:110339. [PMID: 37517118 DOI: 10.1016/j.ijfoodmicro.2023.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
Phages have been approved for use in the food industry to control bacterial contamination in some countries. However, their broader adoption is hindered by some limitations. For instance, the persistence of infectious phages in the food industry can lead to the emergence of resistant bacteria, which negatively impacts the long-term effectiveness of phages. Additionally, the narrow host range of phages limits their effectiveness against various strains. To address these deficiencies, phage engineering has been proposed as a rational approach for modifying phages. In this study, we developed a simple and efficient engineering method for Bacillus cereus phage, using DK1 as an example, to reduce the number of residual phages and expand its range of hosts. Specifically, we knocked out the appendage gene, which codes for the receptor-binding protein, to produce phage progeny with structural defects in their appendages, resulting in the loss of infectivity after host elimination. Furthermore, we used plasmid-mediated means to express different appendage proteins during phage preparation, which allowed altering the host spectrum of the engineered phages without gene insertion. In practical applications, our engineered phages effectively reduced the number of B. cereus in milk and prevented the amplification of active progeny. Our strategy transformed phages from active viruses into more controllable antibacterial agents, making them safer and more efficient for the prevention and control of B. cereus. Moreover, we believe this strategy will help drive the use of engineered phages in the food industry.
Collapse
Affiliation(s)
- Xiaoming Yuan
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhenjun Zhu
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Zhichao Huang
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shan Yu
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Jin
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Bo Chen
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shubo Yu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science & Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Nazir A, Xu X, Liu Y, Chen Y. Phage Endolysins: Advances in the World of Food Safety. Cells 2023; 12:2169. [PMID: 37681901 PMCID: PMC10486871 DOI: 10.3390/cells12172169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
As antimicrobial resistance continues to escalate, the exploration of alternative approaches to safeguard food safety becomes more crucial than ever. Phage endolysins are enzymes derived from phages that possess the ability to break down bacterial cell walls. They have emerged as promising antibacterial agents suitable for integration into food processing systems. Their application as food preservatives can effectively regulate pathogens, thus contributing to an overall improvement in food safety. This review summarizes the latest techniques considering endolysins' potential for food safety. These techniques include native and engineered endolysins for controlling bacterial contamination at different points within the food production chain. However, we find that characterizing endolysins through in vitro methods proves to be time consuming and resource intensive. Alternatively, the emergence of advanced high-throughput sequencing technology necessitates the creation of a robust computational framework to efficiently characterize recently identified endolysins, paving the way for future research. Machine learning encompasses potent tools capable of analyzing intricate datasets and pattern recognition. This study briefly reviewed the use of these industry 4.0 technologies for advancing the research in food industry. We aimed to provide current status of endolysins in food industry and new insights by implementing these industry 4.0 strategies revolutionizes endolysin development. It will enhance food safety, customization, efficiency, transparency, and collaboration while reducing regulatory hurdles and ensuring timely product availability.
Collapse
Affiliation(s)
- Amina Nazir
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
11
|
Kazantseva OA, Skorynina AV, Piligrimova EG, Ryabova NA, Shadrin AM. A Genomic Analysis of the Bacillus Bacteriophage Kirovirus kirovense Kirov and Its Ability to Preserve Milk. Int J Mol Sci 2023; 24:12584. [PMID: 37628765 PMCID: PMC10454425 DOI: 10.3390/ijms241612584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bacteriophages are widely recognized as alternatives to traditional antibiotics commonly used in the treatment of bacterial infection diseases and in the food industry, as phages offer a potential solution in combating multidrug-resistant bacterial pathogens. In this study, we describe a novel bacteriophage, Kirovirus kirovense Kirov, which infects members of the Bacillus cereus group. Kirovirus kirovense Kirov is a broad-host-range phage belonging to the Caudoviricetes class. Its chromosome is a linear 165,667 bp double-stranded DNA molecule that contains two short, direct terminal repeats, each 284 bp long. According to bioinformatics predictions, the genomic DNA contains 275 protein-coding genes and 5 tRNA genes. A comparative genomic analysis suggests that Kirovirus kirovense Kirov is a novel species within the Kirovirus genus, belonging to the Andregratiavirinae subfamily. Kirovirus kirovense Kirov demonstrates the ability to preserve and decontaminate B. cereus from cow milk when present in milk at a concentration of 104 PFU/mL. After 4 h of incubation with the phage, the bacterial titer drops from 105 to less than 102 CFU/mL.
Collapse
Affiliation(s)
- Olesya A. Kazantseva
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Anna V. Skorynina
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Emma G. Piligrimova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| | - Natalya A. Ryabova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
- Institute of Protein Research RAS, Institutskaya St., 4, 142290 Pushchino, Russia
| | - Andrey M. Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Prospect Nauki, 5, 142290 Pushchino, Russia; (A.V.S.); (E.G.P.); (N.A.R.)
| |
Collapse
|
12
|
Yuan X, Huang Z, Zhu Z, Zhang J, Wu Q, Xue L, Wang J, Ding Y. Recent advances in phage defense systems and potential overcoming strategies. Biotechnol Adv 2023; 65:108152. [PMID: 37037289 DOI: 10.1016/j.biotechadv.2023.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Bacteriophages are effective in the prevention and control of bacteria, and many phage products have been permitted and applied in the field. Because bacteriophages are expected to replace other antimicrobial agents like antibiotics, the antibacterial effect of bacteriophage has attracted widespread attention. Recently, the diversified defense systems discovered in the target host have become potential threats to the continued effective application of phages. Therefore, a systematic summary and in-depth illustration of the interaction between phages and bacteria is conducive to the development of this biological control approach. In this review, we introduce different defense systems in bacteria against phages and emphasize newly discovered defense mechanisms in recent years. Additionally, we draw attention to the striking resemblance between defense system genes and antibiotic resistance genes, which raises concerns about the potential transfer of phage defense systems within bacterial populations and its future impact on phage efficacy. Thus, attention should be given to the effects of phage defense genes in practical applications. This article is not exhaustive, but strategies to overcome phage defense systems are also discussed to further promote more efficient use of phages.
Collapse
Affiliation(s)
- Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zhichao Huang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zhenjun Zhu
- Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Food Science, South China Agricultural University, Guangzhou 510432, China.
| | - Yu Ding
- Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Vill AC, Delesalle VA, Tomko BE, Lichty KB, Strine MS, Guffey AA, Burton EA, Tanke NT, Krukonis GP. Comparative Genomics of Six Lytic Bacillus subtilis Phages from the Southwest United States. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:171-178. [PMID: 36793550 PMCID: PMC9917325 DOI: 10.1089/phage.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Despite their importance to microbial dynamics involving Bacillus subtilis, we have a limited understanding of the diversity of phages that can lyse this model organism. Materials and Methods Phages were isolated from soil samples collected from various sites in the southwest U.S. deserts on a wild B. subtilis strain. Their genomes were assembled, characterized, and bioinformatically compared. Results Six Siphoviruses with high nucleotide and amino acid similarity to each other (>80%) but very limited similarity to phages currently in GenBank were isolated. These phages have double-stranded DNA genomes (55,312 to 56,127 bp) with 86-91 putative protein coding genes, and a low GC content. Comparative genomics reveal differences in loci encoding proteins that are putatively involved in bacterial adsorption with evidence for genomic mosaicism and a possible role for small genes. Conclusions A comparative approach provides insights into phage evolution, including the role of indels in protein folding.
Collapse
Affiliation(s)
- Albert C. Vill
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | | | - Brianne E. Tomko
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | | | - Madison S. Strine
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | | | | | - Natalie T. Tanke
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Greg P. Krukonis
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| |
Collapse
|